
A Beginner’s Guide to Designing
Embedded System Applications on
Arm Cortex-M Microcontrollers

Ariel Lutenberg, Pablo Gomez, Eric Pernia

TEXTBOOK

Embedded Systems Design

A Beginner’s Guide to
Designing Embedded System
Applications on Arm® Cortex®-M
Microcontrollers

A Beginner’s Guide to Designing
Embedded System Applications
on Arm® Cortex®-M
Microcontrollers

ARIEL LUTENBERG
PABLO GOMEZ
ERIC PERNIA

Arm Education Media is an imprint of Arm Limited, 110 Fulbourn Road, Cambridge, CBI 9NJ, UK

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or any other information storage and retrieval system, without
permission in writing from the publisher, except under the following conditions:

Permissions

n You may download this book in PDF format for personal, non-commercial use only.

n You may reprint or republish portions of the text for non-commercial, educational or research purposes but
only if there is an attribution to Arm Education.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein). Nothing in this license grants you any right to modify the whole, or portions of, this
book.

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods and professional practices may become necessary.

Readers must always rely on their own experience and knowledge in evaluating and using any information,
methods, project work, or experiments described herein. In using such information or methods, they should
be mindful of their safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent permitted by law, the publisher and the authors, contributors, and editors shall not have any
responsibility or liability for any losses, liabilities, claims, damages, costs or expenses resulting from or suffered in
connection with the use of the information and materials set out in this textbook.

Such information and materials are protected by intellectual property rights around the world and are copyright
© Arm Limited (or its affiliates). All rights are reserved. Any source code, models or other materials set out in this
reference book should only be used for non-commercial, educational purposes (and/or subject to the terms of
any license that is specified or otherwise provided by Arm). In no event shall purchasing this textbook be
construed as granting a license to use any other Arm technology or know-how.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. For more information about Arm’s trademarks,
please visit https://www.arm.com/company/policies/trademarks.

Arm is committed to making the language we use inclusive, meaningful, and respectful. Our goal is to remove and
replace non-inclusive language from our vocabulary to reflect our values and represent our global ecosystem.

Arm is working actively with our partners, standards bodies, and the wider ecosystem to adopt a consistent
approach to the use of inclusive language and to eradicate and replace offensive terms. We recognise that this will
take time. This book contains references to non-inclusive language; it will be updated with newer terms as those
terms are agreed and ratified with the wider community.

Contact us at education@arm.com with questions or comments about this course. You can also report non-
inclusive and offensive terminology usage in Arm content at terms@arm.com.

ISBN: 978-1-911531-42-5 (ePDF)
978-1-911531-41-8 (print)

Version: ePDF

For information on all Arm Education Media publications, visit our website at
https://www.arm.com/resources/education/books

To report errors or send feedback, please email edumedia@arm.com

https://www.arm.com/company/policies/trademarks
mailto:edumedia@arm.com

v

Contents

Preface xiii

Acknowledgments xxi

Authors’ Biographies xxiii

Authors’ Contributions xxv

Book Organization xxvi

How This Book Can Be Used for Teaching in Engineering Schools xxix

Bill of Materials xxxi

List of Figures xxxiii

List of Tables xli

1 Introduction to Embedded Systems 1

1.1 Roadmap 2

1.1.1 What You Will Learn 2

1.1.2 Contents of This Chapter 2

1.2 Fundamentals of Embedded Systems 3

1.2.1 Main Components of Embedded Systems 3

1.2.2 First Implementation of the Smart Home System 5

1.2.3 Getting Ready to Program the First Implementation
of the Smart Home System 10

Example 1.1: Activate the Alarm when Gas is Detected 11

Example 1.2: Activate the Alarm on Gas Presence or Over Temperature 17

Example 1.3: Keep the Alarm Active After Gas or Over
Temperature Were Detected 20

Example 1.4: Secure the Alarm Deactivation by Means of a Code 24

Example 1.5: Block the System when Five Incorrect Codes are Entered 28

1.3 Under the Hood 33

1.3.1 Brief Introduction to the Cortex-M Processor Family and
the NUCLEO Board 33

1.4 Case Study 39

1.4.1 Smart Door Locks 39

References 40

Contents

vi

2 Fundamentals of Serial Communication 43

2.1 Roadmap 44

2.1.1 What You Will Learn 44

2.1.2 Review of Previous Chapter 44

2.1.3 Contents of This Chapter 44

2.2 Serial Communication Between a PC and the NUCLEO Board 45

2.2.1 Connect the Smart Home System to a PC 45

2.2.2 Modularization of a Program Into Functions 47

Example 2.1: Monitor the Alarm State with a PC 60

Example 2.2: Monitor Over Temperature and Gas Detection with a PC 66

Example 2.3: Deactivate the Alarm Using the PC 69

Example 2.4: Improve the Code Maintainability Using Arrays 71

Example 2.5: Change the Alarm Turn Off Code Using the PC 76

2.3 Under the Hood 79

2.3.1 Basic Principles of Serial Communication 79

2.4 Case Study 82

2.4.1 Industrial Transmitter 82

 References 84

3 Time Management and Analog Signals 85

3.1 Roadmap 86

3.1.1 What You Will Learn 86

3.1.2 Review of Previous Chapters 86

3.1.3 Contents of This Chapter 86

3.2 Analog Signals Measurement with the NUCLEO Board 87

3.2.1 Connect Sensors, a Potentiometer, and a Buzzer to the
Smart Home System 87

3.2.2 Test the Operation of the Sensors, the Potentiometer,
and the Buzzer 92

Example 3.1: Indicate which Sensor has Triggered the Alarm 95

Example 3.2: Increase the Responsiveness of the Program 97

Example 3.3: Activate the Over Temperature Alarm by
Means of the Potentiometer 100

Example 3.4: Usage of Functions to Compute the Temperature Value 105

Example 3.5: Measure Temperature and Detect Gas using the Sensors 109

Contents

vii

3.3 Under the Hood 115

3.3.1 Basic Principles of Analog to Digital Conversion 115

3.4 Case Study 123

3.4.1 Vineyard Frost Prevention 123

 References 124

4 Finite-State Machines and the Real-Time Clock 125

4.1 Roadmap 126

4.1.1 What You Will Learn 126

4.1.2 Review of Previous Chapters 126

4.1.3 Contents of This Chapter 126

4.2 Matrix Keypad Reading with the NUCLEO Board 127

4.2.1 Connect a Matrix Keypad and a Power Supply to the
Smart Home System 127

4.2.2 Test the Operation of the Matrix Keypad and the RTC 132

Example 4.1: Turn Off the Incorrect Code LED by Double-Pressing
the Enter Button 133

Example 4.2: Introduce the Usage of the Matrix Keypad 138

Example 4.3: Implementation of Numeric Codes using the Matrix Keypad 144

Example 4.4: Report Date and Time of Alarms to the PC Based on the RTC 149

4.3 Under the Hood 156

4.3.1 Graphical Representation of a Finite-State Machine 156

4.4 Case Study 160

4.4.1 Smart Door Locks 160

 References 171

5 Modularization Applied to Embedded Systems Programming 173

5.1 Roadmap 174

5.1.1 What You Will Learn 174

5.1.2 Review of Previous Chapters 174

5.1.3 Contents of This Chapter 174

5.2 Basic Principles of Modularization 174

5.2.1 Modularity Principle 174

Contents

viii

5.3 Applying Modularization to the Program Code of the Smart Home System 176

5.3.1 Refactoring the Program Code of the Smart Home System 176

5.3.2 Detailed Implementation of the Refactored Code of the
Smart Home System 183

5.4 Organizing the Modules of the Smart Home System into Different Files 210

5.4.1 Principles Followed to Organize the Modules into Files:
Variables and Functions 210

5.4.2 Detailed Implementation of the Code of the Smart
Home System in Different Files 216

 References 220

6 LCD Displays and Communication between Integrated Circuits 221

6.1 Roadmap 222

6.1.1 What You Will Learn 222

6.1.2 Review of Previous Chapters 222

6.1.3 Contents of This Chapter 222

6.2 LCD Display Connection using GPIOs, I2C, and SPI Buses 223

6.2.1 Connect a Character LCD Display to the Smart
Home System using GPIOs 223

6.2.2 Basic Principles of Character LCD Displays 227

Example 6.1: Indicate Present Temperature, Gas Detection, and
Alarm on the Display 233

Example 6.2: Use of a 4-Bit Mode to Send Commands and Data
to the Display 243

6.2.3 Connect a Character LCD Display to the Smart Home
System using the I2C Bus 251

6.2.4 Fundamentals of the Inter-Integrated Circuit (I2C)
Communication Protocol 255

Example 6.3: Control the Character LCD Display by means of
the I2C Bus 258

6.2.5 Connect a Graphical LCD Display to the Smart Home
System using the SPI Bus 265

6.2.6 Basics Principles of Graphical LCD Displays 267

6.2.7 Fundamentals of the Serial Peripheral Interface (SPI)
Communication Protocol 272

Example 6.4: Control the Graphical LCD Display by means of the SPI Bus 274

Example 6.5: Use of the Graphic Capabilities of the Graphical LCD Display 281

Contents

ix

6.3 Under the Hood 290

6.3.1 Comparison between UART, SPI, and I2C 290

6.4 Case Study 292

6.4.1 LCD Usage in Mbed-Based Projects 292

 References 293

7 DC Motor Driving using Relays and Interrupts 295

7.1 Roadmap 296

7.1.1 What You Will Learn 296

7.1.2 Review of Previous Chapters 296

7.1.3 Contents of This Chapter 296

7.2 Motion Detection and DC Motor Control using Relays and Interrupts 297

7.2.1 Connect a DC Motor and a PIR Sensor to the Smart Home System 297

7.2.2 Fundamentals of Interrupt Service Routines 305

Example 7.1: Control a DC Motor using Interrupts 307

Example 7.2: Use a DC Motor to Open and Close a Gate 313

Example 7.3: Use of a PIR Sensor to Detect Intruders 319

Example 7.4: Use of the PIR Sensor as an Intruder Detection Alarm 327

7.3 Under the Hood 336

7.3.1 Basic Principles of a Relay Module 336

7.4 Case Study 338

7.4.1 Smart Street Lighting 338

 References 340

8 Advanced Time Management, Pulse-Width Modulation, Negative
Feedback Control, and Audio Message Playback 341

8.1 Roadmap 342

8.1.1 What You Will Learn 342

8.1.2 Review of Previous Chapters 342

8.1.3 Contents of This Chapter 342

8.2 Analog Signal Generation with the NUCLEO Board 343

8.2.1 Connect an RGB LED, a Light Sensor, and an Audio Plug
to the Smart Home System 343

8.2.2 Fundamentals of Timers, Pulse-Width Modulation, and
Audio Message Playback 353

Contents

x

Example 8.1: Implementation of PWM to Control the Brightness
of an RGB LED 356

Example 8.2: Implementation of PWM using the PwmOut Class 364

Example 8.3: Control the Siren and Strobe Light using PWM 367

Example 8.4: Adjustment of the Color of the Decorative RGB LED 370

Example 8.5: Use of the Light Sensor Reading to Control the RGB LED 373

Example 8.6: Playback of an Audio Message using the PWM Technique 379

8.3 Under the Hood 383

8.3.1 Fundamentals of Control Theory 383

8.4 Case Study 384

8.4.1 Smart City Bike Lights 384

 References 385

9 File Storage on SD Cards and Usage of Software Repositories 387

9.1 Roadmap 388

9.1.1 What You Will Learn 388

9.1.2 Review of Previous Chapters 388

9.1.3 Contents of This Chapter 388

9.2 File Storage with the NUCLEO Board 388

9.2.1 Connect an SD Card to the Smart Home System 388

9.2.2 A Filesystem to Control how Data is Stored and Retrieved 392

Example 9.1: Create a File with the Event Log on the SD Card 393

Example 9.2: Save a File on the SD Card with only New Events
that were not Previously Saved 401

Example 9.3: Get the List of Event Log Files Stored on the SD Card 404

Example 9.4: Choose and Display One of the Event Log Files
Stored on the SD Card 407

9.3 Under the Hood 413

9.3.1 Fundamentals of Software Repositories 413

9.4 Case Study 416

9.4.1 Repository Usage in Mbed-Based Projects 416

 References 418

Contents

xi

10 Bluetooth Low Energy Communication with a Smartphone 419

10.1 Roadmap 420

10.1.1 What You Will Learn 420

10.1.2 Review of Previous Chapters 420

10.1.3 Contents of This Chapter 420

10.2 Bluetooth Low Energy Communication between a Smartphone
and the NUCLEO Board 420

10.2.1 Connect the Smart Home System to a Smartphone 420

10.2.2 Messages Exchanged with the Smartphone Application 424

Example 10.1: Control the Gate Opening and Closing from a Smartphone 426

Example 10.2: Report the Smart Home System State to a Smartphone 429

Example 10.3: Implement the Smart Home System State Report Using
Objects 432

Example 10.4: Implement Non-Blocking Delays using Pointers and Interrupts 438

10.3 Under the Hood 444

10.3.1 Basic Principles of Bluetooth Low Energy Communication 444

10.4 Case Study 447

10.4.1 Wireless Bolt 447

 References 449

11 Embedded Web Server over a Wi-Fi Connection 451

11.1 Roadmap 452

11.1.1 What You Will Learn 452

11.1.2 Review of Previous Chapters 452

11.1.3 Contents of This Chapter 452

11.2 Serve a Web Page with the NUCLEO Board 452

11.2.1 Connect a Wi-Fi Module to the Smart Home System 452

11.2.2 Fundamentals of the Web Server to be Implemented 457

Example 11.1: Implement the AT Command to Detect the Wi-Fi Module 464

Example 11.2: Configure the Credentials to Connect to the Wi-Fi
Access Point 471

Example 11.3: Serve a Simple Web Page using the Wi-Fi Connection 480

Example 11.4: Serve a Web Page that Shows the Smart Home System
Information 486

Contents

xii

11.3 Under the Hood 491

11.3.1 Basic Principles of Wi-Fi and TCP Connections 491

11.4 Case Study 492

11.4.1 Indoor Environment Monitoring 492

 References 494

12 Guide to Designing and Implementing an Embedded System Project 495

12.1 Roadmap 496

12.1.1 What You Will Learn 496

12.1.2 Review of Previous Chapters 496

12.1.3 Contents of This Chapter 496

12.2 Fundamentals of Embedded System Design and Implementation 497

12.2.1 Proposed Steps to Design and Implement an Embedded
System Project 497

Example 12.1: Select the Project that will be Implemented 498

Example 12.2: Elicit Project Requirements and Use Cases 501

Example 12.3: Design the Hardware 504

Example 12.4: Design the Software 511

Example 12.5: Implement the User Interface 519

Example 12.6: Implement the Reading of the Sensors 526

Example 12.7: Implement the Driving of the Actuators 530

Example 12.8: Implement the Behavior of the System 533

Example 12.9: Check the System Behavior 545

Example 12.10: Develop the Documentation of the System 547

12.3 Final Words 549

12.3.1 The Projects to Come 549

 References 553

Glossary of Abbreviations 555

Index 561

xiii

Preface

In 2009, a small group of professors, teaching assistants, and students gathered together in order
to create the Embedded Systems Laboratory at the School of Engineering of Universidad de Buenos
Aires. The aim was to study and teach embedded system technologies, a topic that was not very
developed at the university at that time. Pablo Gomez and Ariel Lutenberg were among this group.

During the following years, many undergraduate and graduate courses on embedded systems, as well
as related courses, were organized by the group. Events on embedded systems were also held, and, in
this way, a network of embedded systems professors was organized in Argentina.

In this context, an open hardware and software project named “Proyecto CIAA” (Computadora
Industrial Abierta Argentina, Argentine Open Industrial Computer) was developed. Eric Pernia
arrived as an expert on embedded systems programming.

Since then, many courses have been organized, including for people who had never programmed
an embedded system before. After this experience, the idea of writing this book arose as a way to
disseminate our ‘learn-by-doing’ teaching approach applied to embedded system more broadly.

This book follows our “learn-by-doing” approach, supported by hands-on activities. Basic ideas
are explained and then demonstrated by means of examples that progressively introduce the
fundamental concepts, techniques, and tools. In this way, a range of knowledge of electronics,
informatics, and computers is introduced.

Theoretical concepts are kept to a minimum while still allowing students to properly understand
the proposed solutions. Thus, the target audience of this book is beginners who have never before
programmed embedded systems, or even had any prior knowledge of electronics.

Arm technology and C/C++ technology was chosen for this book because of the remarkable results
we got during all our years of using them and the prevalence of Arm-based microcontrollers in
embedded system design. The NUCLEO-F429ZI board was selected because of its ubiquity and low
cost, and because it provides a broad set of interfaces that allows us to connect a wide variety of
devices, as will be shown in the examples.

Through the examples, a smart home system that is shown in Figure 1 is gradually built. It is provided with
an over temperature detector and a gas detector in order to implement a fire alarm. It also has a motion
sensor that is used to detect intruders. If a fire or an intruder is detected, an alarm that is provided with
a siren and a strobe light is turned on. To turn off the alarm, a code should be entered using the alarm
control panel. If the code is incorrect, then the Incorrect code LED is turned on. Up to five codes can be
entered before the system is blocked, which is indicated by means of the System blocked LED.

The alarm control panel has an LCD display, which is used to indicate the readings of the sensors and
the status of the alarm (see Figure 1). It has also a slot for an SD memory card, where the events are
stored, and the capability to play back a welcome audio message.

Preface

xiv

There is also a gate control panel, which allows the opening and closing of a gate, as shown in Figure 1.
This panel is also provided with a light intensity control that is used to regulate the intensity of a
decorative light. The intensity of this light is monitored using a light sensor, in order to control its
brightness. The color of this light can also be changed using the alarm control panel.

The whole system can be monitored and configured using a PC by means of serial communication
over a USB connection. Also, the most relevant information on the system can be accessed using an
application on a smartphone, which is connected to the smart home system over a Bluetooth Low
Energy connection. The application can also be used to open and close the gate.

It is also possible to monitor the smart home system using a smartphone or a PC by means of a web
page that is served by the smart home system. In this case, the connection is made using the Wi-Fi
protocol, as shown in Figure 1.

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

Smartphones

House
outside

view

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

Gate Closing

Open

Close

Gate Opening

Light Intensity

SD ardc
J
A

P
A

N
FC

C
v

R
e

pr
ari

1

S
D

C
S

/3
2

G
B

3
2

4
2

0
-0

1
0

.A
0

0
L

F

BLE

BLE
antenna

antenna

Wi-Fi

Wi-Fi

Wi-Fi

192.168.43.53

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

PC

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

Figure 1 Smart home system that is built in this book.

Figure 2 shows how the NUCLEO board and a set of modules are used to implement the smart home
system. Figure 3 shows how the pins in the ST Zio connectors of the NUCLEO board are occupied
as the elements are gradually connected through the chapters. In this way, it is possible to present
the reader with the difficulties that arise when a project starts to become bigger and bigger, and

Preface

xv

show how these can be addressed by means of appropriate techniques. The proposed solutions are
used to discuss how to implement efficient software design for embedded systems and how to make
appropriate pin assignments for the elements.

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

MQ-2
Gas Sensor

-2MQ

GND

5V

DO

ESP8266EX

352015

P3PU88

BorgMicro

25 80ASSIG6

1682

26.000

MHZ

AI Cloud inside

RGB LED

(R
e
la

y
IN

2
)

(R
e
la

y
G

N
D

)

(R
e
la

y
V

C
C

)

(R
e
la

y
IN

1
)

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1
0
2
N

L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

MB-102

CN9

CN8

CN7

CN10

GND

3.3V

Potentiometer

P
E

3_

P
F

2
_

L
35

M

5V

GND

A1

Temperature
Sensor

LM 35

3.3V

5V
GND

GND

HV1HV2HV

LV

HV3

LV3 LV3 LV1

HV4

LV4 LV4 LV2

GND

GND

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

PG 0_

10KΩ

GND 5V

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0PIR
Sensor 5V G

N
D

(tput)PIR Ou

Red
GND

Blue

P
E

1
2

_
(G

a
s)

PD 5_

P
E

6_

(A
u
d
io

)

()RX

LDR

1
0

3

A2

BLE
module
HM10

C

2
5
4
1

P
2
5
B

T
1

7
4
J

P
1
2

0
4

C

A0

PE 7_ (X)T

PE 8_
()RX

3.3V GND

Wi-Fi module
ESP01P

C

9

_

Buzzer

5V

3.3V

SD Card and
SD Card reader

GND

5
1

5
1

1
0
K

JAPAN FCC v

RKingston

1

SDCS/32GB

32420-010.A00LF

3
V

3
C

S
M

O
S

I
C

L
K

M
IS

O
G

N
D

PA 4_

(CLK)

(O)MIS

(MOSI)

(CS)

PC 10_

PC 11_

PC 12_

A

B

C

D

87

1

4

2

5

3

6

9

0 #

Green

L
35

M

1
0
A

2
5
0
V

A
C

 1
0
A

1
2
5
V

A
C

C
U

S

1
0

A
0

V
D

C
 1

0
A

V
D

C
3

2
8

S
R

D
-0

5
V

D
C

-S
L

- C

C
Q

C

R
S

O
N

G
L
E

1
0
A

2
5
0
V

A
C

 1
0
A

1
2
5
V

A
C

C
U

S

1
0

A
0

V
D

C
 1

0
A

V
D

C
3

2
8

S
R

D
-0

5
V

D
C

-S
L

- C

C
Q

C

R
S

O
N

G
L
E

2
 R

e
la

y
 M

o
d
u

le

K2K1

JD-VCC VCC GND GND IN1 IN2 VCC

R3R2

D2D2
Q2Q1

IN2IN1

R4R1

++

B1810
817C

G

B1810
817C

G

1 9 8 2 A 1 2 3 8 1 H 2

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

MB-102
M1

C
O

M
1

C
O

M
21

N
C

2
N

C

1
N

O

2
N

O

Both
to 5V

Second protoboard
and MB-102 module

DC motor

1
N

5
8
1
9

1
N

5
8
1
9

1
N

5
8
1
9

1
N

5
8
1
9

M2

(
)

IN
2

d
vc

fv
fv

(
D

)
G

N
d (

)
V

C
C

d(
)

IN
1

d
v

P
E

3_

P
F

2
_

5VG
N

D
PD 6_
(X)T

Figure 2 Diagram of the elements that are connected through the chapters.

Preface

xvi

In this way, Arm processor architecture and, in particular, the main peripherals of the Cortex-M4
processor are introduced, with the different elements (UARTs, timers, interrupts, etc.) that are
required to efficiently implement the features of the smart home system. As the examples incorporate
more and more functionality, the fundamentals of time management and multitasking operation in
embedded systems are explained.

In addition, different methods for how an embedded system gets, receives, sends, manages, and
stores data are shown, as well as many interfaces between the development board and the external
devices being described and implemented. During this process, different embedded system designs
for a given application are reviewed, and their features are compared.

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1
0
2
N

L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Figure 3 Diagram showing how the elements are gradually connected through each chapter.

Preface

xvii

In Figures 4 to 7, some of the user interfaces that are developed and used in the book are shown,
which include a serial terminal on a PC, a character LCD display, an application for a smartphone, and
a website that is accessed using a Wi-Fi connection and a web browser.

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

Smartphones

House
outside

view

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

Gate Closing

Open

Close

Gate Opening

Light Intensity

SD ardc

J
A

P
A

N
FC

C
v

R
e

pr
ari

1

S
D

C
S

/3
2

G
B

3
2

4
2

0
-0

1
0

.A
0

0
L

F

BLE

BLE
antenna

antenna

Wi-Fi

Wi-Fi

Wi-Fi

192.168.43.53

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

PC

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

Available :commands

Press '1' to get the alarm state

Press '2' for gas detector state

Press '3' for over temperature detector state

Press '4' to enter the code to deactivate the alarm

Press '5' to enter a new code to deactivate the alarm

Press 'f' or 'F' to get lm35 reading in Fahrenheit

Press 'c' or 'C' to get lm35 reading in Celsius

Press 's' or 'S' to set the date and time

Press 't' or 'T' to get the date and time

Press 'e' or 'E' to get stored events

Press 'm' or 'M' to show the motor status

Press 'g' or 'G' to show the gate status

Press 'i' or 'I' to activate the motion sensor

Press 'h' or 'H' to deactivate the motion sensor

Press 'w' or 'W' to store the events log n the SD cardo

Looking for a filesystem n the SD card...o

Filesystem not mounted.

Insert an SD card and reset the Board.NUCLEO

Available commands:

Press '1' to get the alarm satate

Press '2' for gas detector state

Press '3' for over temperature detector state

Press '4' to enter the code to deactivate the alarm

Press '5' to enter a new code to deactivate the alarm

Press 'f' or 'F' to get lm35 reading in Fahrenheit

Press 'c' or 'C' to get lm35 reading in Celsius

Press 's' or 'S' to set the date and time

Press 't' or 'T' to get the date and time

Press 'e' or 'E' to get stored events

Press 'm' or 'M' to show the motor status

Press 'g' or 'G' to show the gate status

Press 'i' or 'I' to activate the motion sensor

Press 'h' or 'H' to deactivate the motion sensor

Press 'w' or 'W' to store the events log n the SD cardo

Looking for a filesystem n the SD card...o

Filesystem not mounted.

Insert an SD card and reset the Board.NUCLEO

Figure 4 User interface implemented using a UART connection and a serial terminal running on a PC.

VDDVSS VO RS RW E D0 D1 D2 D3 D4 D5 D6 D7 A K

1 16

Figure 5 User interface implemented using I2C bus connection and a character LCD display.

Preface

xviii

Figure 6 User interface implemented using a Bluetooth connection and a smartphone application.

Preface

xix

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

Figure 7 User interface implemented using a Wi-Fi connection and a web browser.

In this process, the Mbed™ OS 6 platform core generic software components, plus the HAL (Hardware
Abstraction Layer) ports that allow Mbed to transparently run on microcontrollers from different
manufacturers, are introduced.

In the final chapter, the main ideas are summarized by means of an irrigation system, shown in
Figure 8, that is developed from scratch. In this way, a guide to designing and implementing an
embedded system project is provided for the reader.

Preface

xx

10A 250VAC 10A 125VAC

C US

10A 0VDC 10A VDC3 28

SRD-05VDC-SL-C

CQC

R
SONGLE

10A 250VAC 10A 125VAC

C US

10A 0VDC 10A VDC3 28

SRD-05VDC-SL-C

CQC

R
SONGLE

2 Relay Module

K
2

K
1

J
D

-V
C

C

V

C
C

G

N
D

G
N

D
 I

N
1
 I

N
2
 V

C
C

R
3

R
2

D
2

D
2

Q
2

Q
1

IN
2

IN
1

R
4

R
1

+

+

B1
81

0
81

7C G

B1
81

0
81

7C G

1
9

8
2

A
1

2
3

8
1

H
2

FPD-270A
Solenoid valve External 12V

Power source

G
N

D
12

12
V

A
C

 P
O

W
E

R
A

d
ap

ter

In
p

u
t 2

4
0

V
C

A
O

u
tp

u
r 1

2
V

C
C

 2
A

E
rP

A
ri

HL-69
Moisture
sensor

EPARI

D
O

-L
E
D

AO DO GND VCC

P
W

R
-L

E
D

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

(Relay IN1)
d

PF 2_ 5VGND

5V
GND

N
U

C
L

E
O

-F
4
2
9
Z

I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1
0
2
N

L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

3.3V
GND

D4 to D7

D8,D9

CN9 CN8

CN7CN10

Relay module

CN9

P
F

9

_

P
F

7

_

P
F

8

_

P
G

1_

(M
o
d
e
)

(H
o
w

 O
ft
e
n
)

(H
o
w

 L
o
n
g
)

(M
o
is

tu
re

)

COM1

1NO

A3

VDDVSS VO RS RW E D0 D1 D2 D3 D4 D5 D6 D7 A K

1 16

Figure 8 Home irrigation system that is implemented in Chapter 12.

To the best of our knowledge, there is no other book regarding Arm technology that follows the
approach used in this book. We believe that the reader can benefit from it and combine learning skills
with having fun.

We hope you enjoy the book!

xxi

Acknowledgments

We particularly thank our partners for supporting us during this year. Without their understanding, it
wouldn’t have been possible to write this book.

We would like to thank Arm Ltd for trusting us, especially Liz Warman, Director of Educational
Content & Technology, for her support and guidance during the long year that it took us to write this
book. The follow-up meetings with Liz, as well as her reviews, helped us to enhance the book and its
narrative. We appreciate her candor and organization, being firm and kind in her suggestions.

We also thank our professors, colleagues, and students for teaching us so much. During recent years,
the Facultad de Ingeniería (School of Engineering) of the Universidad de Buenos Aires (UBA) allowed us
to develop a set of master’s programs on embedded systems, the Internet of Things, and Artificial
Intelligence that enriched our vision of how to teach using the learn-by-doing approach. Also, our
research activities in the field of railway systems design, with the support of CONICET (the National
Scientific and Technical Research Council of Argentina), prompted us to be up to date in a broad set
of technologies, many of them included in this book. Colleagues of the Departamento de Ciencia y
Tecnología (Science and Technology Department) of the Universidad Nacional de Quilmes (UNQ) shared
their knowledge and advice.

The assistance of ACSE (Civil Association for Research, Promotion and Development of Embedded
Electronic Systems) was extremely important for this publication. The immense number of activities
organized by ACSE (symposiums, training for teachers and professors, calls for papers, courses
for beginners, the Argentine Open Industrial Computer, etc.) allowed us to meet many people who
enlightened us in different ways. ACSE also supported this book by providing most of the hardware
used to implement and test the examples.

CADIEEL, the Argentine Chamber of Electronic, Electromechanical and Lighting Industries, promoted
all the aforementioned activities. Especially noteworthy is the commitment to education and
technological development of the small- and medium-sized companies that make up the chamber.
CADIEEL has collaborated for years with the postgraduate programs and outreach activities
mentioned above, as well as with this book in particular.

This book has significantly improved from the suggestions and comments of Carlos Pantelides. He is
the one who has undoubtedly done the most detailed review of the book, and also gave us valuable
ideas on how to address his suggestions on the book. We are very grateful to María Eloísa Tourret
and Camila Belén Silva Sabarots, from UTN-FRBB, for developing the “Smart Home System App”
that is used in this book, as well for their very useful comments about the chapter where Bluetooth
Low Energy is explained. We are also thankful to Enrique Sergio Burgos, from UTN-FRP, for his very
valuable help regarding the use of Doxygen for documentation and developing the corresponding
example that is included in this book and setting up the continuous integration environment in GitLab.
Juan Manuel Reta and Eduardo Filomena, from UNER, provided us with very enriching conversations,
which we greatly appreciate, regarding how to use this book for teaching. The contribution of Martin
Alejandro Ribelotta was very important in order to improve the Brief Introduction to the Cortex-M

Dedications

xxii

Processor Family and the NUCLEO Board section. Finally, the reading by Alejandro Salvatierra helped us
to correct details, and the conversations with Juan Manuel Cruz (UBA, UTN-FRBA, ACSE) about how
the examples in this book can be adapted to other boards and the revisions of the circuits used in this
book by Adrián Laiuppa (UTN-FRBB) were very enlightening.

Dedications

Ariel dedicates this book to Sebastián, his first child who will be born in March 2022.

Pablo dedicates this book to Germán, his child who was born in October 2020.

Eric dedicates this book to the memory of his father, Jorge Sergio Pernia, who passed away in October
2021.

xxiii

Authors’ Biographies

Ariel Lutenberg is currently a full-time Professor at the School of Engineering of the
University of Buenos Aires (UBA), Researcher at the National Council of Scientific
and Technical Research (CONICET), and Director of the master’s degree on the
Internet of Things and the master’s degree on Embedded Artificial Intelligence at
the same University. He has supervised dozens of graduate, postgraduate, and
doctoral students. He has published almost a hundred papers in international
journals and conferences and done work for important Argentine and international

companies and institutions. He started and led for many years Proyecto CIAA (Argentine Open
Industrial Computer), where dozens of Argentinean universities, companies, and institutions together
developed embedded computers, including their hardware and software.

He received an Electronic Engineering degree from the University of Buenos Aires in 2006, obtaining
the prize “To the Best Graduates of Engineering Careers of Argentine Universities” from the
National Academy of Engineering as the best graduate. In 2009, he obtained his diploma of Doctor
of Engineering from the UBA, with honorable mention “Summa Cum Laude.” In 2018, he won the
INNOVAR Award of the Argentine Ministry of Science, Technology and Productive Innovation in the
Researchers category and the INNOVAR Grand Prize of the Jury for the development of a remote
monitoring system for automatic rail barriers.

Pablo Martín Gomez is full-time researcher at the School of Engineering of the
University of Buenos Aires (UBA). He directs the master’s program on Embedded
Systems, coordinates the master’s programs on the Internet of Things and
Embedded Artificial Intelligence, and is teaching assistant of Acoustics at the same
university. He received his diploma in Electronic Engineering in 2007 and finished
his doctoral studies in 2015 with honorable mention “Summa Cum Laude.” Pablo
also studied at the National University of Lanús (UNLa), where he received a

“University Technician on Sound and Recording” degree in 2008. He is editor of the “Acoustics and
Audio” section of the Elektron journal published by the School of Engineering of UBA.

He has been working on embedded systems projects since 2003, designing products for companies
and institutions in Argentina and the USA. In 2018, he won the INNOVAR Award of the Argentine
Ministry of Science, Technology, and Productive Innovation in the Researchers category and the
INNOVAR Grand Prize of the Jury for the development of a remote monitoring system for automatic
rail barriers. He is author of several papers in the fields of embedded systems and acoustics in journals
and for conferences. Teaching has a central role in his life. For almost 15 years he has been giving
courses on acoustics, embedded system programming, protocols, real-time operating systems , and
rapid prototyping for a wide audience, from novices to graduate students.

Authors’ Biographies

xxiv

Eric Nicolás Pernia is currently a research Professor at the Science and Technology
department (CyT) of the National University of Quilmes (UNQ) and a Field
Application Engineer on Quectel wireless solutions. He has supervised several
graduate and postgraduate students. He has published many papers in conferences,
led the Proyecto CIAA (Argentine Open Industrial Computer) program for two
years, and has broad experience in hardware, software, and firmware development
for Argentine and international companies. He has a large portfolio of contributions

in open-source hardware, firmware, and software, which is available on GitHub.

He received an Industrial Automation and Control Engineer degree from the National University of
Quilmes (UNQ) in 2013, where he developed as a graduation project a free software application for
PLC Ladder Diagram programming (IEC 61131-3 compliant), named IDE4PLC. In 2015, he obtained
his diploma of Specialist on Embedded Systems from the University of Buenos Aires (UBA), where
he created a Java SCJ implementation for CIAA Project boards as his graduation project. In 2018, he
obtained his master’s in Embedded Systems from the University of Buenos Aires (UBA), where he
created an open-source, abstract, and highly portable embedded system programming library named
sAPI as his graduation project.

xxv

Authors’ Contributions

Ariel Lutenberg wrote most of the explanations in this book. This includes the preface, the
introductory section of each chapter, the indications on how to connect the elements, the
explanations of the program code examples, and the Under the Hood and Case Study sections. In
particular, he selected which content to include in the introductory section of each chapter, as well
as in the Under the Hood and Case Study sections. He also wrote the final versions of the program
code of Chapter 6 and wrote all of Chapter 12 including the corresponding program code. In the other
chapters, he revised the program code and made suggestions in order to simplify the implementation,
to make it easier for the reader to understand the concepts introduced in each chapter. He also
made important suggestions about how to rename the functions and variables in order to use more
meaningful names. He contributed with many figures and in the revision of all the figures. He also
started the relationship with Arm and was responsible for communicating with the editor and
addressing the comments of all the reviewers. Perhaps his most important contributions were to
propose the learn-by-doing approach followed in this book and to use the smart home system project
as the common thread of the book, and the inclusion of a different project following a structured
approach in the last chapter.

Pablo Martín Gomez proposed most of the examples that gradually built the smart home system and
wrote most of the final versions of the program code of this book. This includes all the changes in the
program code related to the reordering of the book chapters after concluding the first draft and the
migration from Mbed OS 5 to Mbed OS 6, which was a very relevant contribution in order to update
the preliminary versions of the program code. He also wrote many explanations of the examples (in
particular in Chapters 7, 8, and 10, where he wrote all the code) and also contributed to and reviewed
all the other explanations. He also tested all the examples on the NUCLEO board and kept the
program code updated in the repositories using continuous integration and various automated tools
that he set up. These tools also eased the process of maintaining, repairing, enhancing, and updating
the program code, which grows in complexity from Chapters 1 to 11 as the smart home system
increases its functionality. In this way, he identified many aspects to improve on the preliminary
versions of the program code, making it easier to explain the fundamental concepts to the reader,
as he made implementations clearer and more straightforward. He also carried out the migration to
Mbed Online and Keil Studio Cloud when Arm suggested using those programs.

Eric Nicolás Pernía produced most of the figures in this book. He had a central role in writing the first
versions of the program code of Chapters 1 to 5 and Chapter 9 and wrote the preliminary version of
the program code in Chapters 6 and 11. He also reviewed many of the code samples and explanations.
He suggested which hardware modules to use and made relevant contributions to include in the book
the topics of modularization of a program into functions and files, finite-state machines, and different
non-blocking delay techniques. He also contributed with a proposal about how to reorder the book
chapters, which improved the reader experience.

xxvi

Book Organization

This book is organized into five parts that take the reader, who has never before programmed
embedded systems, from an introduction to embedded systems to the implementation of wireless
communications and a set of proposed steps to develop embedded systems:

Part 1 – Introduction and Primary Tools

 n Chapter 1: Introduction to Embedded Systems

 n Chapter 2: Fundamentals of Serial Communication

 n Chapter 3: Time Management and Analog Signals

Part 2 – Advanced Concepts in Embedded Systems

 n Chapter 4: Finite-State Machines and the Real-Time Clock

 n Chapter 5: Modularization Applied to Embedded Systems Programming

 n Chapter 6: LCD Displays and Communication between Integrated Circuits

Part 3 – Solutions Based on the Processor Peripherals and Filesystems

 n Chapter 7: DC Motor Driving using Relays and Interrupts

 n Chapter 8: Advanced Time Management, Pulse-Width Modulation, Negative Feedback Control,
and Audio Message Playback

 n Chapter 9: File Storage on SD Cards and Usage of Software Repositories

Part 4 – Wireless Communications in Embedded Systems

 n Chapter 10: Bluetooth Low Energy Communication with a Smartphone

 n Chapter 11: Embedded Web Server over a Wi-Fi Connection

Part 5 – Proposed Steps to Develop Embedded Systems

 n Chapter 12: Guide to Designing and Implementing an Embedded System Project

Chapter 1 addresses a general introduction to embedded systems and the smart home system project
using LEDs and buttons. The basic concepts of embedded systems communications are tackled
in Chapter 2, by means of connecting the NUCLEO board with a PC using serial communication.

Book Organization

xxvii

Chapter 3 explains how to manage time intervals and analog signals, and some sensors and
connectors are connected to the board.

Chapter 4 explains how to organize complex programs using finite-state machines. Modularization in
files, which allows organization of large and complex programs, is introduced in Chapter 5. In Chapter
6, a character-based display and a graphical LCD display are connected and controlled using the same
code for four different interfaces: 4/8-bit parallel interface, I2C bus, and SPI bus. In this way, the
concept of a hardware abstraction layer is introduced.

In Part 3, more advanced concepts are explained, such as the use of interrupts in Chapter 7;
microcontroller timers, pulse-width modulation, negative feedback control, and audio message
playback in Chapter 8; and filesystems and software repositories in Chapter 9.

In Chapter 10, the smart home system is communicated with via a smartphone using a Bluetooth Low
Energy connection, and an embedded web server is developed in Chapter 11 in order to provide web
pages to a computer by means of a Wi-Fi network.

Lastly, in Chapter 12, a complete example of a different embedded system development is presented
in order to show the reader in detail how a project can be addressed from beginning to end.

In this way, a multitude of useful concepts, techniques, and tools are presented in just twelve chapters,
starting from the level of a complete beginner and building up to relatively complex and advanced
topics.

More advanced concepts, such as integration of RTOS (Real-Time Operating Systems) with an
embedded system, learning of the lower-level details, USB protocol, and applications related to the
Internet of Things and Artificial Intelligence, are not included in this book.

Each chapter starts with a Roadmap section, where the corresponding learning objectives are
described in “What You Will Learn,” followed by “Review of Previous Chapters,” and then “Contents of
This Chapter.”

Usually, this is followed by a section that explains how to connect the devices that are incorporated
into the smart home system setup, as well as the fundamentals of their operation.

This is followed by Examples that are used to explain the practical use of the elements. The Examples
are tackled in seven steps:

 n Objective of the Example

 n Summary of the Expected Behavior

 n Test the Proposed Solution on the Board

Book Organization

xxviii

 n Discussion of the Proposed Solution

 n Implementation of the Proposed Solution

 n Proposed Exercises

 n Answers to the Exercises.

At the end of each chapter, there is an Under the Hood section, where more advanced concepts are
introduced, to motivate the reader to explore beyond the limits of this book.

Most of the chapters conclude with a Case Study section, whose aim is to illustrate to the target
audience of this book (beginners who have never programmed embedded systems before and have
little or no prior knowledge of electronics) how the learned technologies are used in real-world
applications.

xxix

How This Book Can Be Used for Teaching in Engineering Schools

This book was planned considering that in many countries, educational institutions hold classes
for about twelve weeks. Given that this book is organized into twelve chapters, one chapter can be
addressed to the students every week by means of the organization shown in Table 1 (in the case of
two 90-minute or 120-minute lessons per week) or in Table 2 (if there is one 180-minute lesson per
week).

In both cases, students are requested to connect and test a given setup every week, prior to the
lessons, following the steps indicated in the first column of Table 1 and Table 2. This homework
is estimated to take the students about one or two hours every week and is aimed at developing
curiosity and enthusiasm for learning about how those systems work.

Table 1 and Table 2 show how the lessons can be organized. It is important to note that the setups
that are connected and tested prior to the lessons every week are used in the examples in that week
without the need for any change in the setup. This increases productivity during the lessons, because
in this way all the lesson time is used to introduce new ideas and to test and discuss the examples in
each chapter.

The activities each week are closed by the discussion of the Under the Hood and Case Study sections
of each chapter, which can lead to different types of activities, for example asking the students to:

 n look on the internet for more information about the topics discussed in the Under the Hood section;

 n look on the internet for more case studies where the topics introduced in the chapter are applied.

For several reasons, Chapters 5, 6, and 12 are organized in a slightly different way than the other
chapters. In these particular cases, Table 1 and Table 2 can be considered one option among many
other possibilities.

Lastly, it is suggested to ask the students to implement a short project every two or three weeks,
applying the concepts introduced in the lessons. Also, it is recommended to ask the students to
implement a final project at the end of the course, following the process and techniques that are
introduced in Chapter 12.

Table 1 Organization in the case of two 90-minute or 120-minute lessons per week.

Week Pre-lesson activities First lesson Second lesson

1 1.2.3 1.1.1, 1.1.2, 1.2.1, 1.2.2
Examples 1.1, 1.2 and 1.3

Examples 1.4 and 1.5,
1.3.1, 1.4.1

2 2.2.1 2.1.1, 2.1.2, 2.1.3, 2.2.2,
Examples 2.1, 2.2 and 2.3

Examples 2.4 and 2.5,
2.3.1, 2.4.1

3 3.2.1, 3.2.2 3.1.1, 3.1.2, 3.1.3,
Examples 3.1, 3.2 and 3.3

Examples 3.4 and 3.5,
3.3.1, 3.4.1

How This Book Can Be Used for Teaching in Engineering Schools

xxx

Week Pre-lesson activities First lesson Second lesson

4 4.2.1, 4.2.2 4.1.1, 4.1.2, 4.1.3
Examples 4.1 and 4.2

Examples 4.3 and 4.4
4.3.1, 4.4.1

5 - 5.1.1, 5.1.2, 5.1.3, 5.2.1 5.3.1, 5.3.2, 5.4.1, 5.4.2

6 6.2.1, 6.2.3, 6.2.4 6.1.1, 6.1.2, 6.1.3, 6.2.2
Examples 6.1 and 6.2

Examples 6.3, 6.4, and 6.5
6.3.1, 6.4.1

7 7.2.1 7.1.1, 7.1.2, 7.1.3, 7.2.2
Examples 7.1 and 7.2

Examples 7.3 and 7.4
7.3.1, 7.4.1

8 8.2.1 8.1.1, 8.1.2, 8.1.3, 8.2.2
Examples 8.1, 8.2, 8.3, and 8.4

Examples 8.5 and 8.6
8.3.1, 8.4.1

9 9.2.1 9.1.1, 9.1.2, 9.1.3, 9.2.2
Examples 9.1 and 9.2

Examples 9.3 and 9.4
9.3.1, 9.4.1

10 10.2.1 10.1.1, 10.1.2, 10.1.3, 10.2.2
Examples 10.1 and 10.2

Examples 10.3 and 10.4
10.3.1, 10.4.1

11 11.2.1 11.1.1, 11.1.2, 11.1.3, 11.2.2
Examples 11.1 and 11.2

Examples 11.3 and 11.4
11.3.1, 11.4.1

12 - 12.1.1, 12.1.2, 12.1.3, 12.2.1
Examples 12.1 to 12.4

Examples 12.5 to 12.10, 12.3.1

Table 2 Organization in the case of one 180-minute lesson per week.

Week Pre-lesson activities First part of
the lesson

Second part of
the lesson

Third part of
the lesson

1 1.2.3 1.1.1, 1.1.2, 1.2.1, 1.2.2
Examples 1.1, 1.2, and 1.3

Examples 1.4 and 1.5 1.3.1, 1.4.1

2 2.2.1 2.1.1, 2.1.2, 2.1.3, 2.2.2
Examples 2.1, 2.2 and 2.3

Examples 2.4 and 2.5 2.3.1, 2.4.1

3 3.2.1, 3.2.2 3.1.1, 3.1.2, 3.1.3
Examples 3.1, 3.2 and 3.3

Examples 3.4 and 3.5 3.3.1, 3.4.1

4 4.2.1, 4.2.2 4.1.1, 4.1.2, 4.1.3
Examples 4.1 and 4.2

Examples 4.3 and 4.4 4.3.1, 4.4.1

5 - 5.1.1, 5.1.2, 5.1.3, 5.2.1 5.3.1, 5.3.2 5.4.1, 5.4.2

6 6.2.1, 6.2.3, 6.2.4 6.1.1, 6.1.2, 6.1.3, 6.2.2
Examples 6.1 and 6.2

Examples 6.3, 6.4 and 6.5 6.3.1, 6.4.1

7 7.2.1 7.1.1, 7.1.2, 7.1.3, 7.2.2
Examples 7.1 and 7.2

Examples 7.3 and 7.4 7.3.1, 7.4.1

8 8.2.1 8.1.1, 8.1.2, 8.1.3, 8.2.2
Examples 8.1, 8.2, 8.3, and 8.4

Examples 8.5 and 8.6 8.3.1, 8.4.1

9 9.2.1 9.1.1, 9.1.2, 9.1.3, 9.2.2
Examples 9.1 and 9.2

Examples 9.3 and 9.4 9.3.1, 9.4.1

10 10.2.1 10.1.1, 10.1.2, 10.1.3, 10.2.2
Examples 10.1 and 10.2

Examples 10.3 and 10.4 10.3.1, 10.4.1

11 11.2.1 11.1.1, 11.1.2, 11.1.3, 11.2.2
Examples 11.1 and 11.2

Examples 11.3 and 11.4 11.3.1, 11.4.1

12 - 12.1.1, 12.1.2, 12.1.3, 12.2.1
Examples 12.1 to 12.4

Examples 12.5 to 12.8 Examples 12.9 and
12.10, 12.3.1

xxxi

Bill of Materials

The materials that are used in this book from Chapter 1 to Chapter 11 are summarized in Table 3. The
aim is to help the reader to get all the components needed to implement the setups used in each chapter.

There is an additional bill of materials in Table 4, which lists the materials used in Chapter 12. These are
not essential because the concepts that are introduced in this chapter can be learned without connecting
all of the elements. For example, if the solenoid valve is not connected, the reader will still be able to see
the relay module switching on and off, and the moisture sensor can be mocked using a potentiometer.

In addition, many tools are included in the listing shown in Table 5 because they may be useful.

Table 3 Bill of materials (BOM) used in Chapters 1 to 11.

Chapter Component/Module Quantity

1

NUCLEO-F429ZI 1

Jumper wires (male–male) 80

USB–micro USB cable 1

Breadboard 2

Tactile switches 10

2 (The same elements are used as in Chapter 1.) –

3

LM35 temperature sensor 1

10 kΩ potentiometer 2

MQ-2 gas sensor 1

5V buzzer 1

Resistors: 100 Ω, 150 Ω, 330 Ω, 1 kΩ, 10 kΩ, 47 kΩ, 100 kΩ
(100 kΩ are used in this chapter and the other resistors in different chapters. See note below.) 10 of each value

Jumper wires (male–female) 80

4

Matrix keypad (4 × 4) 1

90-degrees 2.54 mm (.1”) pitch pin header 40

MB102 breadboard power supply
(One is used in this chapter and the other in Chapter 7.) 2

USB–mini-USB cable 2

5
BC548C NPN transistor
(One is used in this chapter and the other in Chapter 8.) 2

6

Character-based LCD display 20 × 4, based on HD44780 1

I2C PCF8574 expander 1

10 kΩ trimpot 1

Bidirectional logic level converter 1

Jumper wires (female–female) 40

Graphic LCD display, based on ST7920 1

Bill of Materials

xxxii

Chapter Component/Module Quantity

7

3 mm red LED 1

3 mm green LED 1

5 V DC motor 1

HC-SR501 PIR sensor module 1

Relay module 1

1N5819 diodes 4

8

LED RGB 1

LDR 1

10 nF ceramic capacitor 1

Female audio jack 3.5 mm (for PCB) 1

9

SD card module 1

Micro SD memory card 1

10 Bluetooth HM-10 module 1

11 Wi-Fi ESP8266 ESP-01 module 1

NOTE: The resistors are used as follows: Chapter 3: 3 × 100 kΩ; Chapter 5: 1 × 1 kΩ;
Chapter 6: 1 × 1 kΩ; Chapter 7: 2 × 330 Ω; Chapter 8: 3 × 150 Ω, 1 × 10 kΩ, 1 × 47 kΩ,
1 × 1k Ω, and 1 × 100 Ω.

Table 4 Bill of materials (BOM) used in Chapter 12.

Chapter Component/Module Quantity

12 Moisture sensor 1

12 V solenoid valve 1

12 V × 1 A power supply 1

Table 5 Tools for soldering, measuring, and setting the modules.

Chapter Quantity

Soldering iron 1

Wire solder 100 grams

Plier 1

Multimeter 1

Small screwdriver 1

xxxiii

List of Figures

Figure 1 Smart home system that is built in this book. xiv

Figure 2 Diagram of the elements that are connected through the chapters. xv

Figure 3 Diagram showing how the elements are gradually connected through
each chapter. xvi

Figure 4 User interface implemented using a UART connection and a serial
terminal running on a PC. xvii

Figure 5 User interface implemented using I2C bus connection and a character
LCD display. xvii

Figure 6 User interface implemented using a Bluetooth connection and a
smartphone application. xviii

Figure 7 User interface implemented using a Wi-Fi connection and a web browser. xix

Figure 8 Home irrigation system that is implemented in Chapter 12. xx

Figure 1.1 Four different block diagram representations of a smart home system. 3

Figure 1.2 Diagram of the proposed smart home system. 5

Figure 1.3 The smart home system that is implemented in this chapter. 6

Figure 1.4 The NUCLEO-F429ZI board used in this book. 6

Figure 1.5 The elements of the smart home system introduced in Figure 1.3 with their
corresponding components. 7

Figure 1.6 Detail of the connection made in the CN8 ST Zio connector of the
NUCLEO board. 9

Figure 1.7 Detail of the connections made in the CN10 ST Zio connector of the
NUCLEO board. 9

Figure 1.8 How to connect the NUCLEO board to a PC. 11

Figure 1.9 Structure of the proposed solution. 12

Figure 1.10 Conceptual diagram of how to connect a button to the NUCLEO board
using pull-down and pull-up resistors. 15

Figure 1.11 Main parts of the program of Example 1.2. 18

Figure 1.12 Details of the blocks that make up the repetitive block of Example 1.2. 18

Figure 1.13 Main parts of the program of Example 1.3. 22

Figure 1.14 Details of the blocks that compose the repetitive block of Example 1.3. 22

Figure 1.15 Main parts of the program of Example 1.4. 25

Figure 1.16 Details of the blocks that make up the repetitive block of Example 1.4. 26

Figure 1.17 Main parts of the program of Example 1.5. 29

Figure 1.18 Details of the blocks that make up the repetitive block of Example 1.5. 31

List of Figures

xxxiv

Figure 1.19 Simplified diagram of the Cortex processor family. 33

Figure 1.20 Simplified diagram of the Cortex M0, M3, and M4 processors, and details of the
corresponding cores. 34

Figure 1.21 Arm Cortex M0, M3, and M4 Instruction Set Architecture (ISA). 35

Figure 1.22 STM32F429ZI block diagram made using information available from [9]. 36

Figure 1.23 ST Zio connectors of the NUCLEO-F429ZI board. 37

Figure 1.24 Hierarchy of different elements introduced in this chapter. 38

Figure 1.25 “Smart door locks” built with Mbed contains elements introduced in
this chapter. 39

Figure 2.1 The smart home system is now connected to a PC. 45

Figure 2.2 Website with the program documentation generated with Doxygen. 57

Figure 2.3 Detailed description of functions and variables of the program that is
available on the website (Part 1/3). 57

Figure 2.4 Detailed description of functions and variables of the program that is
available on the website (Part 2/3). 58

Figure 2.5 Detailed description of functions and variables of the program that is
available on the website (Part 3/3). 58

Figure 2.6 Interactive view of the code. 59

Figure 2.7 DigitalIn class reference. 59

Figure 2.8 Website of Mbed with detailed information about DigitalIn and the
whole Application Programming Interface. 60

Figure 2.9 Details of the function uartTask() used in this proposed solution to Example 2.1. 62

Figure 2.10 Details of the function uartTask() used in the proposed solution to Example 2.2. 67

Figure 2.11 Details of the ‘4’ of the function uartTask(). 73

Figure 2.12 Basic setup for a serial communication between two devices. 79

Figure 2.13 Basic sequence of a serial communication between two devices. 80

Figure 2.14 The bits transmitted or received by the NUCLEO board UART can be seen by
connecting an oscilloscope or a logic analyzer on CN5. These bits do not
correspond to the USB protocol. 82

Figure 2.15 Top, the smart home system. Bottom, a diagram of the “Industrial transmitter.” 83

Figure 3.1 The smart home system is now connected to a temperature sensor, a
gas detector, a potentiometer, and a buzzer. 87

Figure 3.2 A typical potentiometer and its corresponding electrical diagram. 88

Figure 3.3 Diagram of the connection of the potentiometer to the NUCLEO board. 89

Figure 3.4 The LM35 temperature sensor in a TO-92 package. 89

Figure 3.5 Basic setup for the LM35 temperature sensor. 90

List of Figures

xxxv

Figure 3.6 Diagram of the connection of the LM35 to the NUCLEO board. 90

Figure 3.7 Diagram of the connection of the MQ-2 to the NUCLEO board. 91

Figure 3.8 Diagram of the connection of the buzzer to the NUCLEO board. 92

Figure 3.9 Diagram of the connection of the MQ-2 gas sensor module. 94

Figure 3.10 Simplified diagram of a Successive Approximation Register analog to
digital converter. 115

Figure 3.11 “Vineyard frost prevention” built with Mbed contains elements
introduced in this chapter. 123

Figure 4.1 The smart home system is now connected to a matrix keypad. 127

Figure 4.2 The smart home system is now connected to a matrix keypad. 128

Figure 4.3 Detail showing how to prepare the matrix keypad connector using a pin header. 129

Figure 4.4 Diagram of the connections of the matrix keypad. 129

Figure 4.5 Diagram of the connections between the matrix keypad and the
NUCLEO board. 130

Figure 4.6 Voltage signal over time for a given button, including typical glitches
and bounces. 131

Figure 4.7 Diagram of the MB102 module. 132

Figure 4.8 Voltage signal over time for a given button as it is pressed or released. 157

Figure 4.9 Diagram of the FSM implemented in Example 4.1. 158

Figure 4.10 Diagram of the FSM implemented in Example 4.2. 160

Figure 4.11 Smart door lock built with Mbed contains a keypad similar to the one
introduced in this chapter. 161

Figure 5.1 Diagram of the first attempt to modularize the smart home system program. 177

Figure 5.2 Diagram of the modules used in the smart home system program. 178

Figure 5.3 Diagram of the relationships between the modules used in the smart
home system. 183

Figure 5.4 Diagram showing how the definitions of the event_log module were made. 185

Figure 5.5. Diagram of the voltage through the buzzer pins when PE_10 is set to 0 V
and 3.3 V. 187

Figure 5.6 Diagram of the circuit that can be used to completely turn on and off
the buzzer. 187

Figure 5.7 Diagram of modularization in C/C++ using header files. 217

Figure 5.8 File organization proposed for the smart home system code. 219

Figure 6.1 The smart home system is now connected to an LCD display. 223

Figure 6.2 The smart home system connected to the character LCD display using GPIOs. 224

List of Figures

xxxvi

Figure 6.3 Diagram of the connections between the character LCD display and the
NUCLEO board using GPIOs. 225

 Figure 6.4 CN11 and CN12 headers of the NUCLEO-F429ZI board scheme made
using information available from [4]. 226

Figure 6.5 Addresses corresponding to each of the positions of a 20 × 4 LCD
character display. 229

Figure 6.6 Addresses corresponding to each of the positions of a 16 × 2 LCD
character display. 229

Figure 6.7 Addresses corresponding to each of the positions of an 8 × 2 LCD
character display. 229

Figure 6.8 Addresses corresponding to each of the positions of an 8 × 1 LCD
character display. 229

Figure 6.9 An 8 × 2 LCD character display where a left shift has been applied once. 230

Figure 6.10 Transfer timing sequence of writing instructions when an 8-bit interface
is configured. 231

Figure 6.11 Initialization procedure of the graphic display when an 8-bit interface is used. 232

Figure 6.12 Position of the strings that are placed in the character LCD display. 235

Figure 6.13 The smart home system connected to the character LCD display using
4-bit mode interface. 244

Figure 6.14 Transfer timing sequence of writing instructions when a 4-bit interface
is configured. 245

Figure 6.15 Initialization procedure of the graphic display when a 4-bit interface is used. 246

Figure 6.16 The smart home system is now connected to the character LCD display
using the I2C bus. 252

Figure 6.17 Diagram of the connections between the character LCD display and the
NUCLEO board using the I2C bus. 253

Figure 6.18 Simplified block diagram of the PCF8574 together with its connections
to the LCD display. 254

Figure 6.19 Examples of other PCF8574 modules that do not include the potentiometer
and the resistors. 255

Figure 6.20 Example of a typical I2C bus connection between many devices. 255

Figure 6.21 Example of I2C bus start and stop conditions. 256

Figure 6.22 Example of a typical I2C bus address message. 256

Figure 6.23 Example of a typical I2C bus communication. 257

Figure 6.24 Example of a writing operation to the PCF8574. 257

Figure 6.25 The smart home system is now connected to the graphical LCD display
using the SPI bus. 265

List of Figures

xxxvii

Figure 6.26 Diagram of the connections between the graphical LCD display and the
NUCLEO board using the SPI bus. 266

Figure 6.27 Addresses corresponding to each of the positions of a graphical LCD
display in character mode. 267

Figure 6.28 Transfer timing sequence of the graphical LCD display when the serial
mode is configured. 269

Figure 6.29 Simplified block diagram of a ST7920 and two ST7921 used to drive a
32 × 256 dot matrix LCD panel. 270

Figure 6.30 Simplified block diagram of a ST7920 and two ST7921 used to drive a
64 × 128 dot matrix LCD panel. 270

Figure 6.31 Diagram of the correspondence between the GDRAM addresses and
the display pixels. 271

Figure 6.32 Example of a typical SPI bus connection between many devices. 273

Figure 6.33 Diagram of the four possible SPI modes, depending on the clock polarity
and clock phase. 273

Figure 6.34 Diagram of the Hardware Abstraction Layer that is implemented in the
display module. 276

Figure 6.35 Frames of the animation that are shown when the alarm is activated. 282

Figure 6.36 Examples of other systems based on Mbed that make use of LCD displays. 292

Figure 7.1 The smart home system is now connected to an LCD display. 297

Figure 7.2 Diagram of the limit switches that are considered in this chapter. 298

Figure 7.3 The smart home system is now connected to a PIR sensor and a set of
four buttons. 298

Figure 7.4 The smart home system is now connected to a 5 V DC motor using a
relay module. 299

Figure 7.5 Conceptual diagram of the circuit that is used to activate the DC motor,
LED1, and LED2. 300

Figure 7.6 Diagram of the field of view and the effective range of the HC-SR501
PIR sensor. 302

Figure 7.7 Adjustments and connector of the HC-SR501 PIR sensor. 303

Figure 7.8 A typical limit switch. Note the connectors on the bottom: common,
normally open and normally closed. 304

Figure 7.9 Conceptual diagram of the normal flow of a program altered by an
interrupt service routine. 305

Figure 7.10 Conceptual diagram of the normal flow of a program altered by two
interrupt service routines. 306

Figure 7.11 Pulse generated by PIR sensor when motion is detected and the
corresponding initialization and callbacks. 320

List of Figures

xxxviii

Figure 7.12 Diagram of a typical circuit that is used in a relay module. 337

Figure 7.13 Diagram of a typical circuit that is used to turn on and off an AC motor
using a relay module. 338

Figure 7.14 On the left, picture of the light system, with its light detector on top.
On the right, a diagram of the system. 338

Figure 7.15 Diagram of a typical circuit that is used to turn on and off an AC lamp
using a relay module. 339

Figure 8.1 The smart home system is now connected to an LCD display. 343

Figure 8.2 The smart home system has now an RGB LED, a light sensor, and a
circuit for audio playback. 344

Figure 8.3 Diagram of the connection of the RGB LED. 345

Figure 8.4 Diagram of the light colors that result dependent on the LEDs that are
turned on. 345

Figure 8.5 ST Zio connectors of the NUCLEO-F429ZI board. 346

Figure 8.6 Diagram of the connection of the LDR. 347

Figure 8.7 Diagram of the connection of the low pass filter and the audio jack. 347

Figure 8.8 Information shown on the serial terminal when program
“Subsection 8.2.1.b” is running. 348

Figure 8.9 Connection of a high-brightness LED to a NUCLEO board pin (optional). 352

Figure 8.10 Simplified diagram of a timer. 353

Figure 8.11 Periodic signal generated by the built-in timer of a microcontroller. 354

Figure 8.12 Example of the variation of LED brightness by the pulse width
modulation technique. 355

Figure 8.13 Detail on how the “Welcome to the smart home system” message is
generated using PWM. 356

Figure 8.14 Output of serial terminal generated by proposed example 8.4. 378

Figure 8.15 Diagram of a negative feedback control system. 383

Figure 8.16 Diagram of the negative feedback control system implemented in
Example 8.5. 383

Figure 8.17 On the left, smart city bike light mounted on a bike. On the right, rear
and front lights and the mobile app. 384

Figure 9.1 The smart home system is now connected to an SD card. 389

Figure 9.2 The smart home system is now connected to an SD card. 390

Figure 9.3 Details of the SD card module pins and how to insert the SD card into
the module. 391

Figure 9.4 Diagram of a typical organization of a filesystem. 392

Figure 9.5 Example of events storage messages. 393

List of Figures

xxxix

Figure 9.6 Example of the content of an event file stored on the SD card as a .txt file. 394

Figure 9.7 Example of events storage messages. 401

Figure 9.8 Example of the content of an event file stored on the SD card as a .txt file. 402

Figure 9.9 Example of the file listing that is shown in the PC. 404

Figure 9.10 Two examples of opening a file: first, when the file exists, and second,
when the file does not exist. 408

Figure 9.11 Diagram of a typical evolution of a repository. 414

Figure 9.12 Repository of an example of a game console based on Mbed. 417

Figure 10.1 The smart home system will be connected to a smartphone via
Bluetooth Low Energy. 421

Figure 10.2 Connections to be made between the NUCLEO board and the HM-10 module. 422

Figure 10.3 Basic functionality of the HM-10 module pins. 423

Figure 10.4 Screenshots of the “Smart Home System App,” showing the sequence
to connect and use the application. 424

Figure 10.5 Illustration of the names and behaviors of each device in the BLE
startup process. 445

Figure 10.6 Illustration of the names and behaviors of each device in a typical BLE
communication. 445

Figure 10.7 “Anybus wireless bolt” built with Mbed contains elements introduced
in this chapter. 448

Figure 11.1 The smart home system is now able to serve a web page. 453

Figure 11.2 The smart home system is now connected to a ESP-01 module. 454

Figure 11.3 Basic functionality of the ESP-01 module pins. 455

Figure 11.4 Diagram of the communication that is implemented between the
different devices. 456

Figure 11.5 Steps to follow in the test program used in this subsection. 456

Figure 11.6 Web page served by the ESP-01 module. 457

Figure 11.7 The “AT” command (attention) is sent to the ESP-01 module, which
replies “OK”. 458

Figure 11.8 The “AT+CWMODE=1” command (mode configuration) is sent to the
ESP-01 module, which replies “OK”. 458

Figure 11.9 The “AT+CWJAP” command (Join Access Point) is sent to the ESP-01 module. 459

Figure 11.10 The “AT+CIFSR” command (Get IP Address) is sent to the ESP-01 module. 459

Figure 11.11 The “AT+CIPMUX=1” command to enable multiple connections is sent
to the ESP-01 module. 459

Figure 11.12 The “AT+CIPSERVER=1,80” command (creates a TCP server) is sent to
the ESP-01 module. 460

List of Figures

xl

Figure 11.13 The “AT+CIPSTATUS” command shows the connection status of the
ESP-01 module. 460

Figure 11.14 A request to the ESP-01 module is sent by a web browser. 461

Figure 11.15 The ESP-01 module indicates that a network connection with ID of 0
has been established. 461

Figure 11.16 The “AT+CIPSTATUS” command shows the connection status of the
ESP-01 module. 462

Figure 11.17 The “AT+CIPSEND=0,52” command (sends data) is sent to the ESP-01
module, and it responds “>”. 462

Figure 11.18 The “AT+CIPSEND=0,52” command (sends data) is sent to the ESP-01 module. 463

Figure 11.19 The “AT+CIPCLOSE=0” command (close a TCP connection) is sent to the
ESP-01 module. 463

Figure 11.20 Web page served by the ESP-01 module. 463

Figure 11.21 Example of an Mbed-based system having a web service with real-time
insights, alerts and reports. 493

Figure 12.1 First proposal of the hardware modules of the irrigation system. 505

Figure 12.2 Final version of the hardware modules of the Irrigation System. 507

Figure 12.3 Connection diagram of all the hardware elements of the irrigation system. 509

Figure 12.4 Software design of the irrigation system program. 511

Figure 12.5 Software modules of the irrigation system program. 512

Figure 12.6 Diagram of the .cpp and .h files of the irrigation system software. 512

Figure 12.7 Diagram of the proposed FSM. 516

Figure 12.8 Layout of the LCD for the Programmed irrigation mode when the
system is waiting to irrigate. 518

Figure 12.9 Layout of the LCD for the Programmed irrigation mode when the
system is irrigating. 518

Figure 12.10 Layout of the LCD for the Programmed irrigation mode when irrigation
is skipped. 518

Figure 12.11 Layout of the LCD for the Continuous irrigation mode. 518

Figure 12.12 Image of the HC-SR04 ultrasonic module. 550

Figure 12.13 Image of a microphone module. 550

Figure 12.14 Image of a digital barometric pressure module. 550

Figure 12.15 Image of a micro servo motor. 551

Figure 12.16 Image of a GPS module. Note the GPS antenna on the left. 551

Figure 12.17 Image of an NB-IoT cellular module. Note the SIM card slot on the right. 552

xli

List of Tables

Table 1 Organization in the case of two 90-minute or 120-minute lessons per week. xxix

Table 2 Organization in the case of one 180-minute lesson per week. xxx

Table 3 Bill of materials (BOM) used in Chapters 1 to 11. xxxi

Table 1.1 Elements contained in the smart home system block diagrams
illustrated in Figure 1.1. 4

Table 1.2. Elements of the smart home system and the corresponding representation
implemented. 8

Table 1.3 Behaviors of the program that is used in this subsection to test the buttons. 10

Table 1.4 New proposed implementation for Example 1.1. 16

Table 1.5 Proposed modifications of the code in order to achieve the new behavior. 16

Table 1.6 Proposed modifications in the code in order to achieve the new behavior. 20

Table 1.7 Proposed modifications in the code in order to achieve the new behavior. 24

Table 1.8 Proposed modifications in the code in order to achieve the new behavior. 28

Table 1.9 Proposed modifications in the code in order to achieve the new behavior. 28

Table 1.10 Summary of the smart home system buttons that should be pressed in
each case. 28

Table 1.11 Proposed modification in the code in order to achieve the new behavior. 33

Table 1.12 Proposed modifications in the code in order to use the alternative
names of D2 to D7. 39

Table 2.1 Sections in which lines were added to Code 2.4 and Code 2.5. 62

Table 2.2 Available configurations of the UnbufferedSerial object. 65

Table 2.3 Lines that were added to the program of Example 2.2. 70

Table 2.4 Lines that were added and removed from the code used in Example 2.3. 74

Table 2.5 Lines that were added from the code used in Example 2.4. 76

Table 3.1 Examples of the voltage at VOUT using the connection shown in Figure 3.5. 90

Table 3.2 Available commands of the program used to test the LM35 temperature
sensor and the potentiometer. 93

Table 3.3 Sections in which lines were added to Example 2.5. 96

Table 3.4 Lines that were modified from Example 3.1. 97

Table 3.5 Section where a line was added to Example 3.1. 98

Table 3.6 Lines that were modified from Example 3.2. 100

Table 3.7 Sections in which lines were added to Example 3.2. 101

Table 3.8 Sections in which lines were removed from Example 3.2. 101

Table 3.9 Functions in which lines were removed from Example 3.2. 101

List of Tables

xlii

Table 3.10 Lines added to the function availableCommands(). 102

Table 3.11 New variables that are declared in the function uartTask(). 103

Table 3.12 C language basic arithmetic type specifiers. 104

Table 3.13 C99 standard definitions of new integer types. 105

Table 3.14 Sections in which lines were modified and added to Example 3.3. 107

Table 3.15 Functions in which lines were added to Example 3.3. 107

Table 3.16 Sections in which lines were added or modified in Example 3.4. 111

Table 4.1 Available commands for the program used to test the matrix keypad
and to configure the RTC. 133

Table 4.2 Sections and functions in which lines were added to Example 3.5. 135

Table 4.3 Sections and functions in which lines were added to Example 4.1. 140

Table 4.4 Sections in which lines were added to Example 4.2. 146

Table 4.5 Definitions, variables name, and variable initializations that were
modified from Example 4.2. 146

Table 4.6 Sections in which lines were removed from Example 4.2. 146

Table 4.7 Functions in which lines were removed from Example 4.2. 147

Table 4.8 Sections in which lines were added to Example 4.3. 150

Table 4.9 Details of the struct tm. 151

Table 5.1 Functionalities and roles of the smart home system modules. 178

Table 5.2 Functions of the smart home system module. 179

Table 5.3 Functions of the fire alarm module. 179

Table 5.4 Functions of the code module. 179

Table 5.5 Functions of the user interface module. 180

Table 5.6 Functions of the PC serial communication module. 180

Table 5.7 Main functionality of the event log module. 181

Table 5.8 Functions of the siren module. 181

Table 5.9 Functions of the strobe light module. 182

Table 5.10 Functions of the gas sensor module. 182

Table 5.11 Functions of the temperature sensor module. 182

Table 5.12 Main functionality of the matrix keypad module. 182

Table 5.13 Functions of the date and time module. 182

Table 5.14 Variables that will be declared as static inside given functions. 211

Table 5.15 Public and private variables declared in each module. 212

Table 5.16 Public and private functions. 213

Table 5.17 Sections of the template that are used to write the .h file of each module. 217

List of Tables

xliii

Table 5.18 Sections of the template used to write the .cpp file of each module. 218

Table 5.19 Example of extern variables that are used in the implementation of the
smart home system. 220

Table 6.1 A typical character set of an LCD character display. 228

Table 6.2 Part of the character set defined by ASCII and ISO/IEC 8859. 228

Table 6.3 Summary of the character LCD display instructions that are used in
this chapter. 230

Table 6.4 Sections in which lines were added to user_interface.cpp. 234

Table 6.5 Address reference of the PCF8574 module. The addresses used in the
proposed setup are highlighted. 254

Table 6.6 Summary of the graphical LCD display instructions that are used in this chapter. 268

Table 6.7 Connections of the graphical LCD display used in this book when the
serial bus option is selected. 269

Table 6.8 Signals of the SPI bus. 272

Table 6.9 Summary of the NUCLEO board pins that are used to implement the SPI
bus communication. 272

Table 6.10 Sections in which lines were added to user_interface.cpp. 283

Table 6.11 Sections in which lines were removed from user_interface.cpp. 283

Table 6.12 Comparison between UART, SPI, and I2C. 291

Table 7.1 Summary of the signals applied to the motor depending on IN1 and IN2,
and the resulting behavior. 300

Table 7.2 Summary of the connections between the NUCLEO board and the
relay module. 301

Table 7.3 Summary of other connections that should be made to the relay module. 301

Table 7.4 Summary of the connections between the NUCLEO board and the
HC-SR501 PIR sensor. 303

Table 7.5 Summary of connections to the breadboard that should be made on the
HC-SR501 PIR sensor. 303

Table 7.6 Summary of the buttons that are connected in Figure 7.3. 304

Table 7.7 Example of an interrupt service table. 306

Table 7.8 Sections in which lines were added to smart_home_system.cpp. 308

Table 7.9 Sections in which lines were added to user_interface.cpp. 311

Table 7.10 Functions in which lines were added in pc_serial_com.cpp. 312

Table 7.11 Sections in which lines were added in pc_serial_com.cpp. 312

Table 7.12 Sections in which lines were added to smart_home_system.cpp. 314

Table 7.13 Public global objects that were renamed in user_interface.cpp. 314

List of Tables

xliv

Table 7.14 Private functions that were renamed in user_interface.cpp. 315

Table 7.15 Sections in which lines were added to user_interface.cpp. 315

Table 7.16 Functions in which lines were added in pc_serial_com.cpp. 318

Table 7.17 Sections in which lines were added to pc_serial_com.cpp. 318

Table 7.18 Sections in which lines were added to smart_home_system.cpp. 321

Table 7.19 Functions in which lines were added in pc_serial_com.cpp 321

Table 7.20 Sections in which lines were added in pc_serial_com.cpp. 321

Table 7.21 Sections in which lines were added to event_log.cpp. 325

Table 7.22 Sections in which lines were added to user_interface.cpp. 325

Table 7.23 Sections in which lines were added to smart_home_system.cpp. 328

Table 7.24 Sections in which lines were added to user_interface.cpp. 335

Table 7.25 Variables that were renamed in user_interface.cpp. 336

Table 8.1 Summary of the PWM timers that are already in use or occupied by other
functionalities. 349

Table 8.2 On time and off time of the LEDs used in the program “Subsection 8.2.2”. 354

Table 8.3 Sections in which lines were added to smart_home_system.cpp. 358

Table 8.4 Lines that were modified in siren.cpp. 358

Table 8.5 Sections in which lines were added to user_interface.cpp. 364

Table 8.6 Sections in which lines were removed from bright_control.cpp. 365

Table 8.7 Functions in which lines were removed from bright_control.cpp. 365

Table 8.8 Sections in which lines were added to user_interface.cpp. 372

Table 8.9 Sections in which lines were added to light_system.cpp. 373

Table 8.10 Sections in which lines were added to light_system.h. 373

Table 8.11 Sections in which lines were added to light_system.cpp. 375

Table 9.1 Summary of the connections between the NUCLEO board and the SD card. 391

Table 9.2 Sections in which lines were added to pc_serial_com.h. 395

Table 9.3 Sections in which lines were added to pc_serial_com.cpp. 395

Table 9.4 Functions in which lines were added in pc_serial_com.cpp. 395

Table 9.5 Sections in which lines were added to event_log.h. 396

Table 9.6 Sections in which lines were added to event_log.cpp. 396

Table 9.7 Sections in which lines were added to pc_serial_com.cpp. 405

Table 9.8 Functions in which lines were added in pc_serial_com.cpp. 405

Table 9.9 Sections in which lines were added to sd_card.h. 406

Table 9.10 Sections in which lines were added to pc_serial_com.cpp. 409

List of Tables

xlv

Table 9.11 Functions in which lines were added in pc_serial_com.cpp. 409

Table 9.12 Sections in which lines were added to sd_card.h. 412

Table 9.13 Summary of typical information available about a repository. 414

Table 10.1 Summary of the connections between the NUCLEO board and the
HM-10 module. 423

Table 10.2 Summary of the messages from the NUCLEO board to the application. 425

Table 10.3 Summary of the messages from the application to the NUCLEO board. 425

Table 10.4 Sections in which lines were added to smart_home_system.cpp. 427

Table 10.5 Sections in which lines were added to event_log.cpp. 431

Table 10.6 Sections in which lines were added to ble_com.h. 431

Table 10.7 Sections in which lines were added to event_log.cpp. 434

Table 10.8 Sections in which lines were added to event_log.h. 434

Table 10.9 Examples of functions with parameters passed by reference and by value. 439

Table 10.10 Sections in which lines were smart_home_system.cpp. 440

Table 11.1 Summary of the connections between the NUCLEO board and the
ESP-01 module. 455

Table 11.2 Summary of other connections that should be made to the ESP-01. 455

Table 11.3 Summary of the AT+CIPSTATUS return values. 460

Table 11.4 Sections in which lines were added to smart_home_system.cpp. 465

Table 11.5 Sections in which lines were added to pc_serial_com.cpp. 466

Table 11.6 Functions in which lines were added in pc_serial_com.cpp. 466

Table 11.7 Sections in which lines were added to pc_serial_com.cpp. 472

Table 11.8 Functions in which lines were added in pc_serial_com.cpp. 472

Table 11.9 Sections in which lines were added to wifi_com.cpp. 476

Table 11.10 Functions in which lines were added in wifi_com.cpp. 482

Table 11.11 Sections in which lines were added to wifi_com.cpp. 482

Table 11.12 Sections in which lines were added to wifi_com.cpp. 487

Table 11.13 Sections in which lines were removed from wifi_com.cpp. 487

Table 11.14 States of the FSM that were modified in wifi_com.cpp. 488

Table 11.15 Sections in which lines were modified in wifi_com.cpp. 490

Table 11.16 Summary of the main characteristics of the Wi-Fi versions. 491

Table 12.1 Summary of the proposed steps to design and implement an embedded
system project. 497

Table 12.2 Selection of the project to be implemented. 500

Table 12.3 Summary of the SMART mnemonic acronym. 501

List of Tables

xlvi

Table 12.4 Elements that will be used to define a use case. 502

Table 12.5 Summary of the main characteristics of two home irrigation systems
currently available on the market. 502

Table 12.6 Initial requirements defined for the home irrigation system. 503

Table 12.7 Use Case #1 – Title: The user wants to irrigate plants immediately for a
couple of minutes. 503

Table 12.8 Use Case #2 – Title: The user wants to program irrigation to take place
for ten seconds every six hours. 504

Table 12.9 Use Case #3 – Title: The user wants the plants not to be irrigated. 504

Table 12.10 Comparison of moisture sensors. 506

Table 12.11 Comparison of solenoids valves. 506

Table 12.12 Summary of the connections between the NUCLEO board and the
character-based LCD display. 507

Table 12.13 Summary of other connections that should be made to the character-based
LCD display. 507

Table 12.14 Summary of the connections between the NUCLEO board and the buttons. 508

Table 12.15 Summary of connections that should be made to the HL-69 moisture sensor. 508

Table 12.16 Summary of connections that should be made to the relay module. 508

Table 12.17 Summary of connections that should be made to the FPD-270A. 508

Table 12.18 Bill of materials. 510

Table 12.19 Functionalities and roles of the home irrigation system modules. 513

Table 12.20 Private objects and variables of the moisture_sensor module. 513

Table 12.21 Private objects and variables of the buttons module. 513

Table 12.22 Private objects and variables of the irrigation_timer module. 514

Table 12.23 Private objects and variables of the irrigation_control module. 514

Table 12.24 Private objects and variables of the user_interface module. 514

Table 12.25 Private objects and variables of the relay module. 514

Table 12.26 Public functions of the irrigation_system module. 514

Table 12.27 Public functions of the moisture_sensor module. 514

Table 12.28 Public functions of the buttons module. 515

Table 12.29 Public functions of the irrigation_timer module. 515

Table 12.30 Public functions of the irrigation_control module. 515

Table 12.31 Public functions of the display module. 515

Table 12.32 Public functions of the relay module. 515

Table 12.33 Some of the initial requirements defined for the home irrigation system. 522

List of Tables

xlvii

Table 12.34 Sections in which lines were modified in irrigation_control.h. 544

Table 12.35 Accomplishment of the requirements defined for the home irrigation system. 545

Table 12.36 Accomplishment of the use cases defined for the home irrigation system. 546

Table 12.37 Elements that summarize the most important information about the home
irrigation system. 548

Chapter 1
Introduction to
Embedded Systems

2

A Beginner’s Guide to Designing Embedded System Applications

1.1 Roadmap

1.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Implement basic programs on the NUCLEO board using flow control, logical operators, and
variables.

 n Explain the basic concepts about how microcontrollers operate.

1.1.2 Contents of This Chapter

In every embedded system there is an element that reads the inputs, drives the outputs, and controls
the communications and interfaces. This element is usually a microcontroller. To perform its tasks, the
microcontroller runs a program. In this chapter, the process of writing a program is explained as well
as how to upload it to the NUCLEO-F429ZI board (hereinafter called the NUCLEO board) that is used
in this book. Detailed information about this board can be found in [1].

The chapter also explains how to control the LEDs of the NUCLEO board and the connected buttons.
These buttons are used in example problems related to a smart home system project.

The examples in this chapter make use of some elements of the Arm Mbed OS 6, which is a free, open-
source, rapid development platform designed to help developers get started building Internet of Things
(IoT) applications quickly. An introduction to Mbed OS 6 can be found in [2].

In this way, some of the main concepts about embedded programming using the C and C++ languages
are introduced, such as nested if statements, OR and AND logical operators, and Boolean and non-
Boolean variables.

Throughout the chapter, the reader is guided on how to compile the examples and load them onto the
NUCLEO board using Keil Studio Cloud, which allows the developer to write code from scratch or
import an existing project and modify it to suit the developer’s requirements. An introduction to Keil
Studio Cloud is available in [3].

To use Keil Studio Cloud, the only thing the reader needs is an Arm Mbed account. [4] explains how to
create an Arm Mbed account or log in if an account is already created. Keil Studio Cloud is available
from [5] and a quick-start guide is available from [6].

NOTE: Those readers who prefer to use a dedicated desktop setup can use the Mbed
Studio IDE (Integrated Development Environment), which is available from [7], or any
other IDE, for example the STM32CubeIDE, which is introduced in [8].

Chapter 1 | Introduction to Embedded Systems

3

In the Under the Hood section, the basic principles of microcontrollers are introduced. Finally, in the
Case Study section, a smart door lock based in Mbed OS is analyzed in order to show that many of the
concepts introduced in this chapter are used in commercial products.

1.2 Fundamentals of Embedded Systems

1.2.1 Main Components of Embedded Systems

Throughout the chapters in this book, a smart home system project will be implemented. In this
section, different smart home system implementations are analyzed in order to highlight the
fundamentals of embedded systems.

Figure 1.1 shows four different implementations of a smart home system, adapted from different
sources. The inputs are indicated in yellow, the microcontroller in light blue, the outputs in light red,
the communication links in light gray, the human interfaces in blue, and the power supply in green. The
elements contained in the block diagrams illustrated in Figure 1.1 are summarized in Table 1.1.

a)

c)

b)

d)

Figure 1.1 Four different block diagram representations of a smart home system.

4

A Beginner’s Guide to Designing Embedded System Applications

Table 1.1 Elements contained in the smart home system block diagrams illustrated in Figure 1.1.

Smart Home Inputs
(yellow)

Microcontroller
(light blue)

Outputs
(light red)

Communication
(light gray)

Interface
(blue)

Power supply
(green)

(a) Gas, light, and
temperature
sensors

Yes Two relays Ethernet Website 12 V battery

(b) IR movement and
light sensors

Yes One relay Wi-Fi Smartphone
App

110/220 V

(c) Light, IR
movement, and
temperature
sensors

Yes Heating/
cooling
system

USB PC 5 V

(d) Gas, light, and
temperature
sensors

Yes Alarm/
motor
driver

SPI Keypad
+ LCD display

2 × AA batteries

From Table 1.1, the following conclusions can be made:

 n All the implementations have a microcontroller.

 n The type and number of sensors depends on the implementation.

 n All the implementations have outputs, a relay being the most frequent one.

 n Communications are implemented by different technologies (Ethernet, Wi-Fi, USB).

 n Different interfaces are used: a website, a smartphone app, a keypad plus an LCD display.

 n The power supply is indicated in the four diagrams (12 V battery, 110/220 V, etc.).

The microcontroller is the heart of the system: all the inputs are connected to the microcontroller and
all the outputs are driven by the microcontroller, while the communications and the interfaces are
controlled by the microcontroller. For this reason, every embedded system has one microcontroller
(at least), or a similar element that plays the same role.

DEFINITION: A typical definition of an embedded system is a computer system
that has a dedicated function within a larger mechanical or electrical system and
is embedded as part of a complete device, often including electrical or electronic
hardware and mechanical parts.

DEFINITION: A typical definition of a microcontroller is a small computer on a single
integrated circuit (IC) chip which typically contains one or more processor cores along
with memory and programmable peripherals.

Chapter 1 | Introduction to Embedded Systems

5

NOTE: The Under the Hood section, at the end of this chapter, discusses in detail
what is inside a microcontroller. The aim is to make the reader use a microcontroller
before explaining how they work.

The microcontroller runs a program made up of instructions by means of which the programmer
instructs the microcontroller what to do. This book aims to enable the reader to write this type of
program and to connect the appropriate sensors, actuators, and interfaces to the inputs and outputs of
the microcontroller. The sensors will provide measurements of the environment, while the actuators
will allow the microcontroller to have control over elements and devices within the environment.

Proposed Exercises

1. Using Table 1.1 as a reference, propose a smart home system having a maximum of two types of
sensors (inputs), one type of actuator (output), one communication link, and two human interfaces.

2. Make the block diagram of the proposed smart home system.

Answers to the Exercises

1. The smart home system may include a gas sensor, a temperature sensor, an alarm, a keypad, and a
communication link with a PC.

2. The diagram of the proposed smart home system is shown in Figure 1.2.

Figure 1.2 Diagram of the proposed smart home system.

NOTE: In Figure 1.2, the link with the PC is implemented by means of a UART serial
communication (Universal Asynchronous Receiver-Transmitter). The UART peripheral is
introduced later in Chapter 2.

1.2.2 First Implementation of the Smart Home System

This section will begin the implementation of the smart home system, following the diagram shown
in Figure 1.3. This first implementation will detect fire using an over temperature detector and a gas
detector and, if it detects fire, it will activate the alarm until a given code is entered. For this purpose,
the NUCLEO board [1] provided with the STM32F429ZIT6U microcontroller [9] (referred to as the
STM32 microcontroller) is used.

6

A Beginner’s Guide to Designing Embedded System Applications

Alarm controller

Over
emperaturet

etectord

°F
°C
/

Alarm

Gas etectord

Alarm control panel

DCBA

Alarm OFF Enter

Incorrect Code

System Blocked

Figure 1.3 The smart home system that is implemented in this chapter.

The reader might notice that there are not as many buttons in the NUCLEO board as in the alarm
control panel shown in Figure 1.3. Instead, the NUCLEO board is provided with only one user button
and three LEDs, as shown in Figure 1.4. It can be concluded that a way to connect more buttons to the
NUCLEO board is needed. For this purpose, the ST Zio connectors of the NUCLEO board shown in
Figure 1.4 are used.

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

Button
B1 USER

STM32
Microcontroller

LEDs
LD3
LD2
LD1

Button
B2 RESET

USB
connector

CN8

CN7CN10

CN9

ST Zio
connector

ST Zio
connector

ST Zio
connector

ST Zio
connector

Figure 1.4 The NUCLEO-F429ZI board used in this book.

Chapter 1 | Introduction to Embedded Systems

7

The overall diagram of the embedded system that will be connected in this chapter is shown in
Figure 1.5. It can be seen that a breadboard is used, together with the most common buttons used
in electronics, technically known as tactile switches. For breadboarding, any appropriate wire can be
used, but it is recommended to use jumper wires.

N
U

C
L

E
O

-F
4
2
9
Z

I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1
0
2
N

L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

Button
B1 USER

STM32
MicrocontrollerCN8

CN10

ST Zio
connector

ST Zio
connector

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

Alarm controller

D3 D4 D5 D6 D7 3.3VD2

LEDs
LD3
LD2
LD1

gasDetector

Alarm

alarmLed

Gas etectord

alarmOff /
enterButton

Alarm
control panel

a
B

u
tt

o
n

b
B

u
tt

o
n

c
B

u
tt

o
n

d
B

u
tt

o
n

o
v
e

rT
e

m
p

D
e

te
c
to

r

DCBA

Alarm OFF Enter

Incorrect Code

System Blocked

Over
emperaturet

etectord

°F
°C
/

systemBlockedLed

incorrectCodeLed

Figure 1.5 The elements of the smart home system introduced in Figure 1.3 with their corresponding components.

8

A Beginner’s Guide to Designing Embedded System Applications

Figure 1.5 shows the elements of the smart home system introduced in Figure 1.3 and their proposed
representation by means of the components connected. The names that will be used in the code to
refer to each element are indicated in Figure 1.5 (i.e., gasDetector, alarmLed, etc.). It can be seen that
the activation of the gas detector and the over temperature detector are simulated by buttons D2 and
D3 placed over the breadboard. All these connections are summarized in Table 1.2.

TIP: It may be useful to indicate the function of each button and LED using a card next
to each one.

NOTE: In Chapters 1 and 2, the alarm will be represented by an LED. In Chapter 3,
a buzzer will be incorporated into the alarm in order to represent a siren. In later
chapters it will be explained how to incorporate a strobe light into the alarm. In this
way the alarm will have light and sound, as in Figure 1.5.

Table 1.2. Elements of the smart home system and the corresponding representation implemented.

 Smart home system Representation used

 Alarm LD1 LED (green)

 System blocked LED LD2 LED (blue)

 Incorrect code LED LD3 LED (red)

 Alarm Off / Enter button B1 USER button

 Gas detector Button connected to D2 pin

 Over temperature detector Button connected to D3 pin

 A button Button connected to D4 pin

 B button Button connected to D5 pin

 C button Button connected to D6 pin

 D button Button connected to D7 pin

In Table 1.2 it should be noticed that the B1 USER button is used for the Alarm Off and also for the
Enter button. The specific use will vary during the examples and will be clearly indicated as it becomes
necessary.

In Figure 1.6 and Figure 1.7 the details of the connections that should be made on the CN8 and CN10
ST Zio Connectors are shown.

Chapter 1 | Introduction to Embedded Systems

9

CN8
ST Zio

connector

Pin 3V3 = 3.3V

Figure 1.6 Detail of the connection made in the CN8 ST Zio connector of the NUCLEO board.

ST Zio
connector

CN10

D6D3 D7D4 D5D2
PinPin PinPin PinPin

Figure 1.7 Detail of the connections made in the CN10 ST Zio connector of the NUCLEO board.

WaRNINg: It is crucial to connect the jumper wires and buttons exactly as indicated
in Figure 1.5, Figure 1.6, and Figure 1.7. Otherwise, the programs presented in this
chapter will not work.

To make all the connections, unplug the USB power supply from the NUCLEO board.
Prior to reconnecting the USB power supply, check that there are no short circuits.

10

A Beginner’s Guide to Designing Embedded System Applications

1.2.3 getting Ready to Program the First Implementation of the Smart Home System

This subsection explains how to load a program onto the STM32 microcontroller of the NUCLEO
board using Keil Studio Cloud in order to test if the buttons that were connected are working properly.

First, the reader must copy the URL of the repository of the “Subsection 1.2.3” program that is
available in [10]. Then, in the “File” menu of Keil Studio Cloud, select “Import project”. The “Import
project” window will be displayed in the web browser. Press “Add project” without modifying any of
the configurations, and a new project named “Subsection 1.2.3” will be added to the list of available
projects as the active project.

NOTE: If in the future changes are made in Keil Studio Cloud that alter the steps
to compile and download the programs to the NUCLEO board, the corresponding
instructions will be published in [10].

The program that was imported has the behaviors detailed in Table 1.3. When the B1 USER button of
the NUCLEO board is pressed, LEDs LD1, LD2, and LD3 of the board are turned on. This is to ensure
that the three LEDs and the program are working correctly. If the external buttons connected to D2
or D3 are pressed, LD1 is turned on. In this way it can be tested whether the buttons connected to D2
and D3 are properly connected and working. The same applies to the buttons connected to D4 and D5
by means of LD2, and the buttons connected to D6 and D7 by means of LD3.

Table 1.3 Behaviors of the program that is used in this subsection to test the buttons.

LED Turns on if any of the following is pressed

LD1 (green) B1 USER button, button connected to D2, button connected to D3

LD2 (blue) B1 USER button, button connected to D4, button connected to D5

LD3 (red) B1 USER button, button connected to D6, button connected to D7

NOTE: The code of the program that has been loaded onto the NUCLEO board to
test if the six external buttons are working correctly will not be analyzed in this
subsection. This is due to the fact that the behavior of this code is based on some
elements that will be introduced and explained in the following subsections. For now,
it is enough to be able to check if the six buttons are working.

In order to load the program onto the NUCLEO board, connect it to the computer as shown in
Figure 1.8. If “NUCLEO-F429ZI” is not shown in the “Target hardware” section, press the “Find
target” button. If a popup menu is displayed, select the “STM32 STLink” connection and follow the
instructions. Once “NUCLEO-F429ZI” is shown in the “Target hardware” section, press the “Build
project” button. The progress will be shown in the “Output” tab. Once the program has been compiled,
a .bin file will be automatically downloaded by the web browser. Drag the downloaded .bin file to the
drive assigned to the NUCLEO board (for example, D:\, named NODE_F429ZI). A “copying” window

Chapter 1 | Introduction to Embedded Systems

11

will open, LED LD4 of the NUCLEO board will alternate red and green light, and when the window
closes the program will already be running on the NUCLEO board.

Figure 1.8 How to connect the NUCLEO board to a PC.

Next, press the B1 USER button and the buttons connected to D2, D3, D4, D5, D6, and D7, one
after the other. If the behavior of the LEDs is as described in Table 1.3 then the buttons that were
connected are working fine and the program has been correctly loaded onto the NUCLEO board.

TIP: If the B1 USER button is working as described in Table 1.3 but one of the switches
D2 to D7 is not working as expected, check the corresponding connections. If the B1
USER button is not working as described in Table 1.3 then the program has not been
properly loaded onto the NUCLEO board.

As stated in the preface, in this book selected problems, named Examples, are tackled in seven steps.
The first set of examples are presented below.

Example 1.1: activate the alarm When gas is Detected

Objective

Write the first program of the book, load it onto the NUCLEO board, and introduce the if statement.

Summary of the Expected Behavior

LD1 must turn on when the button connected to pin D2 of the NUCLEO board is pressed and turn off
when this button is released.

12

A Beginner’s Guide to Designing Embedded System Applications

Test the Proposed Solution on the Board

Import the project “Example 1.1” using the URL available in [10], build the project, and drag the .bin file
onto the NUCLEO board. Then press and release the button connected to pin D2 and look at the behavior
of LD1. The LED should turn on when the button is pressed and turn off when the button is released.

Discussion of the Proposed Solution

In embedded systems there is a set of statements that are executed forever until the power supply is
removed. Figure 1.9 illustrates the general structure, which is composed of two main parts:

 n Libraries, Definitions and Global Declarations and Initializations, indicated in blue.

 n Implementation of the main() function, indicated in green.

Libraries, Definitions and Global
Declarations and Initializations

START

Implementation of the functionmain()

(superloop structure)

Declarations and Initializations of
the functionmain()

Repetitive block
(while (true) loop)

Figure 1.9 Structure of the proposed solution.

Libraries, Definitions and Global Declarations and Initializations includes the software libraries that
are used. In addition, here some definitions of values can be established, and global variables can be
declared and initialized, among other elements.

Implementation of the main() function consists of two parts, which are illustrated in Figure 1.9:

 n Declarations and Initializations of the main() function, indicated in light blue.

 n Repetitive block, indicated in red.

In Initializations of the main() function, the inputs and outputs of the board that are used are declared,
and the initial states and other configurations are established.

Chapter 1 | Introduction to Embedded Systems

13

The repetitive block is made by the statements that are executed repeatedly in the while (true) loop.
This kind of structure is known as a superloop. That is, the code block corresponding to a while
statement is executed as long as the condition of the while loop is true. If this condition is explicitly
defined as true (i.e., while (true)) the code block of the while loop is executed forever.

Implementation of the Proposed Solution

The main.cpp file is where the main program is written in C or C++ language (the differences and
history of C and C++ are discussed in Chapter 10 and in [11]). The main.cpp file of Example 1.1 is
shown in Code 1.1. The parts corresponding to Figure 1.9 are highlighted in color. An explanation of
each part is included over the code. In lines 1 and 2 of Code 1.1, #include “mbed.h” and #include “arm_
book_lib.h” are used to instruct the Mbed Online Compiler to insert pre-written files that describe,
among other things, the interfaces to external libraries that will then be included automatically by
the tools, where classes and macros such as DigitalIn, DigitalOut, ON, and OFF are defined. The main()
function is implemented from line 4 to line 23.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include "mbed.h"

#include "arm_book_lib.h"

int main()

{

DigitalIn gasDetector(D2);

DigitalOut alarmLed(LED1);

gasDetector.mode(PullDown);

alarmLed = OFF;

() {while true

(gasDetector == ON) {if

alarmLed = ON;

}

(gasDetector == O) {FFif

alarmLed = O ;FF

}

}

}

- A digital input object (DigitalIn) named
 gasDetector is declared and assigned to D2.

- A digital output object (DigitalOut) named
alarmLed is declared and assigned to LED1.

- gasDetector is configured with an internal
pull-down resistor.

- alarmLed (LED1) is assigned OFF.

Include the libraries "mbed.h"
and "arm_book_lib.h"

Do forever loop:

- If gasDetector is active,
 alarmLed is assigned .ON

-If gasDetector is not active,
 alarmLed is assigned OFF.

Code 1.1 Implementation of Example 1.1.

NOTE: Double straight quotes (") are used in lines 1 and 2 of Code 1.1. In the program
codes that are introduced in this book, double and single straight quotes (') will
gradually be introduced and used for different purposes. It is important for the reader
to understand that double and single curly quotes (“, ”, ‘, ’) are different characters that
cannot be used for the same purpose in the program codes. Similarly, a double straight
quote cannot be replaced in the code by two consecutive straight single quotes.

14

A Beginner’s Guide to Designing Embedded System Applications

NOTE: The colors used by different code editors to highlight reserved words and
parts of the code may vary (i.e., some use green for if and others use blue). However, it
has no relevance for the program code itself.

NOTE: C and C++ are free-form programming languages in which the positioning of
characters in the program text is insignificant. However, to clarify the code structure
in this book the Kernighan and Ritchie (K&R) indentation style [12] is used. The
indentation rules of the K&R style are not discussed for the sake of brevity.

The instructions in line 6 and line 8 are to instruct the microcontroller that the button connected to
D2 and LD1 (named LED1 in the code) will be used. The button will be used as an input, while LD1
will be used as an output (as indicated in Table 1.2). Line 6 declares a digital input with the name
gasDetector and assigns it to button D2. Line 8 declares a digital output with the name alarmLed and
assigns it to LED1. All these configurations are achieved by the DigitalIn gasDetector(D2) and DigitalOut
alarmLed(LED1) declarations, where the corresponding objects are created.

NOTE: In this book, objects' names are stylized using camel case convention without
capitalization of the first letter (known as lower camel case or dromedary case), as in
gasDetector and alarmLed. In this way, these names can be easily differentiated from
names defined by Mbed OS, like DigitalIn, DigitalOut or PullDown, which use the camel
case convention with capitalization of the first letter.

In Line 10, gasDetector.mode(PullDown) is used to enable an internal pull-down resistor connected to
the DigitalIn object gasDetector. A typical connection between a button and a microcontroller digital
input based on a pull-down resistor is as shown on the left side of Figure 1.10. When the button is
pressed, the NUCLEO board reads +3.3 V (high state). When the button is not pressed, the NUCLEO
board reads 0 V (low state) because of the pull-down resistor (“R_pulldown”). In order to avoid
connecting one resistor for each button, the internal pull-down resistors that are provided by the
STM32 microcontroller are used in this example.

The right side of Figure 1.10 shows the simplified diagram of a typical connection between a button
and a microcontroller digital input based on a pull-up resistor. In this case, when the button is pressed,
the NUCLEO board reads a low state (0 V), and it reads a high state (3.3 V) when the button is not
pressed. In the latter part of this book, pull-up resistors will be used so that the reader becomes
familiar with them.

Chapter 1 | Introduction to Embedded Systems

15

GND

3.3V 3.3V

GND

to NUCLEO
Board pin

to NUCLEO
Board pin

R_PullDown

R_PullUp

When the button is pressed
3.3V is read here by
the NUCLEO Board.

Otherwise GND is read.

When the button is pressed
s read here byGND i

the NUCLEO Board.
Otherwise is read.3.3V

Button

Button

Figure 1.10 Conceptual diagram of how to connect a button to the NUCLEO board using pull-down and pull-up resistors.

In line 12, alarmLed is initialized to OFF. This instruction, together with lines 6 to 10, is highlighted in
light blue in Code 1.1 and are called Declarations and Initializations of the main() function.

In line 14, the while(true) statement is used to indicate the beginning of the repetitive block that is
repeated forever. In Example 1.3, the concept of a Boolean variable will be introduced, and this line will
be explained in more detail.

Between lines 16 and 20, the following behavior is implemented: if the gasDetector is on (button
connected to D2 is pressed) turn on the alarm (turn on LD1). If the gasDetector is off (button
connected to D2 is not pressed) turn off the alarm (turn off LD1).

NOTE: To implement the comparison inside the if statements (line 15 and line 19) a
double equals sign is used (i.e., “==”) while in order to assign values (line 16 and line
20) a single equals sign is used (i.e., “=”).

The reader should note that the braces “{” and “}” play a very important role in the
code, because they are used to separate the code into parts.

The reader should also note that semicolons “;” are used to separate different
statements, and parentheses “(” and “)” are used to indicate the beginning and ending
of the arguments of the statements, as in if(), while(), and main(). Parentheses are
also used to indicate which elements of the board are referred to with the objects
alarmLed and gasDetector.

Proposed Exercises

1. What happens if one of the semicolons is replaced by a comma?

2. What happens if one of the gasDetector occurrences is replaced by gasdetector?

16

A Beginner’s Guide to Designing Embedded System Applications

3. What can be changed in the code in order to use LD2 instead of LD1?

4. Is it possible to turn on LD1 and LD2 as the button connected to D2 is pressed?

5. What would happen if the while (true) statement was removed?

6. What will happen if the code in Table 1.4 is used?

Table 1.4 New proposed implementation for Example 1.1.

Lines in Code 1.1 New code to be used

15 if (gasDetector == ON) {

16 alarmLed = ON;

17 }

18

19 if (gasDetector == OFF) {

20 alarmLed = OFF;

21 }

16 if (gasDetector == ON) {

17 alarmLed = ON;

18 } else {

19 alarmLed = OFF;

20 }

21

Answers to the Exercises

1. The Online Compiler will not be able to compile the code and will indicate an error in the line where
the semicolon was replaced by a comma.

2. The C/C++ code is case sensitive, so gasdetector will be interpreted as a different element than
gasDetector and, as a consequence, an error will be indicated.

3. Line 8 should be changed to DigitalOut alarmLed (LD2);

4. Yes. The lines indicated in Table 1.5 should be changed.

5. The program will work once and will be over in a few microseconds.

6. The program will work in the same way as Code 1.1. The new code has the advantage of being more
compact.

Table 1.5 Proposed modifications of the code in order to achieve the new behavior.

Lines in Code 1.1 New code to be used

 8 DigitalOut alarmLed(LED1); 8 DigitalOut alarmLed1(LED1);
 9 DigitalOut alarmLed2(LED2);

12 alarmLed = OFF; 13 alarmLed1 = OFF;
14 alarmLed2 = OFF;

17 alarmLed = ON; 19 alarmLed1 = ON;
20 alarmLed2 = ON;

20 alarmLed = OFF; 23 alarmLed1 = OFF;
24 alarmLed2 = OFF;

Chapter 1 | Introduction to Embedded Systems

17

Example 1.2: activate the alarm on gas Presence or Over Temperature

Objective

Review the if statement and introduce the OR operator.

Summary of the Expected Behavior

An LED must turn on/off as one or more buttons connected to the NUCLEO board are pressed or
released.

Test the Proposed Solution on the Board

Import the project “Example 1.2” using the URL available in [10], build the project, and drag the .bin
file onto the NUCLEO board. Then press and release the buttons connected to D2 or to D3 and look
at the behavior of LD1. LD1 should turn on when any of the buttons connected to D2 and D3 are
pressed. LD1 should turn off when both buttons connected to D2 and D3 are released.

Discussion of the Proposed Solution

In Example 1.1, the alarm (LD1) was activated when gas was detected (button connected to D2
was pressed). In this example, the over temperature detector is incorporated into the system and is
simulated by the button connected to D3.

In Example 1.1, the if statement was used to implement the proposed behavior depending on the state
of the button connected to D2. In this case, if the gas detector (D2) or the over temperature detector
(D3) is active, the alarm should turn on. Otherwise, the alarm should turn off. The logical OR behavior
is indicated by means of the || operator in C/C++.

Figure 1.11 shows the proposed parts to implement the solution, following the structure proposed
in Figure 1.9. In the Libraries, Definitions and Global Declarations and Initializations (Figure 1.11 [a]),
the mbed.h and arm_book_lib.h libraries are included. In the Declarations and Initializations of the
main() function (Figure 1.11 [b]), the digital inputs gasDetector and overTempDetector are declared and
assigned to D2 and D3, and a digital output named alarmLed is declared and assigned to LD1. The
repetitive block (Figure 1.11 [c]) turns on alarmLed if gasDetector or overTempDetector is pressed and
turns off alarmLed if both are not pressed.

18

A Beginner’s Guide to Designing Embedded System Applications

Figure 1.11 Main parts of the program of Example 1.2.

Figure 1.12 shows the details of the repetitive block. This block turns alarmLed (LD1) on if gasDetector
or overTempDetector is active (buttons connected to D2 or D3 are pressed).

Figure 1.12 Details of the blocks that make up the repetitive block of Example 1.2.

Chapter 1 | Introduction to Embedded Systems

19

Implementation of the Proposed Solution

In Code 1.2, the implementation of the proposed solution is presented. The parts corresponding to
Figure 1.11 and Figure 1.12 are highlighted in color. An explanation of each part is included beside
the code.

#include "mbed.h"

#include "arm_book_lib.h"

int main()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

- Digital input objects named gasDetector
and overTempDetector are declared and

 assigned to D2 and D3, respectively.

- Digital output object named alarmLed is
 declared and assigned to LED1.

- gasDetector and overTempDetector
 are configured with internal pull-down
 resistors.

Include the libraries "mbed.h"
and "arm_book_lib.h"

Do forever loop:

- If gasDetector or
 overTempDetector are
 active, alarmLed is
 assigned ON.

- Else, alarmLed is ssigneda
 .OFF

{

DigitalIn gasDetector(D2);

DigitalIn overTempDetector(D3);

DigitalOut alarmLed(LED1);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

() {while true

(gasDetector overTempDetector) {||if

alarmLed = ON;

}

alarmLed = OFF;

}

}

}

Code 1.2 Implementation of Example 1.2.

Proposed Exercises

1. What should be modified in order to simulate the alarm by means of LD2?

2. How can it be implemented so that when gas presence is detected or over temperature is detected
LD1 and LD2 are both turned on?

3. How can line 16 of Example 1.2 be modified in order to use an explicit formulation of the condition,
as in Example 1.1?

4. Is there another way to indicate the OR logical operator beside the || symbols used in Example 1.6?

Answers to the Exercises

1. In line 8, LED1 should be replaced by LED2.

2. It can be achieved by means of the changes in Table 1.6.

20

A Beginner’s Guide to Designing Embedded System Applications

Table 1.6 Proposed modifications in the code in order to achieve the new behavior.

Lines in Code 1.2 New code to be used

9 DigitalOut alarmLed(LED1); 9 DigitalOut alarmLed1(LED1);

10 DigitalOut alarmLed2(LED2);

17 alarmLed = ON; 18 alarmLed1 = ON;

19 alarmLed2 = ON;

19 alarmLed = OFF; 21 alarmLed1 = OFF;

22 alarmLed2 = OFF;

3. Line 16 can be rewritten as follows:

 if (gasDetector == ON || overTempDetector == ON)

4. The logical operator OR can be expressed as follows

 if (gasDetector == ON or overTempDetector == ON)

NOTE: In this book, the notation || is used because of historical reasons. However,
in Mbed OS, or can be used to indicate the logical operator OR; in addition, other
reserved words such as not, and, etc. can be used.

Example 1.3: Keep the alarm active after gas or Over Temperature Were Detected

Objective

Learn how to use a Boolean variable to keep track of the state of a given element.

Summary of the Expected Behavior

The LED is turned on when one or more of the alarm conditions are activated (simulated by buttons
connected to the NUCLEO board) and remains on until those alarm conditions are removed and
another button is pressed.

Test the Proposed Solution on the Board

Import the project “Example 1.3” using the URL available in [10], build the project, and drag the .bin
file onto the NUCLEO board. Then press and release the buttons connected to D2 and D3 and look at
the behavior of LD1. LD1 should turn on when the buttons connected to D2 and D3 are pressed and
turn off when the B1 USER button is pressed.

Chapter 1 | Introduction to Embedded Systems

21

Discussion of the Proposed Solution

In Example 1.2, the alarm was directly controlled by the buttons connected to D2 and D3 that
simulated the gas detector and the over temperature detector, respectively. When any of these
buttons were pressed the alarm was turned on, and when both buttons were released the alarm
was turned off. To keep the alarm activated until another condition occurs, the alarm state must be
stored. This can be done by means of a Boolean variable. In this scheme, the activation of the alarm is
determined by the state of the variable alarmState. This variable is assigned ON when the gas detector
or the over temperature detector is activated and is assigned OFF when the B1 USER button is
pressed.

NOTE: Strictly speaking, a Boolean variable has only two valid states: true or false.
However, for practical purposes, we will use ON and OFF to refer to the values true
and false of the variable alarmState.

It is worth noting that the while(true) instruction used to indicate the beginning of
the repetitive block is based on the idea that what is inside the braces of the while
statement should be repeated until the condition inside the parentheses of the while
becomes false. Given that it is written while(true), it will never be false. Therefore, the
instructions inside the braces will be repeated forever.

Figure 1.13 shows the proposed main parts to implement the solution of this example. In the Libraries,
Definitions and Global Declarations and Initializations (Figure 1.13 [a]), the mbed.h and arm_book_lib.h
libraries are included. In the Declarations and Initializations of the main() function (Figure 1.13 [b]), the
digital inputs gasDetector, overTempDetector, and alarmOffButton are declared and assigned to buttons
D2, D3, and B1 USER, respectively, the digital output alarmLed is declared and assigned to LD1, and
the variable alarmState is declared and initialized to OFF.

The repetitive block (Figure 1.13 [c]) is made up of three blocks: a block indicated in brown, which
assigns ON to alarmState if gasDetector or overTempDetector is activated; a block indicated in orange,
which assigns the value of alarmState to alarmLed; and a block indicated in violet, which assigns OFF to
alarmState if the alarmOffButton is pressed.

NOTE: In this book names of variables are stylized using the lower camel case format,
as in alarmState.

22

A Beginner’s Guide to Designing Embedded System Applications

Repetitive block

a b c

Libraries, Definitions and
Global Declarations and

Initializations

Include mbed
library

Include arm_book_lib
library

Declarations and Initializations of
the functionmain()

Figure 1.13 Main parts of the program of Example 1.3.

Figure 1.14 shows the details of the blocks that compose the repetitive block. Figure 1.14 (a) shows
the block that assigns ON to alarmState if gasDetector or overTempDetector is active. Figure 1.14 (b)
shows the details of the block that assigns alarmState to alarmLed. Figure 1.14 (c) shows the details of
the block that assigns OFF to alarmState if alarmOffButton is pressed.

Figure 1.14 Details of the blocks that compose the repetitive block of Example 1.3.

Chapter 1 | Introduction to Embedded Systems

23

Implementation of the Proposed Solution

In Code 1.3 the implementation of the proposed solution is presented. The parts corresponding to
Figure 1.13 and Figure 1.14 are highlighted in color. An explanation of each part is included beside the
code.

NOTE: In the code, “BUTTON1” is used to refer to the “B1 USER button” because it is
defined this way in the mbed.h library. For the same reason, “LED1” is used to refer to
“LD1”, such as in Examples 1.1 and 1.2.

#include "mbed.h"

#include "arm_book_lib.h"

int main()

.

{

DigitalIn gasDetector(D2);

DigitalIn overTempDetector(D3);

DigitalIn alarmOffButton);(BUTTON1

DigitalOut alarmLed(LED1);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

alarmLed = OFF;

alarmState = OFF;bool

() {while true

(gasDetector || overTempDetector) {if

alarmState = ON;

}

alarmL = alarmState;ed

(alarmOffButton) {if

alarmState = OFF;

}

}

}

1

2

3

4

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

5

6

Code 1.3 Implementation of Example 1.3.

NOTE: It is not necessary to enable an internal pull-down resistor for the B1 User
button. This is because this button is already connected to an external pull-down
resistor placed in the NUCLEO board, as well as to other elements that are used to
reduce the electrical noise of the signal that is supplied to the microcontroller.

24

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercises

1. How can the code be changed in such a way that LD1 is turned on at the beginning, is turned off
when gas presence or over temperature is detected, and is turned on when the B1 USER button is
pressed?

2. What should be modified in order to turn off the alarm by means of the button connected to D4?

Answers to the Exercises

1. It can be achieved by means of the changes shown in Table 1.7.

2. In line 16, BUTTON1 should be replaced by D4.

Table 1.7 Proposed modifications in the code in order to achieve the new behavior.

Lines in Code 1.3 New code to be used

17 bool alarmState = OFF 17 bool alarmState = ON

22 alarmState = ON; 22 alarmState = OFF;

28 alarmState = OFF; 28 alarmState = ON;

Example 1.4: Secure the alarm Deactivation by Means of a Code

Objective

Introduce the AND and NOT operators.

Summary of the Expected Behavior

An LED must turn on when one or more buttons connected to the NUCLEO board are pressed, and it
must be kept on until a combination of certain buttons is entered.

Test the Proposed Solution on the Board

Import the project “Example 1.4” using the URL available in [10], build the project, and drag the .bin
file onto the NUCLEO board. Then press and release either of the buttons connected to D2 or D3.
Look at the behavior of LD1. LD1 should turn on when any of the buttons connected to D2 and D3
are pressed and turn off only when the buttons connected to D4 and D5 are pressed together at the
same time.

Discussion of the Proposed Solution

In general, the behavior of this code is similar to the code in Example 1.3, but in this example the way
the alarm is turned off is different. In this case, a combination of certain buttons must be pressed
simultaneously. To turn off the alarm, the buttons connected to D4 and D5 should be pressed while at

Chapter 1 | Introduction to Embedded Systems

25

the same time the buttons connected to D6 and D7 should not be pressed. In C/C++, the logical AND
is indicated by means of the && operator and the logical operator NOT is indicated by means of the !
operator.

Figure 1.15 shows the proposed main parts to implement the solution of this example. In the Libraries,
Definitions and Global Declarations and Initializations (Figure 1.15 [a]), the mbed.h and arm_book_lib.h
libraries are included. In the Declarations and Initializations of the main() function (Figure 1.15 [b]), the
pins connected to D2, D3, D4, D5, D6 and D7 are configured as inputs, the pin connected to LD1 is
configured as output, and the variable alarmState is declared and initialized to OFF.

The repetitive block (Figure 1.15 [c]) is made up of three blocks: a block indicated in brown, which
assigns ON to alarmState if gasDetector or overTempDetector is activated; a block indicated in orange,
which assigns the value of alarmState to alarmLed; and a block indicated in violet, which assigns OFF to
alarmState if the buttons connected to D4 and D5 are pressed while the buttons connected to D6 and
D7 are not pressed.

Include mbed
library

Declarations and Initializations
of the main() function

Repetitive block

a b c

Libraries, Definitions and
Global Declarations and

Initializations

Figure 1.15 Main parts of the program of Example 1.4.

26

A Beginner’s Guide to Designing Embedded System Applications

Figure 1.16 shows the details of the blocks that compose the repetitive block. In this case, only
the block indicated in violet is included because the brown and orange blocks are the same as in
Figure 1.16 (a) and Figure 1.16 (b), respectively. Figure 1.16 (c) shows the block that assigns OFF to
alarmState if the buttons connected to D4 and D5 are pressed and the buttons connected to D6 and
D7 are not pressed.

c

If aButton, bButton are pressed and cButton and dButton

are not pressed then assign OFF to alarmState

Yes No

Figure 1.16 Details of the blocks that make up the repetitive block of Example 1.4.

Implementation of the Proposed Solution

In Code 1.4 the implementation of the proposed solution is presented. The parts corresponding to
Figure 1.15 and Figure 1.16 are highlighted in different colors. An explanation of each part is also
included beside the code.

Chapter 1 | Introduction to Embedded Systems

27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

#include "mbed.h"

#include "arm_book_lib.h"

int main()

{

DigitalIn gasDetector(D2);

DigitalIn overTempDetector(D3);

DigitalIn aButton(D4);

DigitalIn bButton(D5);

DigitalIn cButton(D6);

DigitalIn dButton(D7);

DigitalOut alarmLed(LED1);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

aButton.mode(PullDown);

bButton.mode(PullDown);

cButton.mode(PullDown);

dButton.mode(PullDown);

alarmLed = OFF;

bool alarmState = OFF;

while (true) {

if (gasDetector || overTempDetector) {

alarmState = ON;

}

alarmLed = alarmState;

if (aButton && bButton && !cButton && !dButton) {

alarmState = OFF;

}

}

}

and

 Code 1.4 Implementation of Example 1.4.

Proposed Exercises

1. How can the code be changed in such a way that the alarm is turned off by means of pressing the
buttons connected to D6 and D7, while the buttons connected to D4 and D5 are not pressed?

2. How can the code be changed in such a way that the alarm is turned off by means of pressing the
buttons connected to D4, D5, and D6, while the button connected to D7 is not pressed?

Answers to the Exercises

1. It can be achieved by means of the changes in Table 1.8.

2. It can be achieved by means of the changes in Table 1.9.

28

A Beginner’s Guide to Designing Embedded System Applications

Table 1.8 Proposed modifications in the code in order to achieve the new behavior.

Lines in Code 1.4 New code to be used

34 if (aButton && bButton &&

 !cButton && !dButton)

34 if (!aButton && !bButton &&

 cButton && dButton)

Table 1.9 Proposed modifications in the code in order to achieve the new behavior.

Lines in Code 1.4 New code to be used

34 if (aButton && bButton &&

 !cButton && !dButton)

34 if (aButton && bButton &&

 cButton && !dButton)

Example 1.5: Block the System when Five Incorrect Codes are Entered

Objective

Introduce nested ifs and the usage of non-Boolean variables to count the number of iterations.

Summary of the Expected Behavior

If five wrong passwords are introduced, the system is blocked.

Test the Proposed Solution on the Board

Import the project “Example 1.5” using the URL available in [10], build the project, and drag the .bin
file onto the NUCLEO board. Then press and release the buttons connected to D2 or to D3 and look at
the behavior of LD1. LD1 should turn on. If buttons A, B, and Enter (D4, D5, and B1 USER Button) are
pressed, LD1 will turn off. Again, press and release the buttons connected to D2 or to D3. LD1 should
turn on. If another combination of buttons is pressed (for instance A and B1 USER) the LD3 (Incorrect
code) will turn on. A new combination of buttons can be tried after all four buttons connected to D4–
D7 are pressed simultaneously. The fifth time that an incorrect combination of buttons is entered,
LD2 (System blocked) will turn on, indicating that the system has been blocked. Press the reset button
to reset the NUCLEO board and turn off the System blocked LED.

A summary of the buttons that have to be pressed in each case is shown in Table 1.10.

Table 1.10 Summary of the smart home system buttons that should be pressed in each case.

Functionality Buttons that should be pressed Corresponding DigitalIn

To test if a given code turns off the Alarm LED Any of A, B, C, and/or D + Enter (D4, D5, D6, D7) + BUTTON1

The correct code that turns off the Alarm LED A + B + Enter D4 + D5 + BUTTON1

To turn off the Incorrect code LED and enable a
new attempt to turn off the Alarm LED

A + B + C + D D4 + D5 + D6 + D7

To turn off the System Blocked LED (that
is turned on after entering five incorrect
passwords)

No buttons available (power should be
removed or B2 RESET button pressed)

Chapter 1 | Introduction to Embedded Systems

29

Discussion of the Proposed Solution

In Example 1.4 there was no limit to the number of incorrect combinations of buttons that could be
entered. In this example, the system is blocked when five incorrect combinations are entered. In order
to count the number of incorrect combinations entered, non-Boolean variables are introduced. Non-
Boolean variables can be used to store integer or non-integer numbers depending on the specific type
used, as discussed below.

Figure 1.17 shows the proposed main parts to implement the solution of this example. In the Libraries,
Definitions and Global Declarations and Initializations (Figure 1.17 [a]), the mbed.h and arm_book_lib.h
libraries are included. In the Declarations and Initializations of the main() function (Figure 1.17 [b]),
several inputs are declared and assigned to D2, D3, D4, D5, D6, D7, and BUTTON1; several outputs
are declared and assigned to LD1, LD2, and LD3; the variable alarmState is declared and initialized to
OFF; and the variable numberOfIncorrectCodes is declared and initialized to 0.

The repetitive block (Figure 1.17 [c]) is made up of three blocks: a block indicated in brown, which
assigns ON to alarmState if gasDetector or overTempDetector is active; a block indicated in orange,
which assigns the value of alarmState to alarmLed; and a block indicated in violet. In the violet block,
if numberOfIncorrectCodes has reached five, the system is blocked. If numberOfIncorrectCodes has not
reached five, then it checks if the user wants to enter a new code to turn off the alarm. If so, it checks if
the entered code is correct in order to turn off the alarm LED. The incorrectCodeLed (LD2) is turned on
if an incorrect code is entered.

Figure 1.18 shows the details of the blocks that comprise the repetitive block. In this case, only
the block indicated in violet is included because the brown and orange blocks are the same as in
Figure 1.14 (a) and Figure 1.14 (b), respectively.

Declarations and Initializations of
the main() function

Repetitive block

a c

Libraries, Definitions and
Global Declarations and

Initializations

Include mbed
library

Include arm_book_lib
library

Figure 1.17 Main parts of the program of Example 1.5.

30

A Beginner’s Guide to Designing Embedded System Applications

Figure 1.18 shows that the first step is to evaluate if numberOfIncorrectCodes is less than five. If five
or more incorrect codes have been entered, then the system is blocked, and the System blocked LED
is turned on. Buttons are not checked any more, and the only way to unblock the system is to turn off
the power supply.

If numberOfIncorrectCodes is less than five, a check is made to see if buttons A, B, C, and D are all
pressed at the same time, while the Enter button is not pressed, which means that the user wants to
enter a code to turn off the alarm. In this case, the Incorrect code LED is turned off.

Next, it is assessed whether the following conditions are all accomplished at the same time: i) the
Enter button is being pressed, ii) the Incorrect code LED is OFF, iii) the alarm is ON. In this way, it is
determined if the user wants to enter a code (recall Table 1.10), and that a code can be entered (i.e.,
Incorrect code LED is off) and that a code must be entered (the alarm is ON).

If that is the case, to turn off the Alarm LED, buttons A and B should be pressed, while buttons C and D
are not pressed. In this case, OFF is assigned to alarmState and numberOfIncorrectCodes is set to 0.

If any other combination of buttons A, B, C, and D is entered then the Incorrect code LED is turned on
and numberOfIncorrectCodes is incremented by one.

NOTE: It is important to mention that this is the first time in this book that an if
condition is evaluated inside of another if condition. This grouping of if statements is
known as nested ifs.

WaRNINg: Two if conditions can also be evaluated one after the other, no matter
the result of the first if condition. In this case, the structure does not correspond to a
nested if.

Chapter 1 | Introduction to Embedded Systems

31

If numberOfIncorrectCodes is less than five,
(i) check if the user want to enter a new code to turn off the alarm ands
(ii) check if the entered code is correct
else turn on systemBlockedLed.

c

Figure 1.18 Details of the blocks that make up the repetitive block of Example 1.5.

32

A Beginner’s Guide to Designing Embedded System Applications

Implementation of the Proposed Solution

In Code 1.5 the implementation of the proposed solution is presented. The parts corresponding to
Figure 1.17 and Figure 1.18 are highlighted in different colors. An explanation of each part is also
included beside the source code.

It is important to emphasize that all the considerations regarding the nested if discussed above
correspond to lines 40 to 58 in Code 1.5. These lines are not discussed here because their behavior
has already been discussed in detail in the explanation regarding Figure 1.18.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

#include "mbed.h"

#include "arm_book_lib.h"

int main()

{

DigitalIn enterButton(BUTTON1);

DigitalIn gasDetector(D2);

DigitalIn overTempDetector(D3);

DigitalIn aButton(D4);

DigitalIn bButton(D5);

DigitalIn cButton(D6);

DigitalIn dButton(D7);

DigitalOut alarmLed(LED1);

DigitalOut incorrectCodeLed(LED3);

DigitalOut systemBlockedLed(LED2);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

aButton.mode(PullDown);

bButton.mode(PullDown);

cButton.mode(PullDown);

dButton.mode(PullDown);

alarmLed = OFF;

incorrectCodeLed = OFF;

systemBlockedLed = OFF;

bool alarmState = OFF;

int numberOfIncorrectCodes = 0;

while (true) {

if (gasDetector || overTempDetector) {

alarmState = ON;

}

alarmLed = alarmState;

if (numberOfIncorrectCodes < 5) {

if (aButton && bButton && cButton && dButton && !enterButton) {

incorrectCodeLed = OFF;

}

if (enterButton && !incorrectCodeLed && alarmState) {

if (aButton && bButton && !cButton && !dButton) {

alarmState = OFF;

numberOfIncorrectCodes = 0;

} else {

incorrectCodeLed = ON;

numberOfIncorrectCodes = numberOfIncorrectCodes + 1;

}

}

} else {

systemBlockedLed = ON;

}

}

}

Include the libraries "mbed.h"
and "arm_book_lib.h"

- Digital input objects named gasDetector,
overTempDetector and aButton to

 dButton, are declared and assigned
 to D2 to D7, respectively.

- Digital output objects named alarmLed
 incorrectCodeLed, and systemBlockedLed
 are declared and assigned to LED1, LED2
 and LED3, respectively.

- gasDetector, overTempDetector and
 aButton to dButton are configured with
 internal pull-down resistors.

- alarmL ,ed incorrectCodeLed,
 and systemBlockedLed are assigned OFF.

- alarmState is declared and assigned OFF.
- numberOfIncorrectCodes is declared and
assigned 0 (zero).

Do forever loop:

- If gasDetector or
overTempDetector are

 active, assign
alarmState with ON.

- Assign alarmLed with
 alarmState.

- If numberOfIncorrectCodes
 is less than five,
 implement the logic
 (discussed in the text) in
 order to determine the state
 of incorrectCodeLed and if
alarmState must be assigned

 with OFF, and if numberOf-
 IncorrectCodes must be set
 to 0 (zero) or increased by 1.

- If numberOfIncorrectCodes
 is greater than or equal to
five, assign systemBlockedLed

 with ON.

Code 1.5 Implementation of Example 1.5.

Chapter 1 | Introduction to Embedded Systems

33

Proposed Exercise

1. How can the code be changed in such a way that the system is blocked after three incorrect codes
are entered?

Answer to the Exercise

1. It can be achieved by means of the change in Table 1.11.

Table 1.11 Proposed modification in the code in order to achieve the new behavior.

Line in Code 1.5 New code to be used

40 if (numberOfIncorrectCodes < 5) 40 if (numberOfIncorrectCodes < 3)

1.3 Under the Hood

1.3.1 Brief Introduction to the Cortex-M Processor Family and the NUCLEO Board

In this chapter, many programs were developed using the NUCLEO board, provided with the
STM32F429ZIT6U microcontroller. This microcontroller is manufactured by STMicroelectronics [13]
using a Cortex-M4 processor designed by Arm Ltd. [14]. In order to support some concepts that were
introduced through this chapter, as well as concepts that will be presented in the following chapters,
in this subsection a brief introduction to Cortex-M processors and some details on the NUCLEO
board are provided.

Figure 1.19 Simplified diagram of the Cortex processor family.

34

A Beginner’s Guide to Designing Embedded System Applications

In Figure 1.19, a simplified diagram of the Cortex family of processors is shown. The Cortex-M
processors are the most energy-efficient embedded devices of the family and have the lowest cost;
therefore, they are typically used in microcontrollers and sensors. The Cortex-Rx are robust real-time
performance processors, ideal for automotive and safety-critical applications. The Cortex-Ax processors
have supreme performance and are used in smartphones, computers, and high-end microprocessors.

NOTE: The Cortex-M family currently has more than ten members (a list is available
from [15]), and only six of them are shown in the diagram. In addition, the “Cortex-Rx”
and “Cortex-Ax” frames represent whole families, which at the time of writing have
half a dozen members and over twenty members, respectively.

In this Under the Hood section, only the Cortex-M0, Cortex-M3, and Cortex-M4 processors
are analyzed, because they are more likely to be the processors used in the microcontrollers for
elementary embedded systems projects. These processors are primarily focused on delivering highly
deterministic behavior in a wide range of power-sensitive applications.

Figure 1.20 Simplified diagram of the Cortex M0, M3, and M4 processors, and details of the corresponding cores.

In Figure 1.20, diagrams of the Cortex-M0, M3, and M4 processors are shown, as well as some
details of their corresponding cores. It can be appreciated how there are some similarities among the
processors, such as interruption handling (a topic that will be discussed later in this book), and some
differences, for example:

 n The Cortex-M0 is Von Neumann bus-like (one bus for data/instruction), while the Cortex-M3
and M4 are Harvard bus-like (data and instruction in separate buses), which allows for faster
communication.

Chapter 1 | Introduction to Embedded Systems

35

 n The Cortex-M3 and M4 processors have a Memory Protection Unit, which allows safer operation.

 n The Cortex-M4 has a larger set of instructions and has a Floating Point Unit (FPU), which speeds up
certain calculations because the FPU is used instead of using a multitude of elementary operations.

To indicate the complexity of the different cores, Figure 1.21 shows the set of instructions that each
of the cores can process. This is called the Instruction Set Architecture (ISA). It can be seen that the
Cortex-M0 core implements a reduced number of instructions, while the Cortex-M3 core handles
those instructions and incorporates many more instructions, and the Cortex-M4 incorporates even
more. Instructions added in the Cortex-M7 are shown in Figure 1.21 to stress that more advanced and
powerful cores are available in the Cortex-M family, as shown in [16]. Those cores are not used in this
book, hence are not discussed here.

Figure 1.21 Arm Cortex M0, M3, and M4 Instruction Set Architecture (ISA).

The instructions shown in Figure 1.21 are in assembly language (also called assembler language),
which is not as easy to read and write for programmers as the C/C++ language. Thus, a program called
a compiler is used to automatically translate C/C++ language code into the corresponding assembly
language code. The compiler also verifies that the C/C++ language code complies with the language
rules defined in the standards. If there is a syntax issue, the compiler cannot generate the assembly
code and an error is indicated to the programmer. Keil Studio Cloud includes all these features.

36

A Beginner’s Guide to Designing Embedded System Applications

TIP: Don’t worry about needing to learn assembly language, it is not used in most
elementary projects.

168 AF

4compl. chan. TIM _CH N,n m

4 chan. TIM _CH , ETR, BKINn m

as AF with n = 1 or 8; m = 1 to 4

2 channels as AF

1 channel as AF

with n = 10 or 11

MOSI, MISO, SCK, NSS, as AF

with n = 1, 4, 5 or 6

with n = 6 or 7

VDDREF_ADC

@ VDDA @ VDDA

RX, TX, CK, CST, RTS as AF

with n = 1 or 6

8 analog inputs common
to the 3 ADCs

8 analog inputs common
to the ADC1 & 2

8 analog inputs for ADC3

DP, DM

ULPI:CK, D[7:0], DIR, STP, NXT

ID, VBUS, SOF

DP, DM

ID, VBUS, SOF

HSYNC, VSYNC

PUIXCLK, D[13:0]

CLK, NE[3:0], A[23:0],

D[31:0], NOEN. NWEN,

NBL[3:0], SDCLK[1:0],

SDNE[1:0], SDNWE, NL,

NRAS, NCAS, NADV,

NWAIT/NIORD, NREG,

CD, INTR

D[7:0]

CMD, CK as AF

NJTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

VBAT = 1.65 to 3.6V

OSC_IN

OSC_OUT

VDDA, VSSA

NRST

TRACECLK

TRACED[3:0]

EXT IT. WKUP

SDIO/MMC

TIM / PWMn

TIMn

TIM9

USARTn

Port P [15:0]t
with t = A to K

Arm Cortex-M4
180 Mhz

FPU

CCM data RAM 64 KB

D-BUS

NVIC

MPU

D-BUS

D-BUS

Arm Cortex-M4

Processor

ETM

JTAG & SW

Ethernet MAC
10/100

MII or RMII as AF

MDIO as AF

External memory controller (FMC)
SRAM, SDRAM, PSRAM,

NOR Flash, PC Card, NAND Flash

USB
OTG FS

Camera
interface

2x
1MB Flash

SRAM
112, 16 & 64 KB

RING

F
IF

O
F

IF
O

P
H

Y

16b

16b

16b

smcard

irDA

SD, SCK, FS, MCLK as AF

SPIn

ADC1

Temperature sensor

ADC2 IF

ADC3

SAI1

A
P

B
2

 9
0

 M
H

z

F
IF

O

TIMn

WWDG

16b

1 channel as AF

with n = 13 or 14

4 channels, ETR as AF

with n = 3 or 4

4 channels, ETR as AF

2 channels as AF

4 channels

MOSI/SD, MISO/SD_ext,
SCK/CK, NSS/WS, MCK
as AF with n = 2 or 3

RX, TX as AF
with n = 4, 5, 7 or 8

SCL, SDA, SMBA as AF
with n = 1, 2 or 3

RX, TX, CK, CST, RTS
as AF with n = 2 or 3

TX, RX
with n = 1 or 2

DAC _OUT as AFn
with n = 1 or 2

ITF

TIMn

TIMn

TIM12

TIM5

TIM2

AHB/APB2

DMA2 DMA1

AHB/APB1

SP / 2SIn n

UARTn

I2C /SMBUSn

16b

16b

16b

32b

32b

USARTn

bxCANn

smcard

irDA

FIFO

Digital

filter

DACn

A
P

B
1

 4
5

 M
H

z
 (

m
a

x
)

AHB1 180 MHz

AHB3

VDD = 1.8 to 3.6V

VSS

VCAP1, VCAP2

APB2 90 MHz

A
R

T

A
C

C
E

L
/

C
A

C
H

E

GPIO PORTt

OSC32_IN

OSC32_OUT

DMA2

USB
OTG HS

8 Streams
FIFO

DMA/
FIFOP

H
Y

CHROM-ART
DMA2D

FIFO

FIFO

8 Streams
FIFODMA1

LCD_R[7:0], LCD_G[7:0],

LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE,

LCD_CLK

LCD-TFT

DMA/
FIFO

RTC_AF1

RTC_AF1

RTC 50Hz
4KB BXPSRAM

L
S

@ VBAT

RTC
AWU

Backup register

XTAL 32 KHz

L
S

Standby
interface

IWDG

XTAL OSC 4-26 MHz

POR

reset

Int

@ VDDA @ VDD

PVD

POR/PDR BOR

Supply

supervision

@ VDD

VDD

Voltage regulator
3.3 to 1.2V

Power

management

PLL1, 2, 3

RC LS

RC HS

@ VDDA

Reset

& clock

control

Figure 1.22 STM32F429ZI block diagram made using information available from [9].

Chapter 1 | Introduction to Embedded Systems

37

The STM32F429ZIT6U microcontroller includes a Cortex-M4 processor, as shown in Figure 1.22. It
can be appreciated that, beyond the processor, the microcontroller includes other peripherals such as
communication cores (ethernet, USB, UART, etc.), memory, timers, and GPIO (General Purpose Input
Output) ports.

NUCLEO
-F429ZI

32F429ZIT6U

ARM
7B776 VQ

PHL 7B 721

3e4

12000

K620Y

1
2

0
0

0

K
6

2
0

Y

1
2

0
0

0

K
6

2
0

Y

DGKYD
KMS-1102NL

1706C

S
T
M
3
2

F
1
0
3
C
B
T
6

e
3 9
3

7
0
1

G
H
2
1
8

C
H
N

S
T
8
9
0
C

G
K
7
1
7

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

10

11

12

13

14

15

PH_0

PD_0

PD_1

PG_0

PH_1

PF_2

PA_7

PF_10

PF_5

PF_3

PC_3

PC_0

30

29

28

27

26

16

25

15

24

14

23

13

22

12

21

11

20

10

19

9

18

17

16

5V

VIN

3.3V

IOREF

GND

GND

GND

NC

NC

UART2_RX

CAN1_TD

CAN1_ DR

ADC1/7

ADC1/3

ADC1/10

ADC1/13

ADC3/9

ADC3/15

ADC3/8

ADC3/5

NRST

PC_8

PC_9

PC_10

PC_11

PC_12

PD_2

PG_2

PG_3

GND

PD_7

PD_6

PD_5

PD_4

PD_3

PE_2

PE_4

PE_3

PF_7

PG_1

UART2_RX

UART2_ XT

UART _ X7 T

UART2_RTS

UART2_CTS

UART3_TX

UART3_RX

UART5_TX

UART5_RX

PA_3

SPI1_MOSI

SPI3_SCK

SPI2_SCK

SPI4_SCK

SPI5_SCK

SPI4_CS

SPI3_MISO

SPI3_MOSI

SPI3_MOSI

SPI2_MOSI

PWM1/1N

PWM2/4

PWM11/1

PWM3/3

I2C3_SDA PWM3/4

A0

A1

A2

A3

A4

A5

ADC3/6PF_8 SPI5_MISO PWM /13 1

ADC3/7PF_9 SPI5_MOSI PWM /14 1

PE_6 SPI4_MOSI PWM /29

PE_5 SPI4_MISO PWM /9 1

UART _TX6

UART _ X6 R

UART _ X1 T

UART _RTS3

UART _CTS3

UART _ X4 T

UART _ X8 R

UART _CTS2

UART _3 CTS

UART _TX6

UART _ X6 R

UART _TX7

UART _ X7 R

UART _ X3 R

UART _ X3 T

SPI4_SCK

SPI2_MISO

SPI1_MISO

SPI1_SCK

SPI1_CS

SPI2_CS

SPI4_CS

SPI4_MISO

SPI6_MOSI

SPI4_SCK

SPI4_MOSI

SPI2_SCK

SPI2_SCK

SPI2_MOSI

SPI1_MOSI

SPI1_CS

I2C1_SCLCAN2_TD

CAN2_RD

I2C2_SDA

I2C2_SCL

CAN2_TD

CAN2_RD

PWM2/1

PWM4/1

PWM4/1

PWM1/3N

PWM1/2

PWM1/3

PWM1/1

PWM1/1N

PWM1/2N

PWM1/3N

PWM1/4

PWM2/3

PWM2/4

PWM3/1

PWM2/2

PWM3/2

PWM3/2

PWM2/1

PWM3/1

PWM1/3N

PWM1/1N

PWM4/2

PWM1/2N

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

12

13

14

15

16

17

PD_12

PE_2

PD_11

PA_0

PB_0

PE_0

PB_4

PD_13

PA_4

PB_2

PB_3

PC_7

PB_5

PF_4

PA_15

PC_2

PB_12

PB_1

PB_13

PB_6

PB_15

20

30

19

29

33

34

18

28

32

17

27

31

16

26

15

25

14

24

13

23

12

22

11

21

20

19

18

GND

GND

GND

AGND

AVDD PF_13

PE_9

PE_11

PF_14

PE_13

PF_15

PG_14

PG_9

AVDD

PE_8

PE_7

GND

PE_10

PE_12

PE_14

PE_15

PB_10

PB_11

PC_6

ADC1/4

ADC1/9

ADC1/12

ADC3/14

LED1

ADC1/0

ADC1/8

DAC1/1

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

SPI1_SCK

SPI1_MISO

SPI2_CS

SPI1_MOSI

CAN1_RDI2C1_SCL

I2C1_SDA CAN1_TD

PWM3/1

PWM2/1

PWM1/1N

PWM4/3

PWM4/3

PWM4/4

PWM4/4

PB_8

PB_9

PA_5

PA_6

PA_7

PD_14

PD_15

PF_12

GND

ADC1/5

ADC1/6

ADC1/7

DAC1/2

Figure 1.23 ST Zio connectors of the NUCLEO-F429ZI board.

38

A Beginner’s Guide to Designing Embedded System Applications

Figure 1.23 shows how different elements of the STM32F429ZIT6U microcontroller are mapped
to the Zio and Arduino-compatible headers of the NUCLEO-F429ZI board. Some other elements
are mapped to the CN11 and CN12 headers of the NUCLEO-F429ZI board, as will be discussed in
upcoming chapters. Further information on these headers is available from [17].

In this chapter, buttons were connected to the NUCLEO board using pins D2 to D7. From Figure 1.23,
it can be seen that those digital inputs can also be referred to as PF_15, PE_13, P_14, PE_11, PE_9, and
PF_13, respectively. Throughout this book, many pins of the ST Zio connectors will be used, and they
will be referred to in the code using the names shown in Figure 1.23.

WaRNINg: Keil Studio Cloud translates the C/C++ language code into assembly code
while considering the available resources of the target board. For this reason, the
reader should be very careful to use only pin names that are shown in Figure 1.23.

From the above discussion, it is possible to derive the hierarchy that is represented in Figure 1.24. It
should be noted that a given Arm processor can be used by different microcontroller manufacturers,
and a given microcontroller can be used in different development boards or embedded systems.

Figure 1.24 Hierarchy of different elements introduced in this chapter.

NOTE: A microcontroller may have one or many processors, while a processor may
have one or many cores. A microprocessor consists of the processor, named in this
context as the Central Processing Unit (CPU), and uses an external bus to interface
with memory and peripherals.

Proposed Exercise

1. How can the code of Example 1.5 be modified in order to use the alternative names of D2 to D7?

Answer to the Exercise

1. It can be achieved by means of the changes shown in Table 1.12.

Chapter 1 | Introduction to Embedded Systems

39

Table 1.12 Proposed modifications in the code in order to use the alternative names of D2 to D7.

Lines in Code 1.5 New code to be used

2 DigitalIn gasDetector(D2);

3 DigitalIn overTempDetector(D3);

4 DigitalIn aButton(D4);

5 DigitalIn bButton(D5);

6 DigitalIn cButton(D6);

7 DigitalIn dButton(D7);

2 DigitalIn gasDetector(PF_15);

3 DigitalIn overTempDetector(PE_13);

4 DigitalIn aButton(PF_14);

5 DigitalIn bButton(PE_11);

6 DigitalIn cButton(PE_9);

7 DigitalIn dButton(PF_13);

1.4 Case Study

1.4.1 Smart Door Locks

In this chapter, we implemented the functionality to turn on an alarm based on the activation of
sensors that were represented by means of buttons. A code was also implemented. A brief view of a
commercial “smart door lock” built with Mbed and containing some of these features can be found in
[18]. A representation of the system is shown in Figure 1.25.

1

4

7

*

2

5

8

0

3

6

9

#

1

4

7

*

2

5

8

0

3

6

9

#

Room Lock

Smoke Detector

House Lock

- Multidimensional password
- LED electronic screen
- Ultra-thin capacitive fingerprint
- Remote cloud unlocking

Disaster and fire prevention
Gas leak prevention

IoT Router
Covers Whole
House
Manages all
equipment

Embedded only
No old lock removed

Figure 1.25 “Smart door locks” built with Mbed contains elements introduced in this chapter.

In Figure 1.25 it can be seen that the “smart door lock” has a smoke detector (similar to the gas
detector mentioned in this chapter) and a locking system that employs passwords. The system was
developed using Mbed OS and is based on a Cortex-M4 core. It is important to highlight that the
STM32 microcontroller of the NUCLEO board is also based on a Cortex-M4 core.

40

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercises

1. Are there buttons in Figure 1.25? Where are they located?

2. How is the password entered? Is it like in Example 1.4?

Answers to the Exercises

1. A keypad to enter the password can be seen in Figure 1.25, but there are no switches under the
numbers. Instead, ultra-thin capacitive fingerprints are used.

2. The password is entered by pressing the numbers one after the other (not simultaneously like in
Example 1.4). Later in this book, it will be explained how to implement a sequential reading of a
matrix keypad.

 References
[1] “NUCLEO-F429ZI - STMicroelectronics”. Accessed July 9, 2021.

https://os.mbed.com/platforms/ST-Nucleo-F429ZI/

[2] “Introduction - Mbed OS 6 | Mbed OS 6 documentation”. Accessed July 9, 2021.
https://os.mbed.com/docs/mbed-os/v6.12/introduction/index.html

[3] “Arm Keil | Cloud-based Development Tools for IoT, ML and Embedded”. Accessed July 9, 2021.
https://www.keil.arm.com/

[4] “Log In | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/account/login/

[5] “Keil Studio”. Accessed July 9, 2021.
https://studio.keil.arm.com/

[6] “Documentation - Arm Developer”. Accessed July 9, 2021.
https://developer.arm.com/documentation

[7] “Arm Mbed Studio”. Accessed July 9, 2021.
https://os.mbed.com/studio/

[8] “STM32CudeIDE - Integrated Development Environment”. Accessed July 9, 2021.
https://www.st.com/en/development-tools/stm32cubeide.html

[9] “STM32F429ZI - High-performance advanced line, Arm Cortex-M4”. Accessed July 9, 2021.
https://www.st.com/en/microcontrollers-microprocessors/stm32f429zi.html

https://os.mbed.com/platforms/ST-Nucleo-F429ZI/
https://os.mbed.com/platforms/ST-Nucleo-F429ZI/
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://os.mbed.com/docs/mbed-os/v6.12/introduction/index.html
https://os.mbed.com/docs/mbed-os/v6.12/introduction/index.html
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://www.keil.arm.com/
https://www.keil.arm.com/
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://os.mbed.com/account/login/
https://os.mbed.com/account/login/
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://studio.keil.arm.com/
https://studio.keil.arm.com/
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://developer.arm.com/documentation
https://developer.arm.com/documentation
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://os.mbed.com/studio/
https://os.mbed.com/studio/
http://paperpile.com/b/bGTbn5/Hs8R
http://paperpile.com/b/bGTbn5/Hs8R
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429zi.html

Chapter 1 | Introduction to Embedded Systems

41

[10] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[11] “cplusplus.com - The C++ Resources Network”. Accessed July 9, 2021.
https://www.cplusplus.com/

[12] “Indentation style - Wikipedia”. Accessed July 9, 2021.
https://en.wikipedia.org/wiki/Indentation_style

[13] “Home - STMicroelectronics”. Accessed July 9, 2021.
https://www.st.com/

[14] “Artificial Intelligence Enhanced Computing - Arm”. Accessed July 9, 2021.
https://www.arm.com/

[15] “Microprocessors Cores and Technology - Arm”. Accessed July 9, 2021.
https://www.arm.com/products/silicon-ip-cpu

[16] “ARM Cortex-M7: Bringing High Performance to the Cortex-M Processor Series. Accessed July
9, 2021.
http://www.armtechforum.com.cn/2014/bj/B-1_BringingHighPerformancetotheCortex-
MProcessorSeries.pdf

[17] “NUCLEO-F429ZI | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/platforms/ST-Nucleo-F429ZI/#zio-and-arduino-compatible-headers

[18] “Smart door locks | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/smart-door-locks/

http://paperpile.com/b/bGTbn5/XKJz
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://www.cplusplus.com/
https://www.cplusplus.com/
http://paperpile.com/b/bGTbn5/XKJz
https://en.wikipedia.org/wiki/Indentation_style
https://en.wikipedia.org/wiki/Indentation_style
http://paperpile.com/b/bGTbn5/XKJz
https://www.st.com/
http://paperpile.com/b/bGTbn5/XKJz
https://www.arm.com/
http://paperpile.com/b/bGTbn5/XKJz
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
http://paperpile.com/b/bGTbn5/XKJz
http://www.armtechforum.com.cn/2014/bj/B-1_BringingHighPerformancetotheCortex-MProcessorSeries.pdf
http://www.armtechforum.com.cn/2014/bj/B-1_BringingHighPerformancetotheCortex-MProcessorSeries.pdf
http://www.armtechforum.com.cn/2014/bj/B-1_BringingHighPerformancetotheCortex-MProcessorSeries.pdf
http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/smart-door-locks/
https://os.mbed.com/built-with-mbed/smart-door-locks/

Fundamentals of Serial
Communication

Chapter 2

44

A Beginner’s Guide to Designing Embedded System Applications

2.1 Roadmap

2.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Use a serial terminal to communicate between the NUCLEO board and a PC.

 n Implement programs to use the UART of the microcontroller to share data between the NUCLEO
board and a PC.

 n Describe basic concepts about serial communications.

2.1.2 Review of Previous Chapter

In Chapter 1, the basic concepts of embedded systems programming were introduced. The reader was
able to load different programs onto the microcontroller of the NUCLEO board, understand how they
work, and modify their behavior using the Keil Studio Cloud application.

It was also explained how to expand the functionality of the NUCLEO board using the ST Zio
connectors, a breadboard, jumper wires, and buttons. By means of these elements, a representation
of a smart home system was implemented and was provided with different features, including a
password code to deactivate the alarm once it was activated.

Finally, a brief introduction to the Cortex-M processor family and the NUCLEO board was presented.

2.1.3 Contents of This Chapter

This chapter will explain how to set up the NUCLEO board to communicate with a PC. This will be
done by means of the UART (Universal Asynchronous Receiver Transmitter) of the STM32 microcontroller
of the NUCLEO board, which is accessed via a USB connection with the PC.

The concepts software maintainability, code modularization, functions, switch statements, for loops, define,
and arrays, among others, will be introduced in the examples for this chapter.

This chapter will also show how to use a serial terminal to visualize the information exchange between
the PC and the NUCLEO board. By means of the serial terminal it will be possible to visualize different
parameters and to configure and operate the smart home system being implemented with the
NUCLEO board.

Chapter 2 | Fundamentals of Serial Communication

45

2.2 Serial Communication between a PC and the NUCLEO Board

2.2.1 Connect the Smart Home System to a PC

In this chapter, the smart home system will be connected to a PC, as shown in Figure 2.1. This will be
done by means of serial communication using a USB cable. The aim of this setup is to monitor and
configure the smart home system from the PC.

Alarm controller

Over
emperaturet

etectord

°F
°C
/

Gas etectord Alarm

PC

SerialDCBA

Incorrect Code

System Blocked

Enter

Alarm control panel

Figure 2.1 The smart home system is now connected to a PC.

It is important to notice that in this chapter nothing new has to be connected to the NUCLEO board
in order to implement the smart home system shown in Figure 2.1, because the USB cable has already
been connected in the previous chapter to load programs onto the microcontroller of the NUCLEO
board, and because buttons are still used in this chapter to simulate the activation of the over
temperature detector and the gas detector.

WaRNiNg: to implement the examples in this chapter, and also to test the serial
communication with the PC as explained in the following subsection, it is crucial to be
sure that everything is connected just as in Figure 1.5.

In order to test the serial communication between the PC and the NUCLEO board, the .bin file of the
program “Subsection 2.2.1” should be downloaded from the URL available in [1] and dragged onto the
NUCLEO board.

To monitor and manage the serial communication data exchange between the PC and the NUCLEO
board, usually a piece of software called a serial terminal is used. The reader may choose any serial
terminal of their preference from the hundreds of options available on the internet.

NOTE: At the time of writing this book, the serial terminal embedded in Keil Studio
Cloud does not support ST devices. When Keil Studio Cloud includes serial terminal
support for ST devices, the corresponding instructions will be published in [1]. In that
way the reader will be able to use Keil Studio Cloud to test the programs used in this
book and will not have to download and install a separate serial terminal.

46

A Beginner’s Guide to Designing Embedded System Applications

TiP: Given that the serial terminal will be used only for very basic operations, it is
convenient for the reader to choose a serial terminal that is as simple as possible. In
this way, just a few configurations will be needed. Tutorials about how to configure
and use each serial terminal are available on the internet.

WaRNiNg: It is crucial to ensure that in the serial terminal, the baud rate is
configured to “115200”, data bits is set to “8”, parity to “none”, stop bits to “1”,
handshaking to “none”, and to send character <CR> (Carriage Return, ‘\r’) when
the Enter key is pressed. In the Under the Hood subsection, the meaning of these
parameters is explained. It is also important to select in the serial terminal the “COM
port” assigned by the operating system to the NUCLEO board.

To test if the serial terminal is working as expected, press the B2 RESET button of the NUCLEO board.
A “Hello” message should appear on the serial terminal. In this way it is confirmed that the NUCLEO
board is properly sending data and that this data is being received by the PC.

TiP: If the “Hello” message is not displayed on the serial terminal, then select another
COM port and press the B2 RESET button. Repeat this operation with all the available
COM ports until the “Hello” message appears on the serial terminal.

NOTE: This chapter does not discuss how each of the characters that are transferred
between the PC and the NUCLEO board (for example, ‘H’, ‘e’, ‘l’, ‘l’, and ‘o’) are codified
using the ASCII standard. This topic is addressed in Chapter 6.

To continue with the test, hold the B1 USER button of the NUCLEO board. The NUCLEO board should
send the message “Button pressed” to the PC, and it should be displayed on the serial terminal.

To finish the test, release the B1 USER button of the NUCLEO board. The NUCLEO board sends the
message “Button released” to the PC, and this message should be displayed on the serial terminal.

NOTE: It is important to note that the aim of this subsection is to test the serial
communication between the NUCLEO board and the PC. For that reason, the details
of the program being used in the testing and the technical background about serial
communications are not presented in this subsection. These topics are addressed in
the examples and in the Under the Hood section of this chapter.

NOTE: The text in the serial terminal is not erased until it is closed. Even if the B2
RESET button is pressed on the NUCLEO board, the previous messages will remain
visible on the serial terminal.

Chapter 2 | Fundamentals of Serial Communication

47

2.2.2 Modularization of a Program into Functions

In Example 1.5, Code 2.1, shown below, was presented. If even more functionality is included in the smart
home system, then the code will become longer, and its behavior will become difficult to understand.

#include "mbed.h"

#include "arm_book_lib.h"

int ()main

{

e ButtonnterDigitalIn (BUTTON1);

DigitalIn (D);gasDetector 2

DigitalIn (D);overTempDetector 3

DigitalIn aButton 4(D);

DigitalIn (D);bButton 5

DigitalIn (D);cButton 6

DigitalIn (D);dButton 7

DigitalOut alarmLed(LED1);

DigitalOut ncorrect Led(LED3);i Code

DigitalOut systemBlockedLed(LED2);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

.mode(PullDown);aButton

b .mode(PullDown);Button

.mode(PullDown);cButton

.mode(PullDown);dButton

alarmLed OFF;=

correct Led OFF;in Code =

systemBlockedLed OFF;=

alarmState OFF;bool =

ncorrect ;numberOfI Codesint = 0

() {while true

(gasDetector overTempDetector) {if ||

alarmState ON;=

}

alarmLed alarmState;=

numberOfI Codes(ncorrect) {if < 5

(B nter) {aButton b utton cButton dButton e Buttonif && && && && !

ncorrect Led OFF;i Code =

}

(nter ncorrect Led) {e Button i Code && alarmStateif && !

(b) {aButton Button cButtonif && && ! && !dButton

alarmState OFF;=

ncorrect ;numberOfI Codes = 0

} {else

ncorrect Led ON;i Code =

ncorrect ncorrect ;numberOfI Codes numberOfI Codes= + 1

}

}

} {else

systemBlockedLed ON;=

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

48

A Beginner’s Guide to Designing Embedded System Applications

#include "mbed.h"

#include "arm_book_lib.h"

int ()main

{

e ButtonnterDigitalIn (BUTTON1);

DigitalIn (D);gasDetector 2

DigitalIn (D);overTempDetector 3

DigitalIn aButton 4(D);

DigitalIn (D);bButton 5

DigitalIn (D);cButton 6

DigitalIn (D);dButton 7

DigitalOut alarmLed(LED1);

DigitalOut ncorrect Led(LED3);i Code

DigitalOut systemBlockedLed(LED2);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

.mode(PullDown);aButton

b .mode(PullDown);Button

.mode(PullDown);cButton

.mode(PullDown);dButton

alarmLed OFF;=

correct Led OFF;in Code =

systemBlockedLed OFF;=

alarmState OFF;bool =

ncorrect ;numberOfI Codesint = 0

() {while true

(gasDetector overTempDetector) {if ||

alarmState ON;=

}

alarmLed alarmState;=

numberOfI Codes(ncorrect) {if < 5

(B nter) {aButton b utton cButton dButton e Buttonif && && && && !

ncorrect Led OFF;i Code =

}

(nter ncorrect Led) {e Button i Code && alarmStateif && !

(b) {aButton Button cButtonif && && ! && !dButton

alarmState OFF;=

ncorrect ;numberOfI Codes = 0

} {else

ncorrect Led ON;i Code =

ncorrect ncorrect ;numberOfI Codes numberOfI Codes= + 1

}

}

} {else

systemBlockedLed ON;=

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Code 2.1 Original code used in Example 1.5.

In order to improve the code understandability, the program will be divided and reorganized into
declarations and functions. In this context, the following definitions apply:

DEFiNiTiON: A declaration is a section of code where variables or other elements are
declared and, sometimes, initialized.

DEFiNiTiON: A function is a piece of code that carries out one or more specific tasks
and can be used in a given program one or more times.

The use of functions provides two advantages:

 n Code modularization: organizing program code into different modules makes it easier to
understand a program, which improves its maintainability.

 n Code reutilization: the usage of functions avoids the need to write the same piece of code many
times. In this way, code size is reduced, and the maintainability of the program is increased.

DEFiNiTiON: Software maintainability is defined as the degree to which it is feasible
for other programmers to understand, repair, and enhance program code over time.

In Code 2.2 and Code 2.3, the declarations and functions that were identified in Code 2.1, according to
the definitions of declaration and function presented above, are shown.

In Code 2.2, the declaration and initialization of variables and objects is indicated in magenta, and the
code that can be grouped into functions in order to improve the code maintainability is indicated in
orange.

Chapter 2 | Fundamentals of Serial Communication

49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include "mbed.h"

#include "arm_book_lib.h"

int ()main

{

e ButtonDigitalIn nter (BUTTON1);

DigitalIn gasDetector(D);2

DigitalIn overTempDetector(D);3

DigitalIn (D);aButton 4

DigitalIn (D);bButton 5

DigitalIn (D);cButton 6

DigitalIn (D);dButton 7

DigitalOut alarmLed(LED1);

DigitalOut ncorrect Led(LED3);i Code

DigitalOut systemBlockedLed(LED2);

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

.mode(PullDown);aButton

b .mode(PullDown);Button

.mode(PullDown);cButton

.mode(PullDown);dButton

alarmLed OFF;=

correct Led OFF;in Code =

systemBlockedLed OFF;=

alarmState OFF;bool =

ncorrect ;numberOfI Codesint = 0

Code 2.2 Analysis of the first part of the code of Example 1.5.

NOTE: In this book, the names of functions are stylized using the lower camel case
format, as in inputsInit().

In Code 2.3, two different groups of code are identified. One is called alarmActivationUpdate() and
is used to activate the Alarm LED when gas presence or over temperature is detected. The other is
identified as alarmDeactivationUpdate() and is responsible for the deactivation of the Alarm LED when
the correct code is entered, as well as being responsible for blocking the system if more than five
incorrect codes are entered.

50

A Beginner’s Guide to Designing Embedded System Applications

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

() {while true

(gasDetector overTempDetector) {if ||

alarmState ON;=

}

alarmLed alarmState;=

numberOfI Codes(ncorrect) {if < 5

(B nter) {aButton b utton cButton dButton e Buttonif && && && && !

ncorrect Led OFF;i Code =

}

(nter ncorrect Led) {e Button i Code && alarmStateif && !

(b) {aButton Button cButtonif && && ! && !dButton

alarmState OFF;=

ncorrect ;numberOfI Codes = 0

} {else

ncorrect Led ON;i Code =

ncorrect ncorrect ;numberOfI Codes numberOfI Codes= + 1

}

}

} {else

systemBlockedLed ON;=

}

}

}

Code 2.3 Analysis of the second part of the code of Example 1.5.

In Code 2.4, the libraries and declarations that had been identified are presented in a more structured
way, following the conclusions obtained from the analysis of Code 2.2.

The code identified in Code 2.2 as “declaration and initialization of local objects” was moved outside
the main() function and is now located, in Code 2.4, in the section “Declaration and initialization of
public global objects.” The name given to this section is due to the fact that, by the modification of the
location of these objects, they change from being local (only available to the main() function) to being
global (available to every function in the program).

The same rationale applies to the variables identified in Code 2.2 that are located in Code 2.4 in the
section “Declaration and initialization of public global variables.”

A section called “Declarations (prototypes) of public functions” is also introduced in Code 2.4. This
section was not previously identified in Code 2.2 but is necessary because in the C/C++ language
functions have to be declared before using them for the first time (i.e., calling them from another
function). This declaration is named function prototype.

Chapter 2 | Fundamentals of Serial Communication

51

The keyword void used in Code 2.4 specifies that the function does not return a value. In Example
2.5, it will be shown that functions can return a value that results, for example, from a mathematical
operation.

NOTE: In Code 2.4, single-line comments (indicated by “//”) are used for the first
time in the book. Comments are completely ignored by C/C++ compilers and can
be used to increase software maintainability because the purpose of the code can
be explained above the code itself. Multiple-line comments can also be used (they
begin with “/*” and end with “*/”). Comments will be extensively used throughout this
book, mainly to indicate the beginning of code sections. Many programmers also use
comments alongside their code.

/ =====[Libraries]== ===/ ==

#include "mbed.h"

#include "arm_book_lib.h"

/ =====[Declaration and of public global objects]=============/ initialization ==

DigitalIn (BUTTON1);e Buttonnter

DigitalIn (D);2gasDetector

DigitalIn (D);3overTempDetector

DigitalIn (D);4aButton

DigitalIn (D);5bButton

DigitalIn (D);6cButton

DigitalIn (D);7dButton

DigitalOut (LED1);alarmLed

DigitalOut (LED3);i Codencorrect Led

DigitalOut (LED2);systemBlockedLed

/ =====[Declaration and of public global variables]===========/ initialization ==

bool alarmState OFF;=

ncorrect ;numberOfI Codesint = 0

/ =====[Declarations (prototypes) of public functions]=======================/ ==

void ();inputsInit

();void outputsInit

();void alarmActivationUpdate

();void alarmDeactivationUpdate

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Code 2.4 Libraries and declarations of the modularized version of Example 1.5.

52

A Beginner’s Guide to Designing Embedded System Applications

Code 2.5 shows the main() function and all the other functions of Code 2.1 after applying the proposed
modularization indicated in Code 2.2 and Code 2.3.

The code of the examples that will be introduced in this chapter will be organized as shown in
Code 2.4 and Code 2.5.

In this way, all the programs in this chapter will have at least the following parts:

 n Libraries

 n Declaration and initialization of public global objects

 n Declaration and initialization of public global variables

 n Declarations (prototypes) of public functions

 n Main function

 n Implementations of public functions

In the following chapters, some other possibilities for declarations and function prototypes will be
also explored.

NOTE: In Chapter 5 this topic will be addressed in greater depth, and it will be
explained in more detail how to apply modularization to embedded systems
programming.

WaRNiNg: Objects and variables must be declared before being used. The order
of the other elements in the program code can be given by conventions and good
practices.

Chapter 2 | Fundamentals of Serial Communication

53

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

/ =====[Main function, program entry point after power on or reset]======/ ==the

int ()main

{

inputsInit();

outputsInit();

() {while true

alarmActivationUpdate();

alarmDeactivationUpdate();

}

}

/ =====[Implementations of public functions]=================================/ ==

void ()inputsInit

{

gasDetector.mode(PullDown);

overTempDetector.mode(PullDown);

.mode(PullDown);aButton

b .mode(PullDown);Button

.mode(PullDown);cButton

.mode(PullDown);dButton

}

()void outputsInit

{

alarmLed OFF;=

correct Led OFF;in Code =

systemBlockedLed OFF;=

}

()void alarmActivationUpdate

{

(gasDetector overTempDetector) {if ||

alarmState ON;=

}

alarmLed alarmState;=

}

()void alarmDeactivationUpdate

{

(ncorrect) {numberOfI Codesif < 5

(bB nter) {aButton utton cButton dButton e Buttonif && && && && !

ncorrect Led OFF;i Code =

}

(nter ncorrect Led) {e Button i Code && alarmStateif && !

() {aButton bButton cButton dButton! !if && && &&

alarmState OFF;=

ncorrect ;numberOfI Codes = 0

} {else

ncorrect Led ON;i Code =

ncorrect ncorrect ;numberOfI Codes numberOfI Codes= + 1

}

}

} {else

systemBlockedLed ON;=

}

}

Code 2.5 Functions of the modularized version of Example 1.5.

54

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. How can comments be inserted in Code 2.4 and Code 2.5 to document the code above the code itself?

Answer to the Exercise

1. Code 2.6 and Code 2.7 show how detailed comments can be included. The comments between lines
1 to 21 and lines 32 to 47 of Code 2.6, and the comments between lines 3 to 5, 10 to 34, and 38 to
44 of Code 2.7, follow the Doxygen standard. This standard is available from [2] and allows the use
of a program to generate a website with the documentation, as shown in Figure 2.2.

NOTE: In this book, comments as shown in Code 2.6 and Code 2.7 are not included above
the code because all the programs are explained in detail in the text. However, the reader
is encouraged to include this type of comment above the code of their own programs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/*! @mainpage Example 1.5 Modularized and with doxygen comments
 * @date Friday, January 29, 2021
 * @authors Pablo Gomez, Ariel Lutenberg and Eric Pernia
 * @section genDesc General Description
 *
 * This is a preliminary implementation of the smart home system, where the
 * code has been modularized using functions and documented using Doxygen.
 * The entry point to the program documentation can be found at
 * this \ref Example_1_5_Modularized_withDoxygenComments.cpp "link"
 *
 * @section genRem General Remarks
 * [Write here relevant information about the program]
 *
 * @section changelog Changelog
 *
 * | Date | Description |
 * |:----------:|:---|
 * | 29/01/2021 | First version of program |
 *
 *
 */

/* Example of comment that follows C/C++ format, but not the doxygen standard */

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

//=====[Declaration and initialization of public global objects]===============

DigitalIn enterButton(BUTTON1); /**< Object associated to
 Enter key (B1 User Button) */
DigitalIn gasDetector(D2); /**< Object associated to gas detector (D2) */
DigitalIn overTempDetector(D3); /**< Object associated to over temperature
 detector (D3) */
DigitalIn aButton(D4); /**< Object associated to A key (pin D4) */
DigitalIn bButton(D5); /**< Object associated to B key (pin D5) */
DigitalIn cButton(D6); /**< Object associated to C key (pin D6) */
DigitalIn dButton(D7); /**< Object associated to D key (pin D7) */

DigitalOut alarmLed(LED1); /**< Output associated to alarm
 led indicator (LD1)*/
DigitalOut incorrectCodeLed(LED3); /**< Output associated to incorrect
 code indicator (LD3)*/
DigitalOut systemBlockedLed(LED2); /**< Output associated to system blocked
 indicator (LD2)*/

Code 2.6 Modularized version of Example 1.5 with comments included over the code (Part 1/3).

Chapter 2 | Fundamentals of Serial Communication

55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

//=====[Declaration and initialization of public global variables]=============

bool alarmState = OFF; /**< Alarm state flag */
int numberOfIncorrectCodes = 0; /**< Accounts for the number of incorrect codes
 entered */

//=====[Declarations (prototypes) of public functions]=========================

void inputsInit();
/**<
 This function configures gasDetector, overTempDetector and aButton to dButton
 with internal pull-down resistors.
 @param none
*/

void outputsInit();
/**<
This function initializes the outputs of the system:
-# alarmLed = OFF
-# incorrectCodeLed = OFF
-# systemBlockedLed = OFF
*/

void alarmActivationUpdate();
/**<
This function assigns ON to alarmLed if gasDetector or overTempDetector are
active, and assigns alarmLed with alarmState.
*/

void alarmDeactivationUpdate();
/**<
This function assesses the entered code and controls the activation of
alarmLed, incorrectCodeLed, and systemBlockedLed.
*/

//=====[Main function, the program entry point after power on or reset]========

/**
* Calls functions to initialize the declared input and output objects, and to
* implement the system behavior.
* @param none
* @return The returned value represents the success
* of application.
*/
int main()
{
 inputsInit();
 outputsInit();
 while (true) {
 alarmActivationUpdate();
 alarmDeactivationUpdate();
 }
 return 0;
}

Code 2.7 Modularized version of Example 1.5 with comments included over the code (Part 2/3).

56

A Beginner’s Guide to Designing Embedded System Applications

NOTE: In line 53 of Code 2.7, the return statement has been included because the
main function is expected to return an integer value (line 45), as required by most
compilers. Line 53 establishes a return value (zero), which is considered to be the
return value corresponding to a successful execution of the program. However, notice
that the while statement in line 49 is executed forever and, therefore, line 53 is never
reached. Thus, in most programs of this book, the “return 0” statement is not included
at the end of the main() function, despite main() being declared as int main().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

//=====[Implementations of public functions]===================================

void inputsInit()
{
 gasDetector.mode(PullDown);
 overTempDetector.mode(PullDown);
 aButton.mode(PullDown);
 bButton.mode(PullDown);
 cButton.mode(PullDown);
 dButton.mode(PullDown);
}

void outputsInit()
{
 alarmLed = OFF;
 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
}

void alarmActivationUpdate()
{
 if (gasDetector || overTempDetector) {
 alarmState = ON;
 }
 alarmLed = alarmState;
}

void alarmDeactivationUpdate()
{
 if (numberOfIncorrectCodes < 5) {
 if (aButton && bButton && cButton && dButton && !enterButton) {
 incorrectCodeLed = OFF;
 }
 if (enterButton && !incorrectCodeLed && alarmState) {
 if (aButton && bButton && !cButton && !dButton) {
 alarmState = OFF ;
 numberOfIncorrectCodes = 0;
 } else {
 incorrectCodeLed = ON;
 numberOfIncorrectCodes = numberOfIncorrectCodes + 1;
 }
 }
 } else {
 systemBlockedLed = ON;
 }
}

Code 2.8 Modularized version of Example 1.5 with comments included over the code (Part 3/3).

Chapter 2 | Fundamentals of Serial Communication

57

Figure 2.2 shows the website with the documentation of the program that is generated using
Doxygen. The website is available as a .zip file from [1]. To navigate to the website, the reader must
download the .zip file, uncompress it, and double click on the index.html file. From [1] the source files
that were used to generate the website using Doxygen are also available; these comprise the file
Example_1_5_Modularized_ withDoxygenComments.cpp and a subset of the Mbed OS files, where for the
sake of simplicity and brevity only Mbed OS entities that are used in the example were included.

Figure 2.2 Website with the program documentation generated with Doxygen.

By clicking over the link that is highlighted with a red arrow in Figure 2.2, the web page shown in
Figure 2.3 is displayed in the web browser. By means of scrolling down this web page, a detailed
description of each function and variable based on the Doxygen formatted comments introduced in
Code 2.6 and Code 2.7 can be seen, as shown in Figure 2.4 and Figure 2.5.

Figure 2.3 Detailed description of functions and variables of the program that is available on the website (Part 1/3).

58

A Beginner’s Guide to Designing Embedded System Applications

Figure 2.4 Detailed description of functions and variables of the program that is available on the website (Part 2/3).

Figure 2.5 Detailed description of functions and variables of the program that is available on the website (Part 3/3).

By clicking on the green arrows shown in Figure 2.3, Figure 2.4, and Figure 2.5, an interactive view
of the code is displayed in the web browser, which grants information about the different elements
as well as linking to the corresponding documentation that is available in the website, as shown in
Figure 2.6.

Chapter 2 | Fundamentals of Serial Communication

59

Finally, it is worth mentioning that in the “Classes” menu can be found a “Class List” item, where
reference information on DigitalIn and DigitalOut can be accessed, as shown in Figure 2.7. This
reference information is a subset of the complete information on Mbed OS elements that can be
found in [3], as can be seen in Figure 2.8.

Figure 2.6 Interactive view of the code.

Figure 2.7 DigitalIn class reference.

60

A Beginner’s Guide to Designing Embedded System Applications

Figure 2.8 Website of Mbed with detailed information about DigitalIn and the whole Application Programming Interface.

Example 2.1: Monitor the alarm State with a PC

Objective

Introduce functions and methods to exchange data between the NUCLEO board and the PC.

Summary of the Expected Behavior

If key “1” is pressed on the PC, the NUCLEO board sends a message to the PC indicating the alarm
state, and the message is printed on the serial terminal.

Test the Proposed Solution on the Board

Import the project “Example 2.1” using the URL available in [1], build the project, and drag the

Chapter 2 | Fundamentals of Serial Communication

61

.bin file onto the NUCLEO board. Open the serial terminal. Read the message that appears on the
serial terminal summarizing the list of available commands. Press “1” on the PC keyboard and read
the message that appears on the serial terminal regarding the state of the alarm. Press the button
connected to D2 that represents gas detection. Press “1” again on the PC and read the message
that appears on the serial terminal indicating the new state of the alarm. Press “2” (or any other key)
on the PC and read the message that appears on the serial terminal indicating that the only valid
command is “1”.

Discussion of the Proposed Solution

In this example, the functionality of monitoring the smart home system from a PC using a serial
terminal is incorporated. For this purpose, an object that will drive the serial port is declared by means
of UnbufferedSerial uartUsb(USBTX, USBRX, 115200), which does not use intermediary buffers to
store bytes to transmit to or read from the hardware; thus, the program is responsible for processing
each received byte. The parameters USBTX and USBRX indicate that those pins are to be used for
transmission and reception of the data of the serial communication, respectively. The parameter
115200 is used to configure the baud rate of the serial communication. In the Under the Hood section
of this chapter, the main concepts behind serial communication will be analyzed in more detail.

In the definition of the variables, the data type char is used for the variables that are storing
characters. This is because Mbed OS uses this data type to store characters. This data type has 8 bits,
the same as the data package that is exchanged in each message using the serial communication. This
will also be explained in the Under the Hood section of this chapter.

The proposed solution to this example follows the structure that was introduced in Code 2.4
and Code 2.5. Moreover, most of the code used in this proposed solution is the same as the code
presented in Code 2.4 and Code 2.5. Therefore, only the differences between those code listings and
the code used in this proposed solution will be discussed in the following pages.

A new function called uartTask() is used to send and receive information from the PC by means of
one of the UARTs of the STM32 microcontroller of the NUCLEO board. The details of the function
uartTask(), which receives commands from the PC and transmits to the PC the messages that should
be displayed on the serial terminal, are presented in Figure 2.9. If there is a new character to be read,
it is stored in the variable receivedChar. Then, if receivedChar is ‘1’, the message reporting the alarm
state is sent to the serial terminal. If the received character is not ‘1’, a message containing the list of
available commands is sent to the serial terminal. This is shown in Figure 2.9.

62

A Beginner’s Guide to Designing Embedded System Applications

Figure 2.9 Details of the function uartTask() used in this proposed solution to Example 2.1.

Implementation of the Proposed Solution

Lines added in specific sections of the program code presented in Code 2.4 and Code 2.5 are shown in
Table 2.1. The three functions that were included are discussed below in this example.

Table 2.1 Sections in which lines were added to Code 2.4 and Code 2.5.

Section Lines that were added to Code 2.4 and Code 2.5.

Declaration and initialization of public global objects UnbufferedSerial uartUsb(USBTX, USBRX, 115200);

Declarations (prototypes) of public functions void uartTask();

void availableCommands();

Chapter 2 | Fundamentals of Serial Communication

63

In order to periodically check if there is a new character sent by the PC, a call to the function uartTask()
is included in the main() function, as shown in Code 2.9.

1
2
3
4
5
6
7
8
9
10

int main()
{
 inputsInit();
 outputsInit();
 while (true) {
 alarmActivationUpdate();
 alarmDeactivationUpdate();
 uartTask();
 }
}

Code 2.9 New implementation of main.cpp.

The implementation of uartTask() is shown in Code 2.10. On line 3, a variable of type char named
receivedChar is declared and set to ‘\0’. The character ‘\0’ is named the null character and represents
the zero-element character (i.e., a ‘\0’ written to uartUsb is not printed on the serial terminal). The null
character has the ASCII code 0, as will be shown on Chapter 6. For that reason, some programmers
use 0 instead of ‘\0’. Confusion should be avoided with character ‘0’, which is used to print ‘0’ on the
serial terminal and has the ASCII code 48, as will be shown in Chapter 6. In this book, ‘\0’ is preferred
to indicate the null character.

On line 4, uartUsb.readable() is used to determine if there is data available to be read in the UART
connected to the USB (see Figure 2.1). If so, uartUsb.read() is used in line 5 to get the next available
character. It uses “&receivedChar” to indicate where to store the character (the meaning of the & will
be discussed in chapter 10) and “1” to indicate that one character must be read. In line 6, the read
character is compared with ‘1’, which corresponds to the key used in this example to get the alarm
state.

If the key pressed is “1”, then the state of the alarm is assessed in line 7. If alarmState is true, then in
line 8 the message “The alarm is activated\r\n” is sent to the PC using uartUsb.write(). The “\r\n” at
the end of the message is to indicate that the next message should appear on a new line (\n), at the
beginning of the line (\r). The number “24” is the number of characters of “The alarm is activated\r\n”
that must be sent (in this case, all the characters, considering that each of “\n” and “\r” count as a
single character). If alarmState is false, then “The alarm is not activated\r\n” is sent on line 10 (note
that this message has 28 characters).

If the received character is not ‘1’, then the available commands are printed in line 13 because it is
considered that the user has to be informed about the available commands. The implementation
of the function availableCommands() is shown in Code 2.11. A specific function is used to print the
available commands in order to show how a function can call another function, and also because in the
following examples more available commands will be incorporated; therefore, it is convenient to have
a specific function to print the list of available commands. Notice that “\r\n\r\n” is used on line 4 in
order to print a blank line (a line without text).

64

A Beginner’s Guide to Designing Embedded System Applications

NOTE: readable(), read(), and write() are part of the “UnbufferedSerial” API. For more
functions of the UnbufferedSerial API, refer to [4].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

void uartTask()
{
 char receivedChar = '\0';
 if(uartUsb.readable()) {
 uartUsb.read(&receivedChar, 1);
 if (receivedChar == '1') {
 if (alarmState) {
 uartUsb.write("The alarm is activated\r\n", 24);
 } else {
 uartUsb.write("The alarm is not activated\r\n", 28);
 }
 } else {
 availableCommands();
 }
 }
}

Code 2.10 Details of the function uartTask().

1
2
3
4
5

void availableCommands()
{
 uartUsb.write("Available command:\r\n", 20);
 uartUsb.write("Press '1' to get the alarm state\r\n\r\n", 36);
}

Code 2.11 Details of the function availableCommands().

NOTE: From this chapter onwards, comments alongside the code (as in Chapter 1)
will not be included, because it is considered that the reader does not need them
anymore.

Proposed Exercises

1. What would happen if “\r\n” were removed from lines 7 and 9 of Code 2.10?

2. In section 2.2.1, some configurations such as the number of data bits, the parity, and the number
of stop bits were mentioned. What function of the UnbufferedSerial API can be used to configure
those parameters?

3. How can a report of the state of the gas detector and the over temperature detector be added to
the function uartTask() using an if and else if structure?

Chapter 2 | Fundamentals of Serial Communication

65

Answers to the Exercises

1. All the messages would be printed on the same line.

2. The serial communication can be configured using uartUsb.format(), as discussed in [4]. In this
chapter, there is no need to make this configuration because the default configuration is used, which
is 8 bits, no parity, and one stop bit. All the available configurations are summarized in Table 2.2. To
make the configuration used in this example, uartUsb.format(8, SerialBase::None , 1) should be used.

Table 2.2 Available configurations of the UnbufferedSerial object.

Configuration available values Default value

Number of bits in a word 5, 6, 7, 8 8

Parity used SerialBase::None, SerialBase::Odd,
SerialBase::Even, SerialBase::Forced1,
SerialBase::Forced0

SerialBase::None

Number of stop bits 1, 2 1

3. For this purpose, the if else structure shown in Code 2.12 could be used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void uartTask()
{
 char receivedChar = '\0';
 if(uartUsb.readable()) {
 uartUsb.read(&receivedChar, 1);
 if (receivedChar == '1') {
 if (alarmState) {
 uartUsb.write("The alarm is activated\r\n", 24);
 } else {
 uartUsb.write("The alarm is not activated\r\n", 28);
 }
 } else if (receivedChar == '2') {
 if (gasDetector) {
 uartUsb.write("Gas is being detected\r\n", 23);
 } else {
 uartUsb.write("Gas is not being detected\r\n", 27);
 }
 } else if (receivedChar == '3') {
 if (overTempDetector) {
 uartUsb.write("Temperature is above the maximum level\r\n", 40);
 } else {
 uartUsb.write("Temperature is below the maximum level\r\n", 40);
 }
 } else {
 availableCommands();
 }
 }
}

 Code 2.12 Details of the function uartTask() used in the implementation of proposed exercise 3.

66

A Beginner’s Guide to Designing Embedded System Applications

Example 2.2: Monitor Over Temperature and gas Detection with a PC

Objective

Introduce the switch-case statement.

Summary of the Expected Behavior

The expected behavior is similar to Example 2.1, but in this example when key “2” is pressed on the PC,
the state of the gas detector is sent to the PC; when key “3” is pressed on the PC, the state of the over
temperature detector is sent to the PC. In fact, this is the same behavior as in the second proposed
exercise of Example 2.1. The difference is the way in which this behavior will be achieved: not using a
group of nested ifs, but the switch-case statement.

Test the Proposed Solution on the Board

Import the project “Example 2.2” using the URL available in [1], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal, press “4” on the PC keyboard and read the
message that appears on the serial terminal indicating the list of available commands. Press “2” on
the PC keyboard and read the message that appears on the serial terminal, indicating that gas is not
being detected. Press and hold the button connected to D2 in order to simulate gas detection. Press
“2” again on the PC and read the message that appears on the serial terminal, indicating that gas is
being detected. Repeat this operation with key “3” and the button connected to D3 to simulate the
detection of over temperature.

Discussion of the Proposed Solution

In Example 2.1, the alarm state was reported to the PC by means of serial communication. The aim
of this example is to extend the report functionality that was introduced in proposed exercise 3 of
Example 2.1. The difference in this proposed solution is the use of the switch statement.

In the switch statement, a variable is compared in sequence to a list of values. Each value of the list is
called a case. In this example, the variable being compared is receivedChar and there are three cases:
‘1’, ‘2’, and ‘3’. There is also a default case that is executed if none of the cases is equal to the variable
being compared.

Even though the behavior is exactly as in proposed exercise 2 of Example 2.1, the reader will be
able to see in the code shown below that by using the switch statement the code becomes easier to
understand.

The flow diagram of the new function uartTask() is presented in Figure 2.10. If there is a new character
to be read, the corresponding byte is stored in the variable receivedChar. Then, receivedChar is
evaluated by means of the switch statement, and the NUCLEO board reports the corresponding value
to the PC using the serial communication.

Chapter 2 | Fundamentals of Serial Communication

67

Figure 2.10 Details of the function uartTask() used in the proposed solution to Example 2.2.

Implementation of the Proposed Solution

In Code 2.13, the new implementation of availableCommands(), where the new commands are
included, is shown. Note that in Code 2.11 there were 36 characters in line 4, while in Code 2.13
there are 34 characters in line 4. This is because only one “\r\n” is used in line 4 of Code 2.13 because
the last command listed is now “3” (get the over temperature detector state). In Code 2.14, the new

68

A Beginner’s Guide to Designing Embedded System Applications

implementation of the function uartTask() is presented. The code is very similar to the program code
examples discussed earlier, and therefore for the sake of brevity it is not discussed here again.

1
2
3
4
5
6
7

void availableCommands()
{
 uartUsb.write("Available commands:\r\n", 21);
 uartUsb.write("Press '1' to get the alarm state\r\n", 34);
 uartUsb.write("Press '2' to get the gas detector state\r\n", 41);
 uartUsb.write("Press '3' to get the over temperature detector state\r\n\r\n", 56
);
}

Code 2.13 New implementation of availableCommands().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

void uartTask()
{
 char receivedChar = '\0';
 if(uartUsb.readable()) {
 uartUsb.read(&receivedChar, 1);
 switch (receivedChar) {
 case '1':
 if (alarmState) {
 uartUsb.write("The alarm is activated\r\n", 24);
 } else {
 uartUsb.write("The alarm is not activated\r\n", 28);
 }
 break;
 case '2':
 if (gasDetector) {
 uartUsb.write("Gas is being detected\r\n", 23);
 } else {
 uartUsb.write("Gas is not being detected\r\n", 27);
 }
 break;
 case '3':
 if (overTempDetector) {
 uartUsb.write("Temperature is above the maximum level\r\n", 40);
 } else {
 uartUsb.write("Temperature is below the maximum level\r\n", 40);
 }
 break;
 default:
 availableCommands();
 break;

 }
 }
}

Code 2.14 Details of the function uartTask().

Proposed Exercises

1. What would happen if the default case were removed?

2. How can a command be implemented using the switch-case statement such that if the “d” key is
pressed on the keyboard of the computer, then the serial terminal indicates the state of the gas and

Chapter 2 | Fundamentals of Serial Communication

69

over temperature detectors?

Answers to the Exercises

1. There will be no response when a character that is not listed in the cases is pressed on the PC
keyboard.

2. A new case could be added to the switch statement of uartTask(), as shown in Code 2.15.

1
2
3
4
5
6
7
8
9
10
11
12
13

case 'd':
 if (gasDetector) {
 uartUsb.write("Gas is being detected\r\n", 23);
 } else {
 uartUsb.write("Gas is not being detected\r\n", 27);
 }

 if (overTempDetector) {
 uartUsb.write("Temperature is above the maximum level\r\n", 40);
 } else {
 uartUsb.write("Temperature is below the maximum level\r\n", 40);
 }
 break;

Code 2.15 Details of the new case in function uartTask().

Example 2.3: Deactivate the alarm Using the PC

Objective

Develop more complex programs that make use of serial communication.

Summary of the Expected Behavior

The behavior is the same as in Example 2.2, but now the alarm can be deactivated from the PC.

Test the Proposed Solution on the Board

Import the project “Example 2.3” using the URL available in [1], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal and press and release the button connected to
D3 to simulate an over temperature situation. Press “4” on the PC keyboard and look at the message
that appears on the serial terminal. Press the code sequence, “1”, then “1”, then “0”, and finally “0”, and
look at the message that appears on the serial terminal indicating that the entered code is correct.
Check that the Alarm LED is turned off. Press the button connected to D3. Press “4” on the PC.
Enter an incorrect code sequence, for instance, “1”, then “0”, then “0”, and finally “0”. Check that the
Incorrect code LED is turned on. A new code sequence can be tried without the need for turning off
the Incorrect code LED, as in example 1.5. After five incorrect attempts, the System blocked LED will
turn on.

70

A Beginner’s Guide to Designing Embedded System Applications

NOTE: Even when the system is blocked, because five incorrect codes have been
entered and codes cannot be entered at the control panel anymore, the proposed
implementation allows a code to be entered from the PC to unblock the smart home
system without the need to reset the NUCLEO board or turn off the alarm.

The reader is encouraged to activate the alarm, enter five incorrect codes in a row
(either from the control panel or from the PC), see how the System blocked LED
turns on, and then press “4” on the PC keyboard to enter the correct code in order to
unblock the system.

Discussion of the Proposed Solution

In Example 1.4, a code was introduced that allowed the user to turn off the alarm. The code was
entered using the buttons connected to D4, D5, D6, and D7. The alarm was turned off only when the
right code was entered: the buttons connected to D4 and D5 were both pressed, and at the same
time the buttons connected to D6 and D7 were both released. In this example, the functionality to
turn off the alarm by means of the PC is implemented. Due to the fact that in this chapter only one PC
keyboard key is read at a time, the code should be entered as a sequence.

Implementation of the Proposed Solution

In this example, some lines were added to the program code of Example 2.2, as shown in Table 2.3.
In Code 2.16, only the fragment of the code corresponding to case ‘4’ of the switch statement of
uartTask() is shown because all the rest of the code remains the same as in Example 2.2. An explanation
of each part is also included above Code 2.16.

In this example, the NUCLEO board sends messages through the serial port asking for the code
(lines 2 to 12 of Code 2.16). The code entered in the PC is called the code sequence. In this example,
a ‘1’ represents a pressed button and ‘0’ represents a released button. Then, four PC keys are read
and stored in four different variables (receivedAButton to receivedDButton). Finally, this sequence is
compared with the code stored in the NUCLEO board (line 14 to line 17) and depending on the result
the Alarm LED is turned off or the Incorrect code LED is turned on, in the same way as in Example 1.5,
and a message reporting the result is sent through the serial port.

Table 2.3 Lines that were added to the program of Example 2.2.

Section Lines that were added

Declaration and initialization of public global
variables

char receivedAButton = '\0';

char receivedBButton = '\0';

char receivedCButton = '\0';

char receivedDButton = '\0';

Function Lines that were added

availableCommands uartUsb.write("Press '4' to enter the code sequence\r\n\

r\n", 40);

Chapter 2 | Fundamentals of Serial Communication

71

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

case '4':
 uartUsb.write("Please enter the code.\r\n", 24);
 uartUsb.write("Type 1 for button pressed\r\n", 27);
 uartUsb.write("Type 0 for button not pressed\r\n", 31);
 uartUsb.write("Enter the value for 'A' Button\r\n", 32);
 uartUsb.read(&receivedAButton, 1);
 uartUsb.write("Enter the value for 'B' Button\r\n", 32);
 uartUsb.read(&receivedBButton, 1);
 uartUsb.write("Enter the value for 'C' Button\r\n", 32);
 uartUsb.read(&receivedCButton, 1);
 uartUsb.write("Enter the value for 'D' Button\r\n\r\n", 34);
 uartUsb.read(&receivedDButton, 1);

 if ((receivedAButton == '1') &&
 (receivedBButton == '1') &&
 (receivedCButton == '0') &&
 (receivedDButton == '0')) {
 uartUsb.write("The code is correct\r\n\r\n", 23);
 alarmState = OFF;
 incorrectCodeLed = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 uartUsb.write("The code is incorrect\r\n\r\n", 25);
 incorrectCodeLed = ON;
 numberOfIncorrectCodes = numberOfIncorrectCodes + 1;
 }
 break;

Code 2.16 Details of the new lines in the function uartTask().

Proposed Exercises

1. How can the code be changed in such a way that the order in which the keys are asked for is D, C, B,
and finally A?

2. How can the code be changed to add a case that shows the state of the Incorrect code LED?

3. How can more buttons be incorporated into the smart home system?

Answers to the Exercises

1. The order of lines 5 to 12 should be modified.

2. In the switch statement, a case similar to the one implemented for the key “1” but reporting the
Incorrect code LED instead of the alarm state should be incorporated.

3. More variables similar to receivedAButton should be declared, and those variables should be
incorporated in the uartTask() function.

Example 2.4: improve the Code Maintainability using arrays

Objective

Introduce the use of a for loop, #define and arrays.

72

A Beginner’s Guide to Designing Embedded System Applications

Summary of the Expected Behavior

The behavior is the same as in Example 2.3, but the program is implemented using a for loop and arrays
in order to improve the code maintainability.

Test the Proposed Solution on the Board

Import the project “Example 2.4” using the URL available in [1], build the project, and drag the .bin file
onto the NUCLEO board. Perform the same actions as in Example 2.3.

Discussion of the Proposed Solution

In proposed exercise 3 of Example 2.3, the reader was encouraged to think about how to incorporate
more buttons into the smart home system. It was seen that under the implementation used in
Example 2.3, the complexity of the program is increased as the number of buttons is incremented.
This example will show how to tackle this problem using a for loop.

The aim of this example is to show a more convenient implementation, based on a for loop and arrays.
An array is a variable that stores a set of values. Each of those values can be individually read and
modified by using an index. For example, if there is an array called vector, its first value can be accessed
using vector[0], its second value can be accessed using vector[1], etc.

NOTE: It is important to remember that the first position of an array is accessed using
the index [0].

Figure 2.11 details the flow diagram corresponding to case ‘4’ of the switch statement of uartTask(). In
case ‘4’, the program uses a for loop to compare the PC keys pressed against the code sequence.

The for loop indicated in Figure 2.11 is used to check the keys being pressed one after the other. As
the keys are entered, they are compared with the given code. If one of the keys does not correspond
to the code sequence, then the variable incorrectCode is set to true.

Once those four keys are pressed on the PC (i.e., buttonBeingCompared is equal to NUMBER_OF_KEYS)
the for loop is concluded. Then, depending on the state of incorrectCode, OFF is assigned to alarmState
and 0 is assigned to numberOfIncorrectCodes, or the Incorrect code LED is turned on and the variable
numberOfIncorrectCodes is incremented by one.

Chapter 2 | Fundamentals of Serial Communication

73

Figure 2.11 Details of the ‘4’ of the function uartTask().

74

A Beginner’s Guide to Designing Embedded System Applications

Implementation of the Proposed Solution

In this example, an array called codeSequence is declared to store the code sequence of four keys. The
size of the array and the type of data that is to be stored in the array need to be declared. A macro
called “NUMBER_OF_KEYS” is used to indicate the size of the array. Below the section “Libraries”, a
new section named “Definitions” is added, where NUMBER_OF_KEYS is defined. The lines that were
added to this new section are shown in Table 2.4. Some other changes made to the code are also
indicated in Table 2.4.

Table 2.4 Lines that were added and removed from the code used in Example 2.3.

Section Lines that were added

Definitions #define NUMBER_OF_KEYS 4

Declaration and initialization of public
global variables

bool incorrectCode = false;

int buttonBeingCompared = 0;

char codeSequence[NUMBER_OF_KEYS] = {'1','1','0','0'};

Section Lines that were removed

Declaration and initialization of public
global variables

char receivedAButton = 0;

char receivedBButton = 0;

char receivedCButton = 0;

char receivedDButton = 0;

Any time the compiler finds NUMBER_OF_KEYS, it will replace it for the corresponding number 4. In
this way, the length of the code can be modified, changing only the definition of NUMBER_OF_KEYS.

NOTE: In this book, names of defines are stylized using the CONSTANT_CASE (also
known as MACRO_CASE or SCREAMING_SNAKE_CASE), as in NUMBER_OF_KEYS.

In the section “Declaration and initialization of public global variables,” the array codeSequence is
declared and initialized with the values '1', '1', '0', and '0'. This means that in the first position of the
array the value '1' is stored, in the second position of the array the value '1' is stored, in the third
position '0' is stored, and in the last position '0' is stored.

It can be seen in Code 2.17 that in the case corresponding to '4', there is a for loop (line 14). The
for loop allows the programmer to create repetitive blocks that are executed a given number of
times. This for loop is started with buttonBeingCompared=0 and is concluded when the condition
“buttonBeingCompared < NUMBER_OF KEYS” becomes false. In every loop of the for loop the variable
buttonBeingCompared is incremented in order to compare the variable located in the next position of
the array codeSequence. This is done by means of buttonBeingCompared++ in the for statement.

In this particular example, to assess the code sequence entered by means of the PC keyboard the
for loop is executed four times. In each of the repetitions, the received character is compared with
the corresponding position of the array codeSequence. If the key entered is neither “1” or “0”, then
incorrectCode is set to true (line 30).

Chapter 2 | Fundamentals of Serial Communication

75

Finally, depending on the state of incorrectCode, OFF is assigned to alarmState and 0 is
assigned to numberOfIncorrectCodes, or the Incorrect code LED is turned on and the variable
numberOfIncorrectCodes is incremented by one. Note that in line 42, “++” is now used to increment the
value of numberOfIncorrectCodes by one. This is used to make the code more compact.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

case '4':
 uartUsb.write("Please enter the code sequence.\r\n", 33);
 uartUsb.write("First enter 'A', then 'B', then 'C', and ", 41);
 uartUsb.write("finally 'D' button\r\n", 20);
 uartUsb.write("In each case type 1 for pressed or 0 for ", 41);
 uartUsb.write("not pressed\r\n", 13);
 uartUsb.write("For example, for 'A' = pressed, ", 32);
 uartUsb.write("'B' = pressed, 'C' = not pressed, ", 34);
 uartUsb.write("'D' = not pressed, enter '1', then '1', ", 40);
 uartUsb.write("then '0', and finally '0'\r\n\r\n", 29);

 incorrectCode = false;

 for (buttonBeingCompared = 0;
 buttonBeingCompared < NUMBER_OF_KEYS;
 buttonBeingCompared++) {

 uartUsb.read(&receivedChar, 1);
 uartUsb.write("*", 1);

 if (receivedChar == '1') {
 if (codeSequence[buttonBeingCompared] != 1) {
 incorrectCode = true;
 }
 } else if (receivedChar == '0') {
 if (codeSequence[buttonBeingCompared] != 0) {
 incorrectCode = true;
 }
 } else {
 incorrectCode = true;
 }
 }

 if (incorrectCode == false) {
 uartUsb.write("\r\nThe code is correct\r\n\r\n", 25);
 alarmState = OFF;
 incorrectCodeLed = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 uartUsb.write("\r\nThe code is incorrect\r\n\r\n", 27);
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 break;

Code 2.17 Details of the new lines in the function uartTask().

Proposed Exercises

1. How can the code sequence be changed?

Answers to the Exercises

1. The array codeSequence in the section “Declaration and initialization of public global variables”
should be modified.

76

A Beginner’s Guide to Designing Embedded System Applications

Example 2.5: Change the alarm Turn Off Code Using the PC

Objective

Develop more complex programs using for loops and arrays.

Summary of the Expected Behavior

The expected behavior is the same as Example 2.4, but now the code can be changed from the PC.

Test the Proposed Solution on the Board

Import the project “Example 2.5” using the URL available in [1], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal. Press “5” on the PC keyboard and look at the
message that appears on the serial terminal, indicating that a new code sequence can be set. Enter
a new code, for instance, “0”, then “0”, then “1”, and finally “1”, and look at the message that appears
on the serial terminal indicating that the new code has been created. Press the button connected to
D2 that represents gas detection. Press “4” on the PC keyboard. Enter the new code. Check that the
Alarm LED is turned off. Press the button connected to D2. To check that the control panel code has
also been changed, enter the new code with those buttons by pressing the buttons connected to D6
and D7 and the B1 USER button at the same time. Check that the Alarm LED is turned off.

Discussion of the Proposed Solution

Following the same logic as in Example 2.4, a new case is added to the switch: case ‘5’. The reader will
notice that it is very similar to case ‘4’. The new code sequence is stored in the array codeSequence. The
details of the implementation are discussed below.

Implementation of the Proposed Solution

In this example, some lines were added to the program of Example 2.4, as shown in Table 2.5. Note
that areEqual() is the first function in this book that returns a value (a Boolean), as is discussed below.

Table 2.5 Lines that were added from the code used in Example 2.4.

Section Lines that were added

Declaration and
initialization of public global
variables

char buttonsPressed[NUMBER_OF_KEYS] = {'0','0','0','0'};

Declarations (prototypes) of
public functions

bool areEqual();

Function Lines that were added

availableCommands uartUsb.write("Press '5' to enter a new code\r\n\r\n", 33);

Chapter 2 | Fundamentals of Serial Communication

77

In this example, alarmDeactivationUpdate() is modified to allow the user to change the code. Code 2.18
shows the fragment of the code corresponding to case ‘5’ of the switch statement within uartTask()
that implements this change. The code sequence is loaded into the array codeSequence using the for
loop.

In Code 2.19, the condition in line 7 is the same as in line 78 of Code 2.5. The difference is that lines 8
to 11 are used to assign the value of each button (A to D) to the corresponding positions of the array
buttonsPressed. Then the function areEqual(), shown in Code 2.20, is used to compare each position of
buttons Pressed with the corresponding position of codeSequence.

In Code 2.20, it is shown how areEqual() is implemented using a for loop indexed by the local variable i,
where one after the other each of the positions of codeSequence and buttonsPressed are compared. It is
important to note that the return value of the function is implemented in line 7 or line 11, depending
on the result of the if statement of line 6. Lines 18 to 22 are used to store the number 1 or 0 in the
corresponding position of codeSequence depending on the value of receivedChar, in order to be able to
use areEqual() to compare codeSequence[i] and buttonsPressed[i].

NOTE: If the key pressed is not “1” or “0”, then the value stored at
codeSequence[buttonBeingCompared] is not modified, as can be seen between lines 19
and 23 of Code 2.19.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

case '5':
 uartUsb.write("Please enter new code sequence\r\n", 32);
 uartUsb.write("First enter 'A', then 'B', then 'C', and ", 41);
 uartUsb.write("finally 'D' button\r\n", 20);
 uartUsb.write("In each case type 1 for pressed or 0 for not ", 45);
 uartUsb.write("pressed\r\n", 9);
 uartUsb.write("For example, for 'A' = pressed, 'B' = pressed,", 46);
 uartUsb.write(" 'C' = not pressed,", 19);
 uartUsb.write("'D' = not pressed, enter '1', then '1', ", 40);
 uartUsb.write("then '0', and finally '0'\r\n\r\n", 29);

 for (buttonBeingCompared = 0;
 buttonBeingCompared < NUMBER_OF_KEYS;
 buttonBeingCompared++) {

 uartUsb.read(&receivedChar, 1);
 uartUsb.write("*", 1);

 if (receivedChar == '1') {
 codeSequence[buttonBeingCompared] = 1;
 } else if (receivedChar == '0') {
 codeSequence[buttonBeingCompared] = 0;
 }
 }

 uartUsb.write("\r\nNew code generated\r\n\r\n", 24);
 break;

Code 2.18 Details for case “5” of the switch statement of uartTask().

78

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void alarmDeactivationUpdate()
{
 if (numberOfIncorrectCodes < 5) {
 if (aButton && bButton && cButton && dButton && !enterButton) {
 incorrectCodeLed = OFF;
 }
 if (enterButton && !incorrectCodeLed && alarmState) {
 buttonsPressed[0] = aButton;
 buttonsPressed[1] = bButton;
 buttonsPressed[2] = cButton;
 buttonsPressed[3] = dButton;
 if (areEqual()) {
 alarmState = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 }
 } else {
 systemBlockedLed = ON;
 }
}

Code 2.19 Details of the function alarmDeactivationUpdate().

1
2
3
4
5
6
7
8
9
10
11
12

bool areEqual()
{
 int i;

 for (i = 0; i < NUMBER_OF_KEYS; i++) {
 if (codeSequence[i] != buttonsPressed[i]) {
 return false;
 }
 }

 return true;
}

Code 2.20 Details of the function areEqual().

Proposed Exercises

1. What should be modified in order to implement a five-key code?

2. Is it possible to implement a code of any arbitrary length?

Answers to the Exercises

1. NUMBER_OF_KEYS should be changed to 5. The text in the request should be modified. Some
other parts of the code should also be modified, for example the reading of the buttons inside the
switch statement.

2. There are many limitations. For example, the number of buttons that can be connected to the
NUCLEO board using the technique explained in Chapter 1.

Chapter 2 | Fundamentals of Serial Communication

79

2.3 Under the Hood

2.3.1 Basic Principles of Serial Communication

In the examples of this chapter, information was exchanged between a PC and the NUCLEO board by
means of a USB cable. This section explains how this information exchange is implemented.

WaRNiNg: In this subsection, the fundamental concepts of serial communication
are presented. In the communication between the PC and the NUCLEO board, these
concepts are applied, but there are some other details that are not covered in this
subsection. USB works very differently than UART.

Most of the wired connections used nowadays, like USB, HDMI, and Ethernet, are based on what
is called serial communication. The details of how serial communication is implemented in each
of those cases is quite complex, but for now it is enough to get the basic idea behind UART serial
communication.

UART serial communication between two devices, A and B, in its most common setup requires three
wires, as shown in Figure 2.12. One wire is used to establish a 0 volts reference (usually called Ground
or GND) between both devices. A second wire is used to transmit the information from A to B (TxA-
RxB, standing for Transmitter A - Receiver B), and a third wire is used to transmit information from B
to A (TxB-RxA, standing for Transmitter B - Receiver A).

Figure 2.12 Basic setup for a serial communication between two devices.

Initially, the wires that are used to transmit information between the devices are in an idle state.
This idle state is indicated by means of a previously agreed value, for example 3.3 volts. Then, if, for
example, device A wants to start a message transmission to device B, it can indicate this by means of
asserting 0 volts in the cable TxA-RxB. This notification is called a start bit and is shown in Figure 2.13.
In this way, device B realizes that device A will send a message using the cable TxA-RxB.

80

A Beginner’s Guide to Designing Embedded System Applications

3.3V
0 0 0 0 01 1 1

0V

Idle Idle

Start
Bit

Stop
Bit

LSb MSb

8.68 µs
bit time at

115200 bps

Data bits

t

Figure 2.13 Basic sequence of a serial communication between two devices.

After sending the start bit, device A sends the first bit of the character. Frequently, the little endian
format is used, which implies that the first bit that is sent is the first starting from the right. The first
bit starting from the right is called the Least Significant bit or LSb.

WaRNiNg: In this book, “LSb” is used to indicate the Least Significant bit. It should be
noted that in some books LSB is used to indicate the Least Significant Bit.

For example, if the bits “00110001” represent a given character to be sent, the first bit that is sent is
the 1 on the right (the LSb). Device A holds 3.3 volts in the cable TxA-RxB, as indicated by the LSb in
Figure 2.13. The next bit to be sent is the 0 that is in the second position starting from the right. For
this purpose, device A holds 0 volts in the cable TxA-RxB, as indicated in Figure 2.13.

In a similar way the remaining five bits are sent one after the other from device A to device B. The last
bit to be sent is called the Most Significant bit or MSb.

Arrays of eight bits, called bytes, are sent in each transmission because most microcontrollers and
computers internally organize the information in sets of integer multiples of eight bits (i.e., 8, 16, 32,
64, etc.).

There might be a parity bit sent after the eight bits if both devices have been previously configured
to use this feature. This is not the case in the configuration used in this chapter, so this topic is not
explained now.

Finally, device A sends a stop bit, to indicate that the transmission is over. This is achieved by means
of setting 3.3 volts in the cable TxA-RxB as shown in Figure 2.13. In this way, for every byte of data
transmitted, there are actually ten bits being sent: a start bit, eight data bits, and one stop bit.

In the examples of this chapter there was a parameter called “baud rate” that was configured in the
serial terminal to “115200”. This means that 115,200 bits are transmitted every second. That is, the
time holding each of those bits high (3.3 volts) or low (0 volts) is 1/(115,200 bps) or 8.68 µs per bit.

Chapter 2 | Fundamentals of Serial Communication

81

Given that ten bits for every byte of data sent are transmitted, at 115,200 bps, there are 11,520 bytes
being sent per second.

The baud rate is a very important parameter because it allows the device that is receiving the bits to
know when to read the Rx digital input to get a new bit.

WaRNiNg: In some systems the communication can be implemented using 5 volts or
+/- 12 volts signals. Those voltage levels may damage the NUCLEO board.

TiP: Sequences like the one shown in Figure 2.13 can be seen each time the NUCLEO
board and the PC exchange messages by means of connecting an oscilloscope or a
logic analyzer to the pins Tx and Rx of CN5, as shown in Figure 2.14. It is not explained
here how to use oscilloscopes and logic analyzers because that topic is beyond the
scope of this book.

Proposed Exercises

1. In the basic sequence of a serial communication between two devices shown in Figure 2.12, how
can Device B be sure that the received information has no errors?

2. In the scheme shown in Figure 2.12, how can Device A be sure that Device B received the
information with no errors?

3. Assuming 115,200 bps serial communication, how long will it take to send a 1 MB file?

Answers to the Exercises

1. The only way for Device B to be sure that there are no bits with errors is if there is some kind of
verification. In the implementation of this verification, both Devices, A and B, must be involved. This
will be explained in more advanced chapters of this book.

2. Device B should work with Device A in order to ascertain this. The parity bit can be used for this
purpose.

3. 1 MB is equal to 1,000,000 bytes; thus, it will take 86 seconds (1,000,000 bytes / 11,520 bytes/
second).

NOTE: In the following chapters, other communications protocols will be explored,
which will allow higher transfer rates.

82

A Beginner’s Guide to Designing Embedded System Applications

Figure 2.14 The bits transmitted or received by the NUCLEO board UART can be seen by connecting an oscilloscope or a logic analyzer on CN5. These
bits do not correspond to the USB protocol.

2.4 Case Study

2.4.1 industrial Transmitter

In this chapter, the NUCLEO board communicated with a PC by means of the UART of the
microcontroller, a USB cable, and a serial terminal, as shown in Figure 2.15. In this way, the state of the
gas and over temperature detectors were transmitted to the PC, the alarm could be turned off from
the PC, and the password could be changed from the PC.

A brief of a commercial “Industrial transmitter” built with Mbed containing some similar features can
be found in [5] and is shown in Figure 2.15. It can be seen that the “Petasense Motes” send the data to
a server indicated by the “Petasense Cloud.” Then, a program running on a PC gets the data from the
“Petasense Cloud” and shares it with a software application called “Pi Vision.”

By comparing both implementations shown in Figure 2.15, it can be seen that there is a device
sending data and a PC used to visualize those data. In the case of the smart home system, the data
is transmitted directly from the device to the PC by means of a serial communication based on a
UART. In the case of the “Petasense Motes,” there is a microcontroller (“MCU”) that gets the values
of vibration, ultrasound, current, and temperature and transmits this information using serial
communication to a Wi-Fi module. The Wi-Fi module sends the information to the Petasense Cloud
using the internet. The last chapters of this book will explain how to send information to a PC using a
Wi-Fi module.

Chapter 2 | Fundamentals of Serial Communication

83

Serial
communication

Alarm ontrollerc

Serial erminalt

Wi-Fi
module

MCU
and

sensors
Serial

communication

Figure 2.15 Top, the smart home system. Bottom, a diagram of the “Industrial transmitter.”

Proposed Exercises

1. How is the information transmitted from the Petasense Motes to the Petasense Cloud?

2. Is a serial terminal being used on the PC?

84

A Beginner’s Guide to Designing Embedded System Applications

Answers to the Exercises

1. By carefully looking in Figure 2.15 at the Petasense Motes, it is possible to see the Wi-Fi symbol.
This is used to indicate that Wi-Fi is being used to transmit the information from the Petasense
Motes to the Petasense Cloud. Moreover, in [5] it can be seen that the connectivity being used is
“Ethernet/Wi-Fi.”

2. No, there is no serial terminal involved. This is because the microcontroller that gets the values of
vibration, ultrasound, current, and temperature transmits this information using UART to a Wi-Fi
module.

 References
[1] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.

https://github.com/armBookCodeExamples/Directory/

[2] “Doxygen: Doxygen”. Accessed July 9, 2021.
https://www.doxygen.nl/index.html

[3] “DigitalIn - API references and tutorials | Mbed OS 6 Documentation”. Accessed July 9, 2021.
https://os.mbed.com/docs/mbed-os/v6.12/apis/digitalin.html

[4] “UnbufferedSerial - API references and tutorials | Mbed OS 6 Documentation”. Accessed July 9,
2021.
https://os.mbed.com/docs/mbed-os/v6.12/apis/unbufferedserial.html

[5] “Industrial Transmitter | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/industrial-transmitter/

https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/digitalin.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/digitalin.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/unbufferedserial.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/unbufferedserial.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/unbufferedserial.html
https://os.mbed.com/built-with-mbed/industrial-transmitter/
https://os.mbed.com/built-with-mbed/industrial-transmitter/

Time Management and
Analog Signals

Chapter 3

86

A Beginner’s Guide to Designing Embedded System Applications

3.1 Roadmap

3.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect sensors to the NUCLEO board using an analog signal interface.

 n Develop programs to get and manage analog signals with the NUCLEO board.

 n Develop programs that use parameter passing in C/C++ functions.

 n Summarize the fundamentals of analog to digital conversion.

 n Introduce time management in microcontroller programs.

 n Implement basic character string management.

3.1.2 Review of Previous Chapters

In previous chapters, the reader learned how to communicate between the NUCLEO board and a PC
using UART serial communication. A broad variety of functions were implemented, and much of that
functionality relayed the state of the gas detector and the over temperature detector. These were not
sensors, but representations by means of buttons.

Also, in the implementation within previous chapters, the Alarm LED was activated because of gas
detection, or over temperature detection, or both being detected at the same time. The user had no
information from looking at the Alarm LED about why the LED was active.

3.1.3 Contents of This Chapter

This chapter introduces a way to indicate to the user whether an alarm is caused by gas detection,
over temperature detection, or simultaneous gas and over temperature detection. This is based
on controlling the blinking rate of the Alarm LED. It will be explained how to utilize time with the
NUCLEO board, and the usage of delays is introduced. In Example 3.1 and Example 3.2, two different
ways of implementing a given delay are shown in order to compare the responsiveness of both
techniques.

It will also be explained how to measure analog signals with the NUCLEO board using one of
the analog to digital converters (ADCs) included in the STM32 microcontroller. By means of a
potentiometer, an LM35 temperature sensor, and an MQ-2 gas sensor module, the concepts of analog
to digital converters are explored. The over temperature detection is done using a temperature
sensor and the gas detection is implemented using a gas sensor. It will also be shown how to activate
a 5 V buzzer using one of the 3.3 V digital outputs of the NUCLEO board. Finally, the basic principles
of analog to digital conversion are explained and a case study related to temperature measurement is
shown in the Under the Hood and Case Study sections, respectively.

Chapter 3 | Time Management and Analog Signals

87

3.2 Analog Signals Measurement with the NUCLEO Board

3.2.1 Connect Sensors, a Potentiometer, and a Buzzer to the Smart Home System

In this chapter, an LM35 temperature sensor [1], an MQ-2 gas sensor module [2], a potentiometer, and
a buzzer are connected to the smart home system, as shown in Figure 3.1. The aim of this setup is to
introduce the reading of analog signals.

mq2

lm35

sirenPin

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

5V

3.3V

5V
GND

3.3V
GND

D3

D4
D5

D6
D7

D2
PE 10_

PE 10_

CN9 CN8

CN7

GND

3.3V

Potentiometer

A0

PE 12_

5V

L
35

M

5V

GND

A1

Temperature
ensors

LM 35

Micro USB to
USB cable

connected to PC

Buzzer

MQ-2
Gas ensors

-2MQ

GND

5V

Alarm controller Alarm

Gas etectord

Alarm
control panel

ERPARI

CN10

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

PC

Over
emperaturet

etectord

°F
 °C
/ DCBA

ERPARI

Incorrect Code

System Blocked

Enter

Note: The potentiometer is
only used to simulate the
temperature measurement
in examples 3 3 and 3 4.. .

Figure 3.1 The smart home system is now connected to a temperature sensor, a gas detector, a potentiometer, and a buzzer.

88

A Beginner’s Guide to Designing Embedded System Applications

NOTE: The LM35 temperature sensor, the MQ-2 gas sensor, and the buzzer must be
connected to 5 V, as indicated in Figure 3.1.

WARNiNg: To connect modules and elements, unplug the USB power supply from
the NUCLEO board, and prior to reconnecting the USB power supply check that the
connections are made properly and safely.

WARNiNg: Some MQ-2 modules have a different pinout. Follow the VCC, GND,
and DO labels of the module when making the connections to 5 V, GND, and PE_12,
respectively.

Figure 3.2 shows a potentiometer. This component allows the user vary the resistance between
terminal 2 and terminals 1 and 3, depending on the angular position of its knob. It will be used in this
chapter to explore some concepts beyond analog to digital conversion.

Figure 3.2 A typical potentiometer and its corresponding electrical diagram.

The most common way to connect a potentiometer to a development board is as shown in Figure 3.3.
It can be seen that terminal (1) is connected to a 3.3 Volt supply voltage, terminal (3) is connected to
GND, and terminal (2) is connected to an analog input pin, which in this case is the A0 pin.

NOTE: It is recommended to use a potentiometer with a full-scale resistance of 10 kΩ.
If the resistance is too small, the NUCLEO board could be damaged, and if it is too big,
the measurement could be unstable.

Chapter 3 | Time Management and Analog Signals

89

Figure 3.3 Diagram of the connection of the potentiometer to the NUCLEO board.

The LM35 temperature sensor is an integrated circuit that delivers an output voltage linearly
proportional to its temperature. It has three terminals, which are identified with the names GND, +VS,
and VOUT, as shown in Figure 3.4. These names stand for Ground, Voltage Supply, and Voltage Out,
respectively.

Figure 3.4 The LM35 temperature sensor in a TO-92 package.

TiP: If necessary, the LM35 in the TO-220 package described in [3] can be used.
In that case, the code remains the same, but the reader must properly identify the
terminals GND, +VS , and VOUT [1]. An LM35 from any brand can be used in any of its
different order number options (e.g., LM35CZ, LM35DZ, etc.).

The most basic setup for the LM35 temperature sensor is as shown in Figure 3.5. This setup is the
one used in Figure 3.1 and provides an output signal in VOUT that increases at a rate of 10 mV/°C
(millivolts per Celsius degree) in the range of 2 to 150°C, as indicated in [1].

90

A Beginner’s Guide to Designing Embedded System Applications

Figure 3.5 Basic setup for the LM35 temperature sensor.

In Table 3.1, some examples of the voltage at VOUT are shown for different temperatures. For
the convenience of readers from the United States, temperatures are also expressed in degrees
Fahrenheit. To convert a temperature expressed in °C into degrees Fahrenheit, it must be multiplied
by 9/5 and 32 must be added.

Table 3.1 Examples of the voltage at VOUT using the connection shown in Figure 3.5.

Temperature Voltage at VOUT

[°C] [°F] [mV]

2 35.6 20

3 37.4 30

10 50.0 100

30 86.0 300

150 302 1500

Figure 3.6 shows a diagram of the connection of the LM35 temperature sensor to the NUCLEO board.

Figure 3.6 Diagram of the connection of the LM35 to the NUCLEO board.

Chapter 3 | Time Management and Analog Signals

91

NOTE: In this particular case, the sensor is connected directly to the NUCLEO board
to simplify the circuitry. In a real application, conditioning circuits are often used.
Those circuits allow the user, for example, to make use of the entire signal range of the
analog input (0 to 3.3 V).

In Figure 3.7, the MQ-2 gas sensor is connected to the NUCLEO board. This sensor is supplied with
5 V and detects LPG, i-butane, propane, methane, alcohol, hydrogen, and smoke. Its AOUT (Analog
Output) pin is left unconnected, and the DOUT (Digital Output) pin is used. The DOUT pin provides
0 V when gas presence over a certain concentration is detected and 5 V when the concentration is
below a certain level.

WARNiNg: The maximum voltage that can be applied to most of the NUCLEO board
pins without damage is 4 V, while the DOUT pin provides 5 V. Therefore, the NUCLEO
board can be damaged if DOUT is connected without a voltage limitation. The
resistors R1, R2, and R3 shown in Figure 3.7 are used to attenuate DOUT by a factor
of 2/3, which produces 3.3 V when DOUT is 5 V and 0 V when DOUT is 0 V.

NOTE: In this particular case, pin PE_12 is a 5 V tolerant I/O, so strictly speaking the
resistor divider is not needed. However, it is included to show how to proceed when a
given input pin is not 5 V tolerant.

NOTE: In Figure 3.7, 100 kΩ resistors are shown, but if they are not available they can
be replaced with three resistors of similar resistance values, provided they are in the
range of 47 to 150 kΩ.

Figure 3.7 Diagram of the connection of the MQ-2 to the NUCLEO board.

92

A Beginner’s Guide to Designing Embedded System Applications

NOTE: In the next chapters, different techniques to adapt voltage levels are
introduced as they are needed. In this way the reader will be able to compare the
techniques in terms of cost, performance, complexity, etc.

In Figure 3.8, the buzzer connection is summarized. The buzzer represents a siren that is activated
when there is an alarm situation, such as gas or over temperature detection.

Figure 3.8 Diagram of the connection of the buzzer to the NUCLEO board.

NOTE: With the connection shown in Figure 3.8, the buzzer is activated when LOW
is assigned to the PE_10 pin. In this way, a 5 V device such as the buzzer can be
activated using a 3.3 V digital output of the NUCLEO board. To turn off the buzzer, the
PE_10 pin is configured as open drain output, in order to not assert any voltage to the
buzzer “-” pin, causing the buzzer to turn off. Open drain means that the output is the
drain terminal of a MOSFET transistor [4] without a pull-up resistor. It can establish
0 V if the MOSFET is activated and behaves like an open circuit otherwise. This is
implemented in Example 3.5.

3.2.2 Test the Operation of the Sensors, the Potentiometer, and the Buzzer

This subsection will explain how to load a program onto the STM32 microcontroller in order to test if
the components that were connected are working properly. This will be achieved by using the serial
terminal to show the reading of the LM35 temperature sensor, the potentiometer, and the status of
the DOUT signal of the MQ-2 sensor. The buzzer will be activated or deactivated depending on the
readings. For this purpose, the .bin file of the program “Subsection 3.2.2” should be downloaded from
the URL available in [5] and the .bin file dragged onto the NUCLEO board.

In Table 3.2, the available commands for the program that will be used in this subsection are shown.
If the key “a” is pressed on the PC keyboard, then the reading of the analog input A0 of the NUCLEO
board is continuously displayed on the serial terminal. In this case, because of the Mbed OS function
being used, this is a value between 0.0 and 1.0, depending on the angular position of the knob. Rotate
the knob of the potentiometer from one side to the other in order to test if the potentiometer is
working correctly and is well connected to the NUCLEO board. After verifying that the potentiometer
is working correctly, press “q” to quit this verification and continue with the next step.

Chapter 3 | Time Management and Analog Signals

93

Table 3.2 Available commands of the program used to test the LM35 temperature sensor and the potentiometer.

Key pressed information that is displayed in the serial terminal

a Reading from the analog input A0 of the NUCLEO board (a value between 0.0 and 1.0)

b Reading from the analog input A1 of the NUCLEO board (a value between 0.0 and 1.0)

c Reading of the temperature measured by the LM35 expressed in °C

d Reading of the temperature measured by the LM35 expressed in °F

e Reading of the temperature measured by the LM35 expressed in °C and reading of the potentiometer scaled
by the same factor

f Reading of the temperature measured by the LM35 expressed in °F and reading of the potentiometer scaled
by the same factor

g Reading of the DOUT signal of the MQ-2 gas sensor

q Quit the last entered command

Press the “b” key to get the reading at the analog input A1 of the NUCLEO board. This input is
connected to the LM35 temperature sensor and will be a value between 0 and 1. Press “q” to continue
with the next step.

When the “c” key is pressed, the reading of the temperature measured by the LM35, which is
connected to A1, is displayed on the serial terminal and expressed in °C. The formula used to convert
the analog reading to temperature expressed in degrees Celsius is:

Temperature [°C] =
Analog Reading × 3.3 V

0.01 V/°C
 (1)

This formula indicates that the analog reading, which is a non-integer value between 0 and 1, is first
multiplied by 3.3 V in order to get the corresponding voltage. This is due to the fact that the analog
to digital converter of the NUCLEO board provides approximately 0.0 for a 0 V input and gives its
maximum value (in this case 1.0) for a 3.3 V input. The analog to digital conversion used in the NUCLEO
board will be explained in detail in the Under the Hood section. The result is then divided by 0.01 V/°C
because the output signal VOUT of the LM35 increases by 10 mV/°C in the range of 2 to 150 °C.

The reader is encouraged to hold the LM35 between two fingers and to observe that the temperature
displayed on the serial terminal becomes about 32 °C.

If the “d” key is pressed, then the temperature measured by the LM35 that is connected to A1 is
displayed on the serial terminal expressed in °F. The conversion formula from Celsius to Fahrenheit is:

Temperature [°F] =
Temperature [°C] × 9

5
 + 32 (2)

The commands that are activated by the keys “e” and “f” are provided only to compare the noise in
the readings of A0 (connected to the potentiometer) and A1 (connected to the LM35 temperature
sensor). In order to make the comparison more straightforward in these two commands, formula (1)

94

A Beginner’s Guide to Designing Embedded System Applications

is applied to the readings from analog input A0, and the following formula is applied to A1 in order to
scale its reading between 2 and 150:

Value expressed in [°C] = Analog Reading × 148 + 2 (3)

NOTE: It should be clear that formula (1) has a physical meaning only when an
LM35 temperature sensor is connected to the analog input. The result of formula
(3), applied to the analog signal coming from the potentiometer, is only valid for the
purpose of comparing the noise in the readings of A0 and A1 (i.e., there is no variation
in temperature when the knob of the potentiometer is rotated).

Press the “e” key to get the readings at the analog inputs A0 and A1 of the NUCLEO board at the
same time, as discussed above. Rotate the knob of the potentiometer in order to get a reading for the
potentiometer similar to the reading obtained for the LM35.

Press the “f” key to get the readings at the analog inputs A0 and A1 of the NUCLEO board at the same
time, as discussed above. This result is obtained by first applying formula (1) or formula (3) and then
applying formula (2). The combination of formulas (1) and (2) will be used in some of the proposed
exercises in this chapter.

NOTE: The examples in this chapter will explore how to reduce the noise in the
measurements by means of averaging a set of consecutive readings.

Finally, press the “g” key to continuously print the reading of the DOUT signal from the MQ-2 gas
sensor. The reading should be consistent with the state of the DO-LED shown in Figure 3.9: if gas is
not detected, the DO-LED should be off and the message on the serial terminal should be “Gas is not
being detected.” If gas is detected, the DO-LED should be on and the message on the serial terminal
should be “Gas is being detected.” When gas is detected, the buzzer should sound.

Figure 3.9 Diagram of the connection of the MQ-2 gas sensor module.

Modify the Sensitivity Adjustment of the MQ-2 gas sensor module (Figure 3.7) in one direction and
then in the other. The DO-LED should turn on and off, as should the buzzer, and the message on the
serial terminal should change between “Gas detected” and “Gas not detected.”

Chapter 3 | Time Management and Analog Signals

95

To adjust the Sensitivity Adjustment to an appropriate level, use a lighter. Press the button to open the
gas valve without rotating the spark wheel. In this way, a small amount of gas will be released without
producing a flame on the top of the lighter, and the sensitivity of the MQ-2 gas sensor module can be
easily adjusted.

WARNiNg: Be careful not to rotate the spark wheel of the lighter in order to avoid
lighting the flame.

Example 3.1: indicate which Sensor has Triggered the Alarm

Objective

Introduce time management by means of delays.

NOTE: In this example, the sensors are still activated by means of the buttons
connected to D2 and D3.

Summary of the Expected Behavior

If the alarm has been triggered by the gas detector, then the Alarm LED (LD1) should blink at a rate
of one second (1,000 milliseconds) on and one second off. If the alarm has been triggered by the over
temperature detector, the Alarm LED should blink at a rate of 500 ms on and 500 ms off. If gas is being
detected and the temperature is above the maximum level, then LD1 should blink at a rate of 100 ms
on and 100 ms off.

Test the Proposed Solution on the Board

Import the project “Example 3.1” using the URL available in [5], build the project, and drag the .bin
file onto the NUCLEO board. Press the button connected to D2 in order to activate the alarm for gas
detection. The Alarm LED (LD1) should start blinking, at a rate of one second on and one second off.
Deactivate the alarm by simultaneously pressing buttons A + B + Enter on the control panel (i.e., D4
+ D5 + B1 USER). Note that there is a slight delay in the response because of the way in which the
program is implemented, as discussed below. Press the button connected to D3 in order to activate the
alarm for over temperature detection. The Alarm LED should start blinking at a rate of half of a second
on and half of a second off. Press the button connected to D2 in order to add a gas detection state. LD1
should blink faster, being one tenth of a second on and one tenth of a second off.

Discussion of the Proposed Solution

The proposed solution is based on the delay() function defined in the arm_book_lib.h library. This
function is based on the Mbed OS thread_sleep_for() function and pauses the execution of the program,
causing a delay. Depending on the situation, a delay with a different length can be used when turning
the Alarm LED on and off. In this way, it can be indicated if the Alarm LED is active because of gas
detection, over temperature detection, or the simultaneous detection of gas and over temperature.

96

A Beginner’s Guide to Designing Embedded System Applications

Implementation of the Proposed Solution

The definitions and variables that were added to the program of Example 2.5 in order to implement
the new functionality are shown in Table 3.3. It can be seen that three constants are defined that will
be used in the delays. In the case of BLINKING_TIME_GAS_ALARM, the delay will be one second
(1000 ms); in the case of BLINKING_TIME_OVER_TEMP_ALARM, the delay will be half of one second
(500 ms); and in the case of BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM, the delay will be
one tenth of a second (100 ms). There are also two public Boolean variables, gasDetectorState and
overTempDetectorState. These variables will be used to store the state of the gas detector and the over
temperature detector.

In Code 3.1, the new implementation of the function alarmActivationUpdate() is shown. On lines 3 to
6, it can be seen that if gasDetector is active, then gasDetectorState and alarmState are both set to ON.
A similar piece of code is used from lines 7 to 10 regarding overTempDetector, overTempDetectorState,
and alarmState. On line 11, alarmState is checked to see if it is ON. If it is ON, the state of the Alarm
LED is toggled on line 12. Next, a delay is introduced in lines 13 to 19, whose length depends on the
state of gasDetectorState and overTempDetectorState. If alarmState is OFF, then on line 21 the Alarm
LED is turned off and the variables gasDetectorState and overTempDetectorState are set to OFF.

Table 3.3 Sections in which lines were added to Example 2.5.

Section Lines that were added

Defines #define BLINKING_TIME_GAS_ALARM 1000

#define BLINKING_TIME_OVER_TEMP_ALARM_ 500

#define BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM 100

Declaration and initialization of public global variables bool gasDetectorState = OFF;

bool overTempDetectorState = OFF;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void alarmActivationUpdate()
{
 if(gasDetector) {
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(overTempDetector) {
 overTempDetectorState = ON;
 alarmState = ON;
 }
 if(alarmState) {
 alarmLed = !alarmLed;
 if(gasDetectorState && overTempDetectorState) {
 delay(BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM);
 } else if (gasDetectorState) {
 delay(BLINKING_TIME_GAS_ALARM);
 } else if (overTempDetectorState) {
 delay(BLINKING_TIME_OVER_TEMP_ALARM);
 }
 } else{
 alarmLed = OFF;
 gasDetectorState = OFF;
 overTempDetectorState = OFF;
 }
}

Code 3.1 Details of the new implementation of the function alarmActivationUpdate().

Chapter 3 | Time Management and Analog Signals

97

Proposed Exercise

1. Is there any consequence for the program responsiveness if the delays are increased by a factor of
ten?

Answer to the Exercise

1. Table 3.4 shows the values to be used to increase the delays by a factor of ten. The reader should
repeat the steps detailed in the subsection “Implement the Proposed Solution on the Board” of
Example 3.1 using these new values for BLINKING_TIME_GAS_ALARM, BLINKING_TIME_OVER_
TEMP_ALARM, and BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM. It can be seen that the
responsiveness of the program is severely affected by these long delays. Example 3.2 will show how
to implement a change in the code in order to overcome this problem.

Table 3.4 Lines that were modified from Example 3.1.

Section Lines that were added

Definitions #define BLINKING_TIME_GAS_ALARM 10000

#define BLINKING_TIME_OVER_TEMP_ALARM 5000

#define BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM 1000

Example 3.2: increase the Responsiveness of the Program

Objective

Introduce a technique to avoid non-responsive behavior when long times are used in the delays.

NOTE: In this example, the sensors are still activated by means of the buttons
connected to D2 and D3.

Summary of the Expected Behavior

The expected behavior is the same as in Example 3.1, but the new method of implementing delays
leads to a more responsive behavior, even if long delays are used.

Test the Proposed Solution on the Board

Import the project “Example 3.2” using the URL available in [5], build the project, and drag the .bin
file onto the NUCLEO board. Repeat the same steps that were described in the subsection “Test the
Proposed Solution on the Board” of Example 3.1. The behavior should be exactly the same but exhibit
a more responsive behavior.

Discussion of the Proposed Solution

The proposed solution is based on the idea of using a given number of short delays in order to achieve
a longer delay. For instance, in this example ten 10 ms delays are consecutively used to achieve a

98

A Beginner’s Guide to Designing Embedded System Applications

100 ms delay, or fifty 10 ms delays are consecutively used to achieve a 500 ms delay. In this way, every
10 ms, the buttons can be read in order to see if the user is asking for a given response. The result is
that the program becomes much more responsive.

NOTE: This technique of counting small delays is the first approach that is used in this
book in order to manage a program with pauses in a “non-blocking” way.

Implementation of the Proposed Solution

The new implementation of the main() function is shown in Code 3.2. It can be seen that a delay of
TIME_INCREMENT_MS is included on line 9.

1
2
3
4
5
6
7
8
9
10
11

int main()
{
 inputsInit();
 outputsInit();
 while (true) {
 alarmActivationUpdate();
 alarmDeactivationUpdate();
 uartTask();
 delay(TIME_INCREMENT_MS);
 }
}

Code 3.2 Details of the new implementation of the main() function.

The lines that were added to Example 3.1 are shown in Table 3.5. It can be seen that
TIME_ INCREMENT_MS is defined as 10, and the integer variable accumulatedTime is declared
and initialized to 0. As was discussed in “Discussion of the Proposed Solution,” 10 ms delays are
accumulated to implement longer delays.

Table 3.5 Section where a line was added to Example 3.1.

Section Lines that were added

Definitions #define TIME_INCREMENT_MS 10

Declaration and initialization of public global variables int accumulatedTime = 0;

Code 3.3 shows the new implementation used in alarmActivationUpdate(). Lines 1 to 10 are the
same as the previous implementation used in Example 3.1. The difference is the way the delays are
implemented inside the if statement in line 11 when alarmState is active (lines 11 to 35). In line 12,
accumulatedTime is increased by TIME_INCREMENT_MS, accounting for the 10 ms delay introduced
in the main() function.

Line 14 checks if alarmState is active due to the gas detector and the over temperature detector
both being active. If so, accumulatedTime is checked to see if it has reached the time established by

Chapter 3 | Time Management and Analog Signals

99

BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM. If that is the case, accumulatedTime is set to 0 for
the next iteration and the state of alarmLed is toggled.

The same behavior is implemented in lines 19 to 23 for the case in which alarmState is active only
because of the gas detector. In the case of alarmState being active because of the over temperature
detector alone, the executed statements are those between lines 24 and 28.

If alarmState is not true, then alarmLed, gasDetectorState, and overTempDetector State are set to OFF in
lines 31 to 33.

In this way, the delays are always divided into pieces of 10 ms. As a consequence, the smart home
system is never blocked for a long time waiting for the elapse of a long delay (i.e., 1000 ms or 500 ms).

NOTE: The 10 ms delay is not perceptible to human beings but is a long time for a
microcontroller. More advanced time management techniques will be introduced
later on in this book.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

void alarmActivationUpdate()
{
 if(gasDetector) {
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(overTempDetector) {
 overTempDetectorState = ON;
 alarmState = ON;
 }
 if(alarmState) {
 accumulatedTimeAlarm = accumulatedTimeAlarm + TIME_INCREMENT_MS;

 if(gasDetectorState && overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if(gasDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if (overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 }
 } else{
 alarmLed = OFF;
 gasDetectorState = OFF;
 overTempDetectorState = OFF;
 }
}

Code 3.3 Details of the new implementation of the function alarmActivationUpdate().

100

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. Given the new implementation used in Code 3.3, does the program become non-responsive if the
delays are increased by a factor of ten?

Answer to the Exercise

1. Table 3.6 shows the values to be used to result in an increase in the delays by a factor of ten. The
reader should repeat the steps detailed in the subsection “Implement the Proposed Solution on the
Board” of Example 4.1 using these new values for the delays. It can be seen that the responsiveness
of the program is no longer affected by these long delays.

Table 3.6 Lines that were modified from Example 3.2.

Section Lines that were added

Defines #define BLINKING_TIME_GAS_ALARM 10000

#define BLINKING_TIME_OVER_TEMP_ALARM 5000

#define BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM 1000

Example 3.3: Activate the Over Temperature Alarm by Means of the Potentiometer

Objective

Introduce the measurement of analog signals, the use of float variables, and the use of strings.

Summary of the Expected Behavior

The alarm should be activated when the knob of the potentiometer is rotated beyond half of its
rotational travel. The corresponding reading should be shown on the serial terminal when the “p” key
is pressed on the PC keyboard.

Test the Proposed Solution on the Board

Import the project “Example 3.3” using the URL available in [5], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal. Press “p” on the PC keyboard and read the
message that appears on the serial terminal. Rotate the knob in both directions and see how the
values displayed on the serial terminal change in the range of 0 to 1. Rotate the knob until a reading of
about 0.2 is obtained and deactivate the alarm by simultaneously pressing the A + B + Enter buttons
on the control panel (i.e., D4 + D5 + B1 USER). Then, slowly rotate the knob until a reading above 0.5
is obtained. The alarm should turn on.

Discussion of the Proposed Solution

The proposed solution is based on the reading of the analog signal that is provided by the central
terminal of the potentiometer. This signal, which is proportional to the rotation of the knob,
is connected to the analog input 0 (A0) of the NUCLEO board. If the reading is below 0.5, then
overTempDetector is set to OFF, and if it is above 0.5, overTempDetector is set to ON.

Chapter 3 | Time Management and Analog Signals

101

Implementation of the Proposed Solution

The object and variables that were added to the program of Example 3.2 in order to implement the
new functionality are shown in Table 3.7. It can be seen that POTENTIOMETER_OVER_TEMP_LEVEL
has been defined as 0.5. It is declared as an analog input object called potentiometer and assigned to
the analog input 0 (A0) of the NUCLEO board. Finally, a Boolean global variable overTempDetector
and a global variable potentiometerReading of type float are declared. overTempDetector is used to
keep track of the current state of the over temperature detector, which is implemented by the
potentiometer. In this example, the float variable is used to store the values in the range of 0.0 to 1.0
that are obtained when the analog A0 is read. A float variable can store a value in the range of
±1.18 × 10–38 to ±3.4 × 1038.

Table 3.8 and Table 3.9 show some lines that were removed from Example 3.2. Code 3.4 shows the
code used to get the potentiometer reading. This code is included in the alarmActivationUpdate()
function. As can be seen, in line 3 the reading is obtained by potentiometer.read(). In line 5, the
potentiometer reading is compared with POTENTIOMETER_OVER_TEMP_LEVEL. Depending on the
result, the state of overTempDetector is set to ON or OFF in lines 6 or 8. The remaining lines (10 to 44)
were not changed.

Table 3.7 Sections in which lines were added to Example 3.2.

Section Lines that were added

Definitions #define POTENTIOMETER_OVER_TEMP_LEVEL 0.5

Declaration and initialization of public global objects AnalogIn potentiometer(A0);

Declaration and initialization of public global variables bool overTempDetector = OFF;

float potentiometerReading = 0.0;

Table 3.8 Sections in which lines were removed from Example 3.2.

Section Lines that were removed

Declaration and initialization of public global objects DigitalIn overTempDetector(D3);

Table 3.9 Functions in which lines were removed from Example 3.2.

Function Lines that were removed

void inputsInit() overTempDetector.mode(PullDown);

102

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

void alarmActivationUpdate()
{
 potentiometerReading = potentiometer.read();

 if (potentiometerReading > POTENTIOMETER_OVER_TEMP_LEVEL) {
 overTempDetector = ON;
 } else {
 overTempDetector = OFF;
 }

 if(gasDetector) {
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(overTempDetector) {
 overTempDetectorState = ON;
 alarmState = ON;
 }
 if(alarmState) {
 accumulatedTimeAlarm = accumulatedTimeAlarm + TIME_INCREMENT_MS;

 if(gasDetectorState && overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if(gasDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if (overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 }
 } else{
 alarmLed = OFF;
 gasDetectorState = OFF;
 overTempDetectorState = OFF;
 }
}

Code 3.4 New implementation of the function alarmActivationUpdate().

Table 3.10 shows the lines that were added to availableCommands() to inform how to get the
potentiometer reading.

Table 3.10 Lines added to the function availableCommands().

Function Lines that were added

void availableCommands() uartUsb.write("Press 'P' or 'p' to get

 potentiometer reading\r\n\r\n", 49);

Chapter 3 | Time Management and Analog Signals

103

Code 3.5 shows the lines that were added to uartTask() to inform the user of the reading of the
potentiometer. In the event of “p” or “P” being pressed, the potentiometer reading is checked (line 3)
and a message is sent to the PC by means of uartUsb.write (line 6). In order to prepare the message, a
string is conformed in line 4, as discussed below.

1
2
3
4
5
6
7

case 'p':
case 'P':
 potentiometerReading = potentiometer.read();
 sprintf (str, "Potentiometer: %.2f\r\n", potentiometerReading);
 stringLength = strlen(str);
 uartUsb.write(str, stringLength);
 break;

Code 3.5 Lines that were added into the function uartTask().

A string is an array of char terminated with the null character ('\0') which is usually used to process
and store words or sentences in C/C++. As was explained in Chapter 2, in C/C++ the character '\0'
represents the zero-element character (i.e., a '\0' written to uartUsb is not printed on the serial
terminal), which is different from the character '0' which is used to indicate the number zero. In
Chapter 6, the ASCII standard that is used in most computers and microcontrollers to encode
characters will be introduced, and it will be seen that the character '0' is encoded with the number 48,
while the null character ‘\0’ is encoded with the number 0.

The null character is used in C/C++ to indicate the ending of strings because it is usual to deal with
messages whose length may vary depending on certain circumstances. For instance, in Example 3.4 it
will be seen that the number of characters in a message that will be used to indicate the temperature
will vary depending on the temperature value. For example, if the temperature reading is equal to
or above ten degrees, then one more character will be included in the message that will be used to
report the reading (i.e., “Temperature: 12.2 °C” has one more character than “Temperature: 9.8 °C”).
Therefore, the null character is appended at the end of the message to indicate where the message
ends (i.e., “Temperature: 12.2 °C\0” and “Temperature: 9.8 °C\0”). In this way, a function can be used in
order to print the message characters that are stored in an array until the null character is found.

This idea about strings is used in lines 4 and 5 of Code 3.5. The array is declared in the function
uartTask(), as can be seen in Table 3.11. It is declared having 100 positions in order to stress that only
the characters delimited by the null character will be printed in the message sent to the PC. There is
also declared an int type variable named stringLength that will be used to store the length of the string
(which might be different to the length of the array, as was discussed above).

Table 3.11 New variables that are declared in the function uartTask().

Function Lines that were added

void uartTask() char str[100];

int stringLength;

104

A Beginner’s Guide to Designing Embedded System Applications

NOTE: In order to save memory, it is good practice to use arrays of chars that are as
small as possible to store the strings. In this example, 100 positions were used just to
stress that not all the array positions are printed.

On line 4 of Code 3.5, the function sprintf provided by Mbed OS is used to write formatted data into
the string. The string is composed of “Potentiometer: ”, followed by the value of potentiometerReading
displayed with a precision of two decimal digits (%.2f format stands for a float variable with two
decimal digits; for more information on how to set the format, please refer to [6]). On line 4 it can
be seen that “\r\n” is also appended to the content of the string. After the content is complete (as
indicated by the last " symbol on line 4), a terminating null character is automatically appended to the
string by the function sprintf.

NOTE: The size of the buffer where the string is composed (in this case the array
of char named string) should be large enough to contain the entire resulting string.
Otherwise, problems may occur, as discussed later in this book.

On line 5 of Code 3.5, the function strlen() provided by Mbed OS is used to get the length of the string,
which is stored in the variable stringLength that was introduced in Table 3.11. On line 6, uartUsb.write()
is used to send the string having a length of stringLength to the PC.

NOTE: In order to enable the %.2f format that is used in Code 3.5, the file
mbed_app.json was added to the “Example 3.3” project. For more information, please
refer to [7].

NOTE: The C language provides four basic types: char, int, float, and double, and
the modifiers signed, unsigned, short, and long. Table 3.12 lists the most common
data types. The C99 standard (ISO/IEC 9899:1999) added the Boolean type. C99
includes definitions of new integer types to enhance the portability of programs, as
the size of previous integer types may vary across different systems. The new types
are especially useful in embedded systems, and the most common ones are listed in
Table 3.13.

Table 3.12 C language basic arithmetic type specifiers.

Type Details Size (bits) Format specifier

char Smallest addressable integer type. Can contain the basic character set. 8 %c

signed char Of the same size as char, but capable of containing the range [−127 to +127]. 8 %c

unsigned
char

Of the same size as char, but capable of containing the range [0 to 255]. 8 %c

int Basic signed integer type. Capable of containing the range [−32,767 to +32,767]. 16 %i or %d

unsigned int Basic unsigned integer type. Capable of containing the range [0 to 65,535]. 16 %u

Chapter 3 | Time Management and Analog Signals

105

Type Details Size (bits) Format specifier

long Long signed integer type. Capable of containing the range [−2,147,483,647 to
+2,147,483,647].

32 %li or %ld

float Real floating-point type. Actual properties unspecified, but typically contains the
range [±1.2E-38 to ±3.4E+38].

32 %f

double Real floating-point type. Actual properties unspecified, but typically contains the
range [±2.3E-308 to ±1.7E+308].

64 %lf

NOTE: The sizes of int, unsigned int, and long types are not specified by C99 and are
platform-dependent. For more information on floating-point types, see the IEEE
Standard for Floating-Point Arithmetic (IEEE 754) established by the Institute of
Electrical and Electronics Engineers (IEEE).

Table 3.13 C99 standard definitions of new integer types.

Type Details Size (bits)

uint8_t Capable of containing the range [0 to 255]. 8

uint16_t Capable of containing the range [0 to 65,535]. 16

uint32_t Capable of containing the range [0 to 4,294,967,295]. 32

int8_t Capable of containing the range [−128 to +127]. 8

int16_t Capable of containing the range [−32,768 to +32,767]. 16

int32_t Capable of containing the range [−2,147,483,648 to +2,147,483,647]. 32

Proposed Exercises

1. How can the code be modified in order to implement the over temperature alarm activation when
the knob of the potentiometer is at 30% of its rotational travel?

2. Are A0 to A5 the only analog inputs that can be used in the NUCLEO board?

Answers to the Exercises

1. The line “#define POTENTIOMETER_OVER_TEMP_LEVEL 0.5” should be modified to: “#define
POTENTIOMETER_OVER_TEMP_LEVEL 0.3”.

2. In Figure 1.23, it can be seen that A0 corresponds to PA_3 and ADC1/3 (i.e., Channel 3 of ADC 1). It
implies that “AnalogIn potentiometer(A0);” is the same as “AnalogIn potentiometer(PA_3);”. In the
same way, any of the ADCs that are shown in Figure 1.23 can be used. For example, if it is declared
as “AnalogIn analogInput(PF_4)”, then pin 7 of CN10 will be used as an analog input.

Example 3.4: Usage of Functions to Compute the Temperature Value

Objective

Introduce parameter passing in C/C++ functions.

106

A Beginner’s Guide to Designing Embedded System Applications

Summary of the Expected Behavior

When “c” is pressed on the PC keyboard, formula (1), introduced in section 3.2.2, is applied to the
reading of the potentiometer:

Temperature [°C] =
Analog Reading × 3.3 V

0.01 V/°C
 (1)

The result of this formula is shown on the serial terminal with a legend indicating “Temperature: xx.xx °C”.

When “f” is pressed on the PC keyboard, the result of (1) is processed using formula (2), introduced in
section 3.2.2:

Temperature [°F] =
Temperature [°C] × 9

5
 + 32 °C (2)

The result of this formula is shown on the serial terminal with a legend indicating “Temperature: xx.xx °F”.

NOTE: In this example, the LM35 temperature sensor is not read, but its reading is
simulated by means of the potentiometer reading. The LM35 temperature sensor will
be read in Example 3.5, and the formulae introduced in this example will be applied to
its reading.

Test the Proposed Solution on the Board

Import the project “Example 3.4” using the URL available in [5], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal. Press “p” on the PC keyboard and read the
message that appears on the serial terminal. Rotate the knob in both directions and see how the
values displayed on the serial terminal change in the range of 0 to 1. Press “c” on the PC keyboard and
read the message that appears on the serial terminal. Rotate the knob in both directions and see how
the values displayed on the serial terminal change. Press “f” on the PC keyboard and read the message
that appears on the serial terminal. Rotate the knob in both directions and see how the values
displayed on the serial terminal change.

Discussion of the Proposed Solution

The proposed solution is based on two functions, one to implement formula (1),
analogReadingScaledWithTheLM35Formula(), and another to implement formula (2),
celsiusToFahrenheit(). Each of these functions receives one value, known in C/C++ as the function
parameter. These values are, respectively, the value of “Analog Reading” in formula (1) and the value
of “Temperature [°C]” in formula (2). After making the corresponding calculation, the function
analogReadingScaledWithTheLM35Formula() returns the value indicated as “Temperature [°C]” in
formula (1), while the function celsiusToFahrenheit() implements the calculation shown in formula (2)
and returns the value of “Temperature [°F]”.

Chapter 3 | Time Management and Analog Signals

107

NOTE: In this example, the return value of analogReadingScaledWithTheLM35Formula()
can be in the range of 0 to 330, given that the reading of the potentiometer
is in the range of 0.0 to 1.0. Consequently, in this example the return value of
celsiusToFahrenheit() can be in the range of 32 to 626. In Example 3.5, the return value
of these two functions will correspond to the measurement range of the LM35 sensor.

Implementation of the Proposed Solution

The lines shown in Table 3.14 were modified and added to the code used in Example 3.3. The
value of POTENTIOMETER_OVER_TEMP_LEVEL has been changed to 50, because the range of
the value is no longer between 0.0 and 1.0, as discussed above. In addition, a new variable named
potentiometerReadingScaled of type float has been declared, and two new functions have been
declared: analogReadingScaledWithTheLM35Formula() and celsiusToFahrenheit(). In Code 3.6, the
implementation of these two functions is shown. The first (lines 1 to 4) corresponds to formula (1) and
the second (lines 6 to 9) corresponds to formula 2. Some lines were added as shown in Table 3.15.

Table 3.14 Sections in which lines were modified and added to Example 3.3.

Section Lines that were modified

Definitions #define POTENTIOMETER_OVER_TEMP_LEVEL 50

Section Lines that were added

Declaration and initialization
of public global variables

float potentiometerReadingScaled;

Declarations (prototypes) of
public functions

float analogReadingScaledWithTheLM35Formula(float analogReading)

float celsiusToFahrenheit(float tempInCelsiusDegrees)

Table 3.15 Functions in which lines were added to Example 3.3.

Function Lines that were modified and added

void availableCommands() uartUsb.write("Press 'f' or 'F' to get potentiometer

 reading in Fahrenheit\r\n", 61);

uartUsb.write("Press 'c' or 'C' to get potentiometer

 reading in Celsius\r\n\r\n", 60);

1
2
3
4
5
6
7
8
9

float analogReadingScaledWithTheLM35Formula(float analogReading)
{
 return (analogReading * 3.3 / 0.01);
}

float celsiusToFahrenheit(float tempInCelsiusDegrees)
{
 return (tempInCelsiusDegrees * 9.0 / 5.0 + 32.0);
}

Code 3.6 Details of the new functions added to the code introduced in Example 3.3.

In Code 3.7, the modifications introduced in the function alarmActivationUpdate() are shown. In
lines 3 and 4 it can be seen that the reading of the potentiometer is processed by the function

108

A Beginner’s Guide to Designing Embedded System Applications

analogReadingScaledWithTheLM35Formula() and then stored in potentiometerReadingScaled. This
variable is used in the if statement on line 6. The remaining lines of Code 3.7 are the previous existing
implementation of alarmActivationUpdate().

The lines added to uartTask() to get the temperature in Celsius and Fahrenheit are shown in Code 3.8.
On line 4, it can be seen that the function analogReadingScaledWithTheLM35Formula() is used to obtain
the temperature in °C. \xB0 is used to print the ° symbol in the string. Line 13 of Code 3.8 shows that
the function celsiusToFahrenheit() is used to convert the result obtained on line 14 into °F.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

void alarmActivationUpdate()
{
 potentiometerReadingScaled =
 analogReadingScaledWithTheLM35Formula (potentiometer.read());

 if (potentiometerReadingScaled > POTENTIOMETER_OVER_TEMP_LEVEL) {
 overTempDetector = ON;
 } else {
 overTempDetector = OFF;
 }

 if(gasDetector) {
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(overTempDetector) {
 overTempDetectorState = ON;
 alarmState = ON;
 }
 if(alarmState) {
 accumulatedTimeAlarm = accumulatedTimeAlarm + TIME_INCREMENT_MS;

 if(gasDetectorState && overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if(gasDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if (overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 }
 } else{
 alarmLed = OFF;
 gasDetectorState = OFF;
 overTempDetectorState = OFF;
 }
}

Code 3.7 Modifications introduced to the function alarmActivationUpdate().

Chapter 3 | Time Management and Analog Signals

109

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

case 'c':
case 'C':
 sprintf (str, "Temperature: %.2f \xB0 C\r\n",
 analogReadingScaledWithTheLM35Formula (
 potentiometer.read()));
 stringLength = strlen(str);
 uartUsb.write(str, stringLength);
 break;

case 'f':
case 'F':
 sprintf (str, "Temperature: %.2f \xB0 F\r\n",
 celsiusToFahrenheit(
 analogReadingScaledWithTheLM35Formula (
 potentiometer.read())));
 stringLength = strlen(str);
 uartUsb.write(str, stringLength);
 break;

 Code 3.8 Lines that were added to the function uartTask().

Proposed Exercise

1. How can a C/C++ function be implemented to compute a temperature expressed in degrees Celsius
from a temperature expressed in degrees Fahrenheit?

Answer to the Exercise

1. A possible implementation is shown in Code 3.9.

1
2
3
4

float fahrenheitToCelsius(float tempInFahrenheitDegrees)
{
 return ((tempInFahrenheitDegrees - 32.0) * 5.0 / 9.0);
}

Code 3.9 Implementation of fahrenheitToCelsius().

Example 3.5: Measure Temperature and Detect gas using the Sensors

Objective

Review the measurement of analog signals and introduce mathematical operations with arrays.

Summary of the Expected Behavior

The temperature measured by the LM35 temperature sensor should be displayed on the serial
terminal in degrees Celsius when the “c” key is pressed on the computer keyboard, or in degrees
Fahrenheit when the “f” key is pressed. In addition, the alarm should be activated when the
temperature measured by the LM35 is above 50 °C (122 °F). When the “g” key is pressed, the
serial terminal should indicate if gas is being detected or not by the MQ-2 gas sensor module. The
potentiometer is not used in this example.

110

A Beginner’s Guide to Designing Embedded System Applications

NOTE: Hereinafter, the buttons connected to D2 and D3 are not used to simulate gas
detection and over temperature detection. Gas and temperature are sensed using
the corresponding sensors. The button connected to D2 is used as the Alarm test
button, in order to test if the alarm system is working without the need for gas or
over temperature. When this button is pressed, the siren (implemented by a buzzer)
sounds, and the Alarm LED turns on. The button connected to D3 has no functionality
in this example.

The buzzer should sound continuously if any of the alarm conditions described in the previous
examples occur. The Alarm LED should blink at the same rates described in previous examples. When
the Alarm test button is pressed, the condition of simultaneous gas and over temperature detection is
simulated.

Test the Proposed Solution on the Board

Import the project “Example 3.5” using the URL available in [5], build the project, and drag the .bin
file onto the NUCLEO board. Open the serial terminal. Press “c” on the PC keyboard and read the
message that appears on the serial terminal, indicating in degrees Celsius the temperature measured
by the LM35. Press “f” and read the message indicating the measured temperature in degrees
Fahrenheit. By means of a hairdryer or any similar method, increase the temperature of the LM35.
When the temperature exceeds 50 °C, the Alarm LED should turn on with a blink period of 1000 ms,
and the buzzer should sound.

Once the temperature of the LM35 sensor has reduced, use a lighter as described in section 3.2.2 to
trigger the gas sensor. The Alarm LED should turn on with a blink of 500 ms and the buzzer should
sound.

Finally, press the Alarm test button (the button connected to D2). The Alarm LED should turn on with
a blink period of 100 ms (representing gas and over temperature detection) and the buzzer should
sound.

Discussion of the Proposed Solution

The proposed solution is based on the reading of the analog signal that is provided by the LM35
temperature sensor. This signal increases by 10 mV/°C and is connected to the analog input 1 (A1) of
the NUCLEO board. In subsection 3.2.2, it was shown that the reading of this signal is quite noisy. In
order to overcome this problem, consecutive readings are averaged. If this average indicates that the
temperature is below 50 °C, overTempDetector is set to OFF, and if it indicates that it is above 50 °C,
overTempDetector is set to ON.

The proposed solution is also based on the DOUT signal of the MQ-2 gas sensor module, which was
introduced in subsection 3.2.2. It also makes use of the buzzer, which is activated by means of setting
the PE_10 pin of the NUCLEO board to GND. In this example, the button connected to D2 is used as
the Alarm test button, as discussed above.

Chapter 3 | Time Management and Analog Signals

111

Implementation of the Proposed Solution

The objects and variables that were added to the program of Example 3.4 in order to implement the
new functionality are shown in Table 3.16. NUMBER_OF_AVG_SAMPLES has been defined as 10 and
OVER_TEMP_LEVEL as 50. The definition of POTENTIOMETER_OVER_TEMP_LEVEL was deleted
because it is not used anymore. A DigitalIn object named alarmTestButton has been declared and
assigned to D2, while a DigitalIn object named mq2 has been declared and assigned to PE_12.

A DigitalInOut object named sirenPin has been declared and assigned to PE_10. This object is used to
control the buzzer, as is explained below. An analog input object called lm35 has also been declared
and assigned to the analog input 1 (A1) of the NUCLEO board.

Finally, five public global variables are declared. The variable lm35SampleIndex will be used for
the index of the array lm35ReadingsArray. The variable lm35ReadingsArray is an array of floats
where 10 (i.e., NUMBER_OF_AVG_SAMPLES) consecutive readings will be stored. The variable
lm35ReadingsSum will be used to store the sum of the ten positions of lm35ReadingsArray.
lm35ReadingsAverage will be used to store the average of all the positions of lm35ReadingsArray, and
finally, lm35TempC will be used to store the value of lm35ReadingsAverage, expressed in degrees
Celsius. The variable potentiometerReadingScaled was deleted because it is not used anymore.

Table 3.16 Sections in which lines were added or modified in Example 3.4.

Section Lines that were added

Definitions #define NUMBER_OF_AVG_SAMPLES 10

#define OVER_TEMP_LEVEL 50

Declaration and initialization of public global objects DigitalIn alarmTestButton(D2);

DigitalIn mq2(PE_12);

DigitalInOut sirenPin(PE_10);

AnalogIn lm35(A1);

Declaration and initialization of public global variables int lm35SampleIndex = 0;

float lm35ReadingsArray [NUMBER_OF_AVG_SAMPLES];

float lm35ReadingsSum = 0.0;

float lm35ReadingsAverage = 0.0;

float lm35TempC = 0.0;

Code 3.10 shows the new implementation of inputsInit(). On line 3, the alarmTestButton is configured
with a pull-down resistor. Lines 4 to 7 remain just as in the previous examples. On line 8, sirenPin
is configured as “OpenDrain”, and on line 9 it is configured as an input. In this way, sirenPin is not
energized, which turns off the buzzer.

112

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10

void inputsInit()
{
 alarmTestButton.mode(PullDown);
 aButton.mode(PullDown);
 bButton.mode(PullDown);
 cButton.mode(PullDown);
 dButton.mode(PullDown);
 sirenPin.mode(OpenDrain);
 sirenPin.input();
}

Code 3.10 New implementation of inputsInit().

In Code 3.11, the new implementation of alarmActivationUpdate() is shown, with the following
modified lines:

 n The lines regarding the potentiometer were all removed (lines 3 to 10 of Code 3.7).

 n Lines 6 to 17: the calculation of the temperature is implemented. The analog input is read and
stored in the current position of the lm35ReadingsArray on line 6. The index is incremented (line
7), and it is set to 0 if it is beyond the last position of the array (lines 8 and 9). Then, all the array
positions are summed (lines 12 to 15), the average value is computed (line 16), and the value of
lm35TempC is obtained (line 17).

 n Line 25: the digital input mq2 is used to assess gas detection (it is active in low state).

 n Lines 33 to 37: the Alarm test button functionality is implemented (if it is pressed, then
overTempDetectorState, gasDetectorState, and alarmState are set to ON).

 n Lines 40 and 41: sirenPin is configured as output, and its value is set to LOW to activate the buzzer.

 n Line 63: sirenPin is configured as input, which turns off the buzzer.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

void alarmActivationUpdate()
{
 static int lm35SampleIndex = 0;
 int i = 0;

 lm35ReadingsArray[lm35SampleIndex] = lm35.read();
 lm35SampleIndex++;
 if (lm35SampleIndex >= NUMBER_OF_AVG_SAMPLES) {
 lm35SampleIndex = 0;
 }

 lm35ReadingsSum = 0.0;
 for (i = 0; i < NUMBER_OF_AVG_SAMPLES; i++) {
 lm35ReadingsSum = lm35ReadingsSum + lm35ReadingsArray[i];
 }
 lm35ReadingsAverage = lm35ReadingsSum / NUMBER_OF_AVG_SAMPLES;
 lm35TempC = analogReadingScaledWithTheLM35Formula (lm35ReadingsAverage);

Chapter 3 | Time Management and Analog Signals

113

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 if (lm35TempC > OVER_TEMP_LEVEL) {
 overTempDetector = ON;
 } else {
 overTempDetector = OFF;
 }

 if(!mq2) {
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(overTempDetector) {
 overTempDetectorState = ON;
 alarmState = ON;
 }
 if(alarmTestButton) {
 overTempDetectorState = ON;
 gasDetectorState = ON;
 alarmState = ON;
 }
 if(alarmState) {
 accumulatedTimeAlarm = accumulatedTimeAlarm + TIME_INCREMENT_MS;
 sirenPin.output();
 sirenPin = LOW;

 if(gasDetectorState && overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_AND_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if(gasDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_GAS_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 } else if (overTempDetectorState) {
 if(accumulatedTimeAlarm >= BLINKING_TIME_OVER_TEMP_ALARM) {
 accumulatedTimeAlarm = 0;
 alarmLed = !alarmLed;
 }
 }
 } else{
 alarmLed = OFF;
 gasDetectorState = OFF;
 overTempDetectorState = OFF;
 sirenPin.input();
 }
}

Code 3.11 New implementation of alarmActivationUpdate().

NOTE: After a reset, the NUMBER_OF_AVG_SAMPLES positions of
lm35ReadingsArray are not initialized. Therefore, until all of the positions of
m35ReadingsArray are written at least once, the implementation shown in Code 3.11
may lead to wrong values in lm35TempC. This issue lasts for only one second and is
addressed in the Proposed Exercise of this example.

114

A Beginner’s Guide to Designing Embedded System Applications

The lines that were modified in uartTask() are shown in Code 3.12. It can be seen that in case '2', the digital
input connected to the DOUT pin of the MQ-2 gas sensor is checked. If it has a low state, then it implies
that gas is being detected. In case 'c' or 'C', the temperature expressed in degrees Celsius is shown on the
serial terminal, while in case 'f' or 'F', the temperature expressed in degrees Fahrenheit is shown.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

case '2':
 if (!mq2) {
 uartUsb.write("Gas is being detected\r\n", 22);
 } else {
 uartUsb.write("Gas is not being detected\r\n", 27);
 }
 break;

case 'c':
case 'C':
 sprintf (str, "Temperature: %.2f \xB0 C\r\n", lm35TempC);
 stringLength = strlen(str);
 uartUsb.write(str, stringLength);
 break;

case 'f':
case 'F':
 sprintf (str, "Temperature: %.2f \xB0 F\r\n",
 celsiusToFahrenheit(lm35TempC));
 stringLength = strlen(str);
 uartUsb.write(str, stringLength);
 break;

Code 3.12 Lines that were modified in the function uartTask().

Proposed Exercise

1. It has been mentioned that until all the positions of lm35ReadingsArray are written (i.e., during the
first second), the value of lm35TempC is not correct because many positions of this array were not
initialized. How can this problem be solved?

Answer to the Exercise

1. The function shown in Code 3.13 can be executed once after power on in order to initialize all the
positions of lm35ReadingsArray to zero. In this way, at the beginning the value of lm35TempC will not
be correct but will not trigger the over temperature alarm anyway, because the resulting average
temperature will be very low (due to the fact that many zero values will be used in the average
calculation). After one second, all the positions of lm35ReadingsArray will have correct values and,
therefore, the value of lm35TempC will be correct. Be aware that if an under temperature condition
is being checked, then this solution must be adapted.

1
2
3
4
5
6
7

void lm35ReadingsArrayInit()
{
 int i;
 for(i=0; i<NUMBER_OF_AVG_SAMPLES ; i++) {
 lm35ReadingsArray[i] = 0;
 }
}

Code 3.13 Implementation of the proposed function lm35ReadingsArrayInit().

Chapter 3 | Time Management and Analog Signals

115

3.3 Under the Hood

3.3.1 Basic Principles of Analog to Digital Conversion

In this chapter, the analog signal provided by the LM35 was digitized by the NUCLEO board by
means of an analog to digital converter (ADC) included in the STM32 microcontroller. The aim of this
subsection is to explain how the analog to digital converter works.

The STM32 microcontroller of the NUCLEO board includes a Successive Approximation Register (SAR)
ADC. A simplified diagram of an SAR ADC is shown in Figure 3.10. The analog input of the ADC
is indicated at the top of the figure, and the digital output value that is obtained as a result of the
conversion process is indicated at the right side. The SAR ADC consists of three main elements: (1)
an Analog Comparator, (2) a Digital to Analog Converter (DAC), and (3) an Iterative Conversion Controller
(ICC). The analog signals and elements are indicated in light green, while the digital signals are
indicated in dark green. A color gradient is used to indicate that a given element has inputs of one type
and outputs of another type (i.e., the DAC has digital inputs and an analog output, while the analog
converter has analog inputs and a digital output).

Figure 3.10 Simplified diagram of a Successive Approximation Register analog to digital converter.

As its name indicates, the SAR ADC is based on an iterative process. At the beginning of the process,
the ICC sets Bit 11 at the DACInput to 1 (i.e., DACInput = 1000 0000 0000). In this way, a value
equal to half of its full range is obtained at DACOutput. Then, the ICC analyzes the value of the
comparatorOutput. If the comparatorOutput indicates that the voltage of the Analog Input is bigger
than the DACOutput, the value at the DACInput is increased to 1100 0000 0000. In this way, a value
equal to three quarters (75%) of the full range is obtained at the DACOutput. Conversely, if the value

116

A Beginner’s Guide to Designing Embedded System Applications

of the comparatorOutput indicates that the Analog Input is smaller than the DACOutput, then the ICC
decreases the value at the DACInput to 0100 0000 0000. As a consequence, a value equal to one
quarter (25%) of the DACOutput full range is obtained.

This process continues until the values of the twelve bits of DACInput are determined. At that
point, the End of Conversion is reached, the signal endOfConversion is set to the active state, and the
DACOutput value is the best possible digitalization of the analog input voltage. Then, the twelve bits
that the ICC has established at DACInput are shared by the SAR ADC as the Digital Output result of
the conversion. In the particular case of the functionality provided for the AnalogIn objects by the
mbed.h library used in this chapter, the result of the conversion is scaled in the range of 0 to 1 (i.e., it
returns 1.0 if 1111 1111 1111 is obtained, and 0.0 if 0000 0000 0000 is obtained).

TiP: For more information on SAR ADCs, see Maxim’s application note 1080,
available from [8].

Proposed Exercise

1. How can a successive approximation register (SAR) ADC be implemented on the NUCLEO board?

Answer to the Exercise

1. The proposed solution is available from [5] with the name “Under the Hood Chapter 3.” The reader
is encouraged to load the proposed solution onto the NUCLEO board and follow the prompts on the
serial terminal to see how the implemented SAR ADC works.

In the proposed solution, the libraries mbed.h and arm_book_lib.h are used, as shown in Code 3.14.
There are also two #defines, one to indicate the number of bits, NUMBER_OF_BITS, defined as 12,
and another one, MAX_RESOLUTION, that is used to normalize the output into the 0 to 1 range,
defined as 4095 (i.e., 212 − 1).

1
2
3
4
5
6
7
8
9

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

//=====[Defines]===

#define NUMBER_OF_BITS 12
#define MAX_RESOLUTION 4095.0

Code 3.14 Libraries and defines used in the implementation of the proposed solution.

The public global objects that are used are shown in Code 3.15. The B1 USER button of the NUCLEO
board is declared as the nextStepButton (line 3) and is used to advance one step in the iterative
conversion process. The analog input A0 (line 5) is used earlier to get a reading of the analog signal
at terminal (2) of the potentiometer, in the same way as it was used in this chapter. The LD1 of the

Chapter 3 | Time Management and Analog Signals

117

NUCLEO board is used to indicate the start of a new conversion (line 7), LD2 is used to indicate a new
step in the conversion process (line 8), and LD3 is used to announce the end of the conversion (line 9).
Finally, on line 11, the UnbufferedSerial object uartUsb is declared and will be used to send messages
to the PC to show the current state of the conversion process.

1
2
3
4
5
6
7
8
9
10
11

//=====[Declaration and initialization of public global objects]===============

DigitalIn nextStepButton(BUTTON1);

AnalogIn potentiometer(A0);

DigitalOut startOfConversionLed(LED1);
DigitalOut stepOfConversionLed(LED2);
DigitalOut endOfConversionLed(LED3);

UnbufferedSerial uartUsb(USBTX, USBRX, 115200);

Code 3.15 Public global objects used in the implementation of the proposed solution.

The public global variables that are used are shown in Code 3.16. On line 3, the variable
comparatorOutput is declared and initialized to 0 and is used to implement the output of the Analog
Comparator, as illustrated in Figure 3.10. An array called DACInput of type bool, of size
NUMBER_OF_BITS, is declared on line 4. This is used to implement the input to the Digital to Analog
Converter (see Figure 3.10). On line 5, an array called digitalOutput of type bool, of size
NUMBER_OF_BITS, is declared. This is used to provide the digital output, as shown in Figure 3.10.

On line 7 of Code 3.16, an integer type variable called conversionStep is declared, which is used to keep
track of the current conversion step. On line 9, the variable analogInput of type float is declared. This
variable is used to get a reading of terminal 2 of the potentiometer. On line 10, a float type variable
(digitalOutputScaledIntoRange0to1) is declared that is used once the conversion is finished to provide
an output normalized in the range 0 to 1. Finally, on line 11, a float type variable DACOutput is defined
that is used to implement the output of the Digital to Analog Converter (see Figure 3.10).

1
2
3
4
5
6
7
8
9
10
11

//=====[Declaration and initialization of public global variables]=============

bool comparatorOutput = 0;
bool DACInput[NUMBER_OF_BITS];
bool digitalOutput[NUMBER_OF_BITS];

int conversionStep = 0;

float analogInput;
float digitalOutputScaledIntoRange0to1 = 0;
float DACOutput = 0;

Code 3.16 Public global variables used in the implementation of the proposed solution.

In Code 3.17, the public functions used in the implementation of the proposed solution are shown.
Line 3 declares the function inputsInit() that is used to initialize the inputs, and on line 4, the function
outputsInit() that is used to initialize the outputs is declared. On line 6, the function startOfConversion()
is declared and, on line 12, the function endOfConversion(). These two functions are used to turn on

118

A Beginner’s Guide to Designing Embedded System Applications

and off LD1 and LD3, respectively, and to send messages to the user by means of uartUsb. On line 7,
the function analogComparator(), which is used to implement the Analog Comparator, is declared (see
Figure 3.10). On line 8, the function that is used to implement one step of the Iterative Conversion
Controller, iterativeConversionControllerStep(), is declared. The function used to implement the Digital
to Analog Converter (DAC) is declared on line 9. On line 10, a function is declared that is used to
reset the Iterative Conversion Controller. The function that is used to show the conversion status
is declared on line 11. This function will send messages to the PC by means of uartUsb and will
also turn on and off the LD2 of the NUCLEO board. Finally, the function that will show the result,
endOfConversion(), is declared on line 12.

1
2
3
4
5
6
7
8
9
10
11
12

//=====[Declarations (prototypes) of public functions]=========================

void inputsInit();
void outputsInit();

void startOfConversion();
bool analogComparator();
bool iterativeConversionControllerStep();
float digitalToAnalogConverter();
void resetIterativeConversionController();
void showConversionStatus();
void endOfConversion();

Code 3.17 Public functions used in the implementation of the proposed solution.

In Code 3.18, the main() function is shown. On line 5, the function used to initialize the inputs is called
(i.e., inputsInit()), and on line 6 the function used to initialize the outputs is called (outputsInit()). On
line 8, the function startOfConversion() is used to send a message by means of uartUsb and to turn
on LD1 for one second. On line 9, resetIterativeConversionController() is called in order to reset some
specific variables.

The for loop between lines 10 and 22 is used to implement the SAR ADC following the diagram
illustrated in Figure 3.10. From lines 10 to 12, it can be seen that the number of loops that are
executed is equal to NUMBER_OF_BITS and that the current conversion step is tracked by
conversionStep. On line 14, the variable DACOutput is assigned the return value of the function
digitalToAnalogConverter(). On line 16, the variable comparatorOutput is assigned the return value of
the function analogComparator(). The assignment of the Boolean state at the position
“NUMBER_OF_BITS - conversionStep” of the array DACInput is made on line 18, using the return value
of the function iterativeConversionControllerStep(). Line 21 is used to send the status of the conversion
via uartUsb and LD2 by means of the function showConversionStatus(). Finally, on line 24, the function
endOfConversion() is used to send the corresponding message by means of uartUsb and to turn on LD3
for one second.

Chapter 3 | Time Management and Analog Signals

119

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[Main function, the program entry point after power on or reset]========

int main()
{
 inputsInit();
 outputsInit();
 while (true) {
 startOfConversion();
 resetIterativeConversionController();
 for (conversionStep = 1;
 conversionStep <= NUMBER_OF_BITS;
 conversionStep++) {

 DACOutput = digitalToAnalogConverter();

 comparatorOutput = analogComparator();

 DACInput[NUMBER_OF_BITS - conversionStep] =
 iterativeConversionControllerStep();

 showConversionStatus();
 }

 endOfConversion();
 }
}

Code 3.18 Public functions used in the implementation of the proposed solution.

The implementation of the first two public functions is shown in Code 3.19. It is important to note
that the function inputsInit() is empty and that the only reason this function is kept is to follow the
organization of the programs established in previous chapters. On line 7, the implementation of
outputsInit() is shown. It can be seen that the three LEDs are turned off.

1
2
3
4
5
6
7
8
9
10
11
12

//=====[Implementations of public functions]===================================

void inputsInit()
{
}

void outputsInit()
{
 startOfConversionLed = OFF;
 stepOfConversionLed = OFF;
 endOfConversionLed = OFF;
}

Code 3.19 Implementation of the functions inputsInit() and outputsInit().

The implementation of the function startOfConversion() is shown in Code 3.20. In line 3, the message
“Please press Next Step Button (B1 USER)” is sent over uartUsb. Line 4 is used to wait until the
nextStepButton is pressed. In line 5, a message is sent to indicate that the conversion has started. On
line 6, the reading of terminal 2 of the potentiometer is stored in the variable analogInput. Finally, lines
7 to 9 turn on startofConversionLed for one second.

120

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10

void startOfConversion()
{
 uartUsb.write("Please press Next Step Button (B1 USER)\r\n\r\n" , 43);
 while (!nextStepButton) {};
 uartUsb.write("Conversion started\r\n\r\n" , 22);
 analogInput = potentiometer.read();
 startOfConversionLed = ON;
 delay(1000);
 startOfConversionLed = OFF;
}

Code 3.20 Implementation of the function startOfConversion().

In Code 3.21, the implementation of the function resetIterativeConversionController() is shown. On line
3, a local integer variable named I is declared. This variable is used from line 4 to 6 in order to store a
0 in each of the NUMBER_OF_BITS positions of DACInput. Finally, in line 7, a message indicating that
DACinput has been reset is sent by uartUsb.

1
2
3
4
5
6
7
8

void resetIterativeConversionController()
{
 int i;
 for (i = 0; i < NUMBER_OF_BITS; i++) {
 DACInput[i]=0;
 }
 uartUsb.write("DACinput reseted\r\n\r\n" , 20);
}

Code 3.21 Implementation of the function resetIterativeConversionController().

Code 3.22 shows the implementation of the function iterativeConversionControllerStep(). It can be seen
in line 3 that if comparatorOutput is equal to 1, then 1 is returned (line 4), and if comparatorOutput is
not equal to 1, then 0 is returned (line 6).

1
2
3
4
5
6
7
8

bool iterativeConversionControllerStep()
{
 if (comparatorOutput == 1) {
 return 1;
 } else {
 return 0;
 }
}

Code 3.22 Implementation of the function iterativeConversionControllerStep().

The implementation of the function digitalToAnalogConverter() is shown in Code 3.23. Three variables
are declared in lines 3 to 5: a float called output, which is initialized to 0 and is used to compute the
output value; an integer variable called power, which is initialized to 1 and is used to implement some
mathematical operations; and an integer auxiliary variable called i. The for loop on line 7 is used to
implement the operation between lines 8 and 14 NUMBER_OF_BITS times. The condition inside the

Chapter 3 | Time Management and Analog Signals

121

if statement on line 8 is true only when the variable i has the same value as “NUMBER_OF_BITS -
conversionStep”. For example, in the first conversion step the variable conversionStep is equal to 1. Then,
considering that NUMBER_OF_BITS is defined as 12, “NUMBER_OF_BITS - conversionStep” is equal to
11. So the condition “i == NUMBER_OF_BITS - conversionStep” is only valid for i being 11. In this way,
considering that at the beginning all the positions of DACInput are equal to 0, after 11 executions of
line 11 with i varying from 0 to 10, output will be equal to 0 and power will be equal to 211. Then, with
i being 11, 211 (2048) will be added to output and, therefore, the return value (line 16) will be 0.5001
(2048/4095).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

float digitalToAnalogConverter()
{
 float output = 0;
 int power = 1;
 int i;

 for (i=0; i<NUMBER_OF_BITS; i++) {
 if (i == (NUMBER_OF_BITS - conversionStep)) {
 output += 1*power;
 } else {
 output += DACInput[i]*power;
 }
 power *= 2;
 }

 return output / MAX_RESOLUTION;
}

Code 3.23 Implementation of the function digitalToAnalogConverter().

In Code 3.24, the implementation of the analogComparator() function is shown. It returns 1 if
“analogInput >= DACOutput” and returns 0 otherwise.

1
2
3
4
5
6
7
8

bool analogComparator()
{
 if (analogInput >= DACOutput) {
 return 1;
 } else {
 return 0;
 }
}

Code 3.24 Implementation of the function analogComparator().

The implementation of the function showConversionStatus() is shown in Code 3.25. Lines 5 to 10 are
used to send the current value of conversionStep, analogInput, and DACOutput over uartUsb. On line 11,
the message “DAC Input:” and then one after the other “1” and “0” are sent, depending on the content
of each of the positions of the array DACInput (lines 13 to 19). Line 20 is used to send a message that
contains only a vertical separation. A delay of one second is introduced in line 21, then in line 22
stepOfConversion is turned ON and waits until the nextStepButton is pressed (line 23) to turn it OFF
(line 24).

122

A Beginner’s Guide to Designing Embedded System Applications

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void showConversionStatus()
{
 int i;
 char str[30];
 sprintf (str, "Conversion step: %i\r\n", conversionStep);
 uartUsb.write(str, strlen(str));
 sprintf (str, "Analog Input: %.3f\r\n", analogInput);
 uartUsb.write(str, strlen(str));
 sprintf (str, "DAC Output: %.3f\r\n", DACOutput);
 uartUsb.write(str, strlen(str));
 uartUsb.write("DAC Input: " , 11);

 for (i=1; i<=NUMBER_OF_BITS; i++) {
 if (DACInput[NUMBER_OF_BITS-i] == 1) {
 uartUsb.write("1" , 1);
 } else {
 uartUsb.write("0" , 1);
 }
 }
 uartUsb.write("\r\n\r\n" , 4);
 delay(1000);
 stepOfConversionLed = ON;
 while (!nextStepButton);
 stepOfConversionLed = OFF;
}

Code 3.25 Implementation of the function showConversionStatus().

Finally, in Code 3.26, the implementation of the function endOfConversion() is shown. It is quite
similar to the implementation of the function showConversionStatus(). The differences are that there
is now an “End of conversion message” on line 4 and endOfConversionLed is turned on instead of
stepOfConversionLed. Additionally, DACInput is not shown because it is an internal value that has no
meaning once the conversion is finished.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void endOfConversion()
{
 char str[30];
 sprintf (str, "End of conversion\r\n\r\n");
 uartUsb.write(str, strlen(str));
 sprintf (str, "Analog Input: %.3f\r\n", analogInput);
 uartUsb.write(str, strlen(str));
 sprintf (str, "DAC Output: %.3f\r\n", DACOutput);
 uartUsb.write(str, strlen(str));

 endOfConversionLed = ON;
 delay(1000);
 endOfConversionLed = OFF;
}

Code 3.26 Implementation of the function endOfConversion().

Chapter 3 | Time Management and Analog Signals

123

3.4 Case Study

3.4.1 Vineyard Frost Prevention

In this chapter, a temperature sensor was connected to the NUCLEO board and the measured
temperature was sent to a PC using serial communication. In this way, the alarm was activated if over
temperature was detected, and using a serial terminal, it was possible to read the temperature on the
PC. A vineyard frost prevention system, where low temperatures are detected, built with Mbed and
containing some similar features, can be found in [9]. Figure 3.11 shows a representation of the system.

TagID#12245

Temperature over time (last 14 days)

Map view

Humidity over time (last 14 days)

TagID#12246

TagID#12247

TagID#12245

TagID#12246

TagID#12247

Temperature

Temperature

Temperature

°C

°C

°C

%

%

%

Humidity

Humidity

Humidity

20 40

20 40

20 40

50 100

50 100

50 100

10 50

10 50

10 50

25 150

25 150

25 150

0 60

0 60

0 60

0 200

0 200

0 200

30

30

30

75

75

75

50

45

35

30

25

20

15

10

5

0

90

70

60

50

40

30

20

10

0

Tues Wed Thu Fri Sat SunMon

Tues Wed Thu Fri Sat SunMon

Tues Wed Thu Fri Sat SunMon

Tues Wed Thu Fri Sat SunMon

TagID#12252

TagID#12251

TagID#12250TagID#12249

TagID#12248

TagID#12247

TagID#12246

TagID#12245

Figure 3.11 “Vineyard frost prevention” built with Mbed contains elements introduced in this chapter.

The localized sensors of the vineyard frost prevention system are designed to be mounted over the
vines, and their measurements are transmitted via a wireless LoRa network. Therefore, specific
vines requiring protection from frost can be detected, which improves the yield of grapes. Better
performance is obtained in comparison with centralized sensing systems.

It can be appreciated that the functionality shown in Figure 3.11 is very similar to the functionality
implemented in this chapter (i.e., temperature measurement plus results displayed on a PC). The
following chapters will explain how to implement a wireless connection to the NUCLEO board and will
also introduce the knowledge required to understand the use and utility of some other technologies
mentioned in [9], such as LoRa networking.

Proposed Exercises

1. Does the vineyard frost prevention system measure any other variables besides temperature?

2. Is the core of the microcontroller used by the vineyard frost prevention system the same as the
core of the STM32 microcontroller of the NUCLEO Board?

124

A Beginner’s Guide to Designing Embedded System Applications

Answers to the Exercises

1. The vineyard frost prevention system is also provided with humidity sensors.

2. The vineyard frost prevention system is based on an Arm Cortex-M3 running at 32 MHz, while the
NUCLEO board has an Arm Cortex-M4 that can run at 180 MHz. This implies that the NUCLEO
board is provided with a more powerful processor that runs up to six times faster.

 References
[1] “LM35 data sheet, product information and support | TI.com”. Accessed July 9, 2021.

https://www.ti.com/product/LM35

[2] “MQ2 Gas Sensor Pinout, Features, Equivalents & Datasheet”. Accessed July 9, 2021.
https://components101.com/sensors/mq2-gas-sensor

[3] “List of integrated circuit packaging types - Wikipedia”. Accessed July 9, 2021.
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types

[4] “What is MOSFET: Symbol, Working, Types & Different Packages”. Accessed July 9, 2021.
https://components101.com/articles/mosfet-symbol-working-operation-types-and-applications

[5] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[6] “printf - C++ Reference”. Accessed July 9, 2021.
https://www.cplusplus.com/reference/cstdio/printf/

[7] “mbed-os/README.md at master · ARMmbed/mbed-os · GitHub”. Accessed July 9, 2021.
https://github.com/ARMmbed/mbed-os/blob/master/platform/source/minimal-printf/README.
md#usage

[8] “Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs”. Accessed
July 9, 2021.
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf

[9] “Vineyard frost prevention | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/vineyard-frost-prevention/

http://paperpile.com/b/bGTbn5/XKJz
https://www.ti.com/product/LM35
https://www.ti.com/product/LM35
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/sensors/mq2-gas-sensor
https://components101.com/sensors/mq2-gas-sensor
http://paperpile.com/b/bGTbn5/XKJz
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/articles/mosfet-symbol-working-operation-types-and-applications
https://components101.com/articles/mosfet-symbol-working-operation-types-and-applications
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
https://www.cplusplus.com/reference/cstdio/printf/
https://www.cplusplus.com/reference/cstdio/printf/
http://paperpile.com/b/bGTbn5/XKJz
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
https://pdfserv.maximintegrated.com/en/an/AN1080.pdf
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/vineyard-frost-prevention/
https://os.mbed.com/built-with-mbed/vineyard-frost-prevention/

Finite-State Machines and
the Real-Time Clock

Chapter 4

126

A Beginner’s Guide to Designing Embedded System Applications

4.1 Roadmap

4.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect matrix keypads to the NUCLEO board.

 n Summarize the fundamentals of programs based on finite-state machines (FSMs).

 n Develop programs that implement FSMs with the NUCLEO board.

 n Implement programs that make use of the real-time clock (RTC).

 n Use pointers to manage character strings.

4.1.2 Review of Previous Chapters

In previous chapters, many features were added to the smart home system. Those features were
controlled by a set of buttons, which in some cases had to be pressed in a particular order and in
other cases had to be pressed at the same time (e.g., A + B + Enter or A + B + C + D). Pressing multiple
buttons at the same time can be both difficult and impractical. It is, therefore, desirable to find a more
convenient way to control the system.

An alarm was also included in the system and could be activated due to gas detection, over
temperature detection, or the simultaneous occurrence of both. In the current implementation, the
system has no way to record which alarms have been triggered or which events triggered those alarms.

4.1.3 Contents of This Chapter

As the complexity of the system increases, it becomes necessary to introduce more powerful
techniques in order to sustain software maintainability and increase flexibility. In this chapter, the
concept of a finite-state machine (FSM) is introduced and its support in organizing programs will be
described.

FSMs are introduced by means of a new feature that is added to the system: the “double-press”
functionality on the Enter button. Using this, the Enter button can be pressed twice consecutively to
turn off the Incorrect code LED. This improvement will be accompanied by the use of a matrix keypad
instead of buttons connected to the breadboard. This replacement will be completed gradually through
the chapter, as new concepts must be developed to fully incorporate the usage of the matrix keypad.

Finally, the real-time clock (RTC) of the STM32 microcontroller will be used to incorporate a time
stamp into the events that are detected by the smart home system. In this way, it will be possible,
for example, to register or log the time and date of the alarm activations and access this information
from the PC.

Chapter 4 | Finite-State Machines and the Real-Time Clock

127

WaRning: The program code of the examples introduced in this chapter gets
quite large. For example, the program code in Example 4.4 has almost 600 lines. The
reader will see that it is not easy to follow a program with so many lines in a single
file. This problem will be tackled in the next chapter, where modularization applied to
embedded systems programming is introduced in order to reorganize the program
code into smaller files. In this way, the learn-by-doing principle is followed.

4.2 Matrix Keypad Reading with the nUCLEO Board

4.2.1 Connect a Matrix Keypad and a Power Supply to the Smart Home System

In this chapter, more buttons will be added to the alarm control panel of the smart home system, as
shown in Figure 4.1. The aim is to improve the functionality and to allow the use of numeric codes as is
common in this type of system.

Alarm control panel

Alarm controller

Gas etectord Alarm

PC

Over
emperaturet

etectord

°F
°C
/

A321

B654

C987

D#0*

Incorrect Code

System Blocked

Figure 4.1 The smart home system is now connected to a matrix keypad.

It will also be explained through the examples how an FSM can be used to improve the way in which
the numeric code is entered. By using an FSM it will be possible to enter the digits of the code one
after the other. This contrasts with the method of pressing multiple buttons at once, as in Chapter 1.

To implement the new functionality, a matrix keypad such as the one described in [1] should be
connected to the smart home system, as shown in Figure 4.2. An MB102 module, such as the
one presented in [2], should also be connected. Matrix keypads are usually found in calculators,
microwaves, door locks, and similar devices. They are available in different sizes, but 4 × 4 and 4 × 3
are the most common. The MB102 module is a breadboard power supply used to avoid overloading
power supplied by the NUCLEO board.

128

A Beginner’s Guide to Designing Embedded System Applications

In the following examples, new functions will be introduced into the program to gradually replace the
buttons connected to D4–D7 by the matrix keypad.

nOTE: The buttons connected to D2 and D4–D7 are used in Examples 4.1 and 4.2.
They can be removed from the setup in Example 4.3, as their functionality will be
assigned to the B1 User button and the matrix keypad, respectively.

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

5V

3.3V

GND

GND

D4 D5 D6 D7

D2

PE 10_

CN9 CN8

CN7CN10

GND

3.3V

Potentiometer

A0

PE 12_

A

B

C

D

87

1

4

2

5

3

6

9

0 #

5V PE 10_

Buzzer

MB-102

3V3 position = 3.3V

5V position

Rows:
PB_3, PB_5,
PC_7, PA_15

Columns:
PB_12, PB_13,
PB_15, PC_6

Micro USB to
USB cable

connected to PC

Mini USB to USB cable
connected to smartphone
charger

MQ-2
Gas sensor

-2MQ

GND

5V

L
35

M

5V

GND

A1

Temperature
sensor

LM 35

DO

CN7

+

--

a

2
8

2
9

3
0

3
V
3

5
V

+

--

2
8

2
9

3
0

j

3
V
3

5
V

Figure 4.2 The smart home system is now connected to a matrix keypad.

Chapter 4 | Finite-State Machines and the Real-Time Clock

129

Figure 4.3 shows how to use a 90-degree 2.54 mm (0.1”) pitch pin header to prepare the connector of
the matrix keypad for the proposed setup.

Figure 4.3 Detail showing how to prepare the matrix keypad connector using a pin header.

A diagram illustrating the connections of the matrix keypad is shown in Figure 4.4. It can be seen that
four pins are used for the rows (R1–R4) and four pins are used for the columns (C1–C4).

Figure 4.4 Diagram of the connections of the matrix keypad.

130

A Beginner’s Guide to Designing Embedded System Applications

The internal connections of the matrix keypad are shown in Figure 4.5. For example, when key “1” is
pressed, a connection is established between R1 and C1; when key “2” is pressed, R1 is connected to C2.

In Figure 4.5, the connections of the NUCLEO board and the matrix keypad are also shown. To scan if
key “1” is pressed, a 0 V signal is connected to PB_3 (which is connected to R1), and the state of PB_12
(which is connected to C1) is read. If PB_12 is OFF, it means that key “1” is pressed; otherwise it is
not pressed. This is because .mode(PullUp) is used to configure the digital inputs that are used (PB_12,
PB_13, PB_15, and PC_6). The same procedure is used to determine if key “2” is pressed, but replacing
PB_12 by PB_13, since PB_13 is connected to C2, as can be seen in Figure 4.5. To scan other keys, the
corresponding rows and columns should be used.

Figure 4.5 Diagram of the connections between the matrix keypad and the NUCLEO board.

Chapter 4 | Finite-State Machines and the Real-Time Clock

131

nOTE: The use of a matrix for the connection of the keys of the keypad allows a
reduction in the number of wires that are used to get the state of the keys. For
example, instead of using 17 wires to read 16 keys (one for each key and one for
GND), in Figure 4.5, 8 wires are used to read 16 keys.

The following subsection explains how to test if the matrix keypad is working properly. In addition,
the examples explain how to tackle glitches and bounces in the signal, which are common in any types
of keys or buttons, as shown in Figure 4.6. Glitches are unexpected variations in the signal due to
electrical noise, while bounces are a consequence of the spring that is part of the key or button.

Typically, a glitch lasts for less than 1 millisecond, while a bounce can last up to 30 milliseconds. This
chapter will explain how the signal can be processed, using an FSM, in order to distinguish between a
key or button being pressed and a glitch or a bounce. By filtering glitches and bounces using software,
it is possible to avoid, or at least reduce, the usage of electronic components for filtering purposes.

nOTE: The voltage levels shown in Figure 4.6 correspond to the connections in
Figure 4.5. The techniques that are explained in this chapter can also be applied if the
voltages are reversed in such a way that the signal is 0 V if the key or button is not
pressed and 3.3 V if it is pressed, as in the previous chapters.

3.3V

V

t0V

Button is not being pressed Button is releasedButton is pressed (and held pressed)

Bounce

Bounce

Glitch

Figure 4.6 Voltage signal over time for a given button, including typical glitches and bounces.

nOTE: In previous chapters, glitches and bounces caused no problems as the system
behavior was specially designed in order to avoid problems regarding unwanted
consecutive readings of the buttons. For example, the Enter and A, B, C, and/or D
buttons were used to enter a code. Therefore, once the buttons had been read, it
didn’t matter if those buttons were held down for a long time because before entering
a new code, the Enter button should be released and A + B + C + D all pressed
together. In this chapter, the keys of the matrix keypad will be pressed one after the
other, so glitches and bounces could be interpreted as a key being pressed many
times, leading to unexpected behavior of the system.

132

A Beginner’s Guide to Designing Embedded System Applications

In Figure 4.7, a diagram of the MB102 module is shown. As mentioned previously, this power supply
module is used to avoid overloading the capability of the 3.3 V and 5 V pins of the NUCLEO board. In
[3] it is stated: “Caution: In case the maximum current consumption of the STM32 Nucleo-144 board
and its shield boards exceeds 300 mA, it is mandatory to power the STM32 Nucleo-144 board with
an external power supply connected to E5V, VIN or +3.3 V.” As the 300 mA limit will be exceeded in
the next chapters, hereafter all the elements connected to the NUCLEO board will be powered by the
MB102 module, as shown in Figure 4.2. This can provide up to 700 mA [2].

The MB102 module can be supplied either by a standard USB connector or by a 7 to 12 V power
supply, as shown in Figure 4.7. The diagram also shows that this module has many 3.3 V and 5 V
outputs, some fixed and some selectable.

WaRning: The selectable outputs should be configured as indicated in Figure 4.7.
Otherwise, some modules may be harmed.

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

Voltage
selectors

Output
Power

Fixed
5V

Fixed
3.3V

Input
Power
options

5V
Mini

USB-B

7 to 12 V
Jack

Selectable
5V or 3.3V

Selectable
5V or 3.3V

Figure 4.7 Diagram of the MB102 module.

4.2.2 Test the Operation of the Matrix Keypad and the RTC

This subsection explains how to load a program onto the STM32 microcontroller in order to test if the
matrix keypad that has been connected is working properly. It will also show how to configure the RTC
of the STM32 microcontroller. The serial terminal will display the keys that are pressed on the matrix
keypad, and the PC keyboard will be used to configure the date and time of the RTC. The .bin file of the
program “Subsection 4.2.2” should be downloaded from the URL available in [4] and dragged onto the
NUCLEO board.

Chapter 4 | Finite-State Machines and the Real-Time Clock

133

In Table 4.1, the available commands for the program that is used in this subsection are shown. If the
“k” key is pressed on the PC keyboard, then the buttons pressed on the matrix keypad are shown on
the serial terminal. This behavior continues until “q” is pressed on the PC keyboard.

Table 4.1 Available commands for the program used to test the matrix keypad and to configure the RTC.

Key pressed Description of the commands

k Show the keys pressed on the matrix keypad

q Quit the k command

s Set the current date and time

t Get the current date and time

Press the “s” key and follow the instructions to set the current date and time for the RTC. Then press
the “t” key to get the current date and time. Wait for a few seconds and press “t” again in order to
verify that the RTC is working properly. The new date and time shown in the PC should reflect the
time progression.

WaRning: The NUCLEO board must be powered in order to keep the RTC working.
If the power supply is removed, the time and date of the RTC have to be set again.

Example 4.1: Turn Off the incorrect Code LED by Double-Pressing the Enter Button

Objective

Introduce enumerated data type definitions and the implementation of FSMs.

Summary of the Expected Behavior

To turn off the Incorrect code LED, the Enter button (B1 USER button of the NUCLEO board) must
be double-pressed (pressed twice consecutively). This replaces simultaneously pressing the buttons
connected to D4–D7 (A + B + C + D) as implemented in Chapter 1.

Test the Proposed Solution on the Board

Import the project “Example 4.1” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Press the Alarm test button (button connected to D2) to activate the alarm.
The Alarm LED (LD1) should start blinking, at a rate of 100 ms on and 100 ms off. Enter an incorrect
deactivation code for the alarm by means of simultaneously pressing the buttons A + C + Enter on
the control panel (i.e., D4 + D6 + B1 USER button). The Incorrect code LED (LD3) will turn on. Double
press the Enter button (B1 USER button). The Incorrect code LED (LD3) turns off to indicate that a
new attempt to enter the code can be made. Deactivate the alarm by simultaneously pressing the
buttons A + B + Enter on the control panel (i.e., D4 + D5 + B1 USER button).

134

A Beginner’s Guide to Designing Embedded System Applications

Discussion of the Proposed Solution

The proposed solution is based on identifying the state of the Enter button among its four possible
states:

 n Button released (it is stable “up”)

 n Button being pressed (it has just been pressed and is moving from “up” to “down”, i.e., is “falling”)

 n Button pressed (it is stable “down”)

 n Button being released (it has just been released and is moving from “down” to “up”, i.e., is “rising”)

nOTE: As shown in section 4.2.1, the transition from being “down” to being “up” (or
the other way around) entails multiple fast bounces between the two states. For this
reason, a debounce sequence is used in order to avoid treating bounces as multiple
presses of the button.

Implementation of the Proposed Solution

Table 4.2 shows the DEBOUNCE_BUTTON_TIME_MS #define that is used to implement the debounce
of the B1 USER button. A value of 40 is used to give a safety margin above the bounce time of 30
milliseconds discussed in subsection 4.2.1.

A new section that is introduced in this chapter is also shown in Table 4.2. This section is called
“Declaration of public data types” and is used to implement the definition of new data types that are
specified by the programmer. The data type buttonState_t is declared using an enumerated data type
and four possible values (known as enumerators): BUTTON_UP, BUTTON_FALLING, BUTTON_DOWN,
and BUTTON_RISING. The suffix “_t” is used to indicate that buttonState_t is a user-defined data type.

The variable accumulatedDebounceButtonTime, declared as shown in Table 4.2, will be used to
account for the debounce time, while the variable numberOfEnterButtonReleasedEvents will be used to
implement the double-pressed functionality. In addition, a variable enterButtonState of the data type
buttonState_t is declared.

In the section “Declarations (prototypes) of public functions”, three new functions are declared.
The function lm35ReadingsArrayInit() was introduced and discussed in the proposed exercise of
Example 2.5 and therefore is not discussed here again. The functions debounceButtonInit() and
debounceButtonUpdate() will be used to implement the debounce.

Finally, a call to the function debounceButtonInit() is included in the function inputsInit().

Chapter 4 | Finite-State Machines and the Real-Time Clock

135

Table 4.2 Sections and functions in which lines were added to Example 3.5.

Section or function Lines that were added

Definitions #define DEBOUNCE_BUTTON_TIME_MS 40

Declaration of public data types typedef enum {

 BUTTON_UP

 BUTTON_FALLING

 BUTTON_DOWN

 BUTTON_RISING

} buttonState_t;

Declaration and initialization of public global variables int accumulatedDebounceButtonTime = 0;

int numberOfEnterButtonReleasedEvents = 0;

buttonState_t enterButtonState;

Declarations (prototypes) of public functions void lm35ReadingsArrayInit();

void debounceButtonInit();

bool debounceButtonUpdate();

Function inputsInit() debounceButtonInit();

In Code 4.1, the function debounceButtonInit() is shown. This function is used to establish the initial
state of the Enter button. If the Enter button is pressed (line 3), enterButtonState is set to
BUTTON_DOWN (line 4). If it is not pressed, enterButtonState is set to BUTTON_UP (line 6).

1
2
3
4
5
6
7
8

void debounceButtonInit()
{
 if(enterButton) {
 enterButtonState = BUTTON_DOWN;
 } else {
 enterButtonState = BUTTON_UP;
 }
}

Code 4.1 Details of the function debounceButtonInit().

In Code 4.2, the new implementation of the function alarmActivationUpdate() is shown. To allow a new
code to be entered after an incorrect code has been entered by pressing the Enter button (B1 USER)
twice, lines 4 to 12 are changed from Example 3.5. If the variable numberOfIncorrectCodes is less than
5, a Boolean variable called enterButtonReleasedEvent is declared (line 4) and is assigned the value
returned by the function debounceButtonUpdate(). The implementation of debounceButtonUpdate() will
be discussed in Code 4.3.

On line 5, a check is made as to whether there is a new button released event. If so, line 6 evaluates
whether incorrectCodeLed is ON, and if so, the variable numberOfEnterButtonReleasedEvents is
increased by one. Line 8 evaluates whether there were two or more enter button released events, and
if so then the Incorrect code LED is turned off and numberOfEnterButtonReleasedEvents is set to zero
(line 9 and line 10). This implements the double-press functionality for the Enter button.

nOTE: In the proposed implementation it doesn’t matter how much time elapses
between two consecutive presses of the Enter button; they will be considered a
double-press.

136

A Beginner’s Guide to Designing Embedded System Applications

Lines 12 to 25 show the implementation of the Incorrect code LED deactivation by means of the
control panel. The statements are very similar to those used in previous chapters. First, the variable
alarmState is evaluated (line 13) and, if the alarm LED is on, then the states of the buttons A to D are
loaded into the corresponding positions of the array buttonsPressed. Then, the function areEqual()
is used to compare the buttons pressed on the control panel with the corresponding code, and if
they are equal, then alarmState is set to OFF and numberOfIncorrectCodes is set to zero. Otherwise,
incorrectCodeLed is turned on, and the variable numberOfIncorrectCodes is incremented.

Finally, on line 28 it can be seen that if numberOfIncorrectCodes is greater than or equal to 5, then
systemBlockedLed is set to ON.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

void alarmDeactivationUpdate()
{
 if (numberOfIncorrectCodes < 5) {
 bool enterButtonReleasedEvent = debounceButtonUpdate();
 if(enterButtonReleasedEvent) {
 if(incorrectCodeLed) {
 numberOfEnterButtonReleasedEvents++;
 if(numberOfEnterButtonReleasedEvents >= 2) {
 incorrectCodeLed = OFF;
 numberOfEnterButtonReleasedEvents = 0;
 }
 } else {
 if (alarmState) {
 buttonsPressed[0] = aButton;
 buttonsPressed[1] = bButton;
 buttonsPressed[2] = cButton;
 buttonsPressed[3] = dButton;
 if (areEqual()) {
 alarmState = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 }
 }
 }
 } else {
 systemBlockedLed = ON;
 }
}

Code 4.2 Modifications introduced in the function alarmDeactivationUpdate().

The implementation of the function debounceButtonUpdate() is shown in Code 4.3. On line 3, the
Boolean variable enterButtonReleasedEvent is declared and initialized to false. On line 5, there is a
switch statement over the variable enterButtonState. In the case of enterButtonState being equal to
BUTTON_UP (line 6), the program verifies if the Enter button has been pressed (line 7). If so, the
variable enterButtonState is set to BUTTON_FALLING (line 8), and accumulatedDebounceTime is set to
zero.

Chapter 4 | Finite-State Machines and the Real-Time Clock

137

In the case of enterButtonState being equal to BUTTON_FALLING (line 13), the program first verifies
whether accumulatedDebounceTime is greater than or equal to DEBOUNCE_BUTTON_TIME_MS. If
the Enter button is being pressed (enterButton is true, assessed in line 15), then enterButtonState is
set to BUTTON_DOWN; otherwise it is set to BUTTON_UP. On line 21, accumulatedDebounceTime is
incremented by TIME_INCREMENT_MS.

nOTE: In this proposed solution, 40 is used in the definition of
DEBOUNCE_BUTTON_TIME_MS. Depending on the matrix keypad, this time might
be too small or too big. The user is encouraged to modify this value if the program
behavior is not as expected.

On line 25 it can be seen that the case for BUTTON_DOWN is very similar to the case for
BUTTON_UP. The difference is that if enterButton is not true (i.e., is false), then enterButtonState is
set to BUTTON_RISING. The case for BUTTON_RISING on line 32 is also very similar to the case
for BUTTON_FALLING. One difference is that !enterButton is used in the if statement, as well as the
variable enterButtonReleasedEvent being set to true on line 36.

nOTE: It should be noted that the following statements are all equivalent:
if (!enterButton), if (enterButton == 0), if (enterButton == false).

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

bool debounceButtonUpdate()
{
 bool enterButtonReleasedEvent = false;
 switch(enterButtonState) {

 case BUTTON_UP:
 if(enterButton) {
 enterButtonState = BUTTON_FALLING;
 accumulatedDebounceButtonTime = 0;
 }
 break;

 case BUTTON_FALLING:
 if(accumulatedDebounceButtonTime >= DEBOUNCE_BUTTON_TIME_MS) {
 if(enterButton) {
 enterButtonState = BUTTON_DOWN;
 } else {
 enterButtonState = BUTTON_UP;
 }
 }
 accumulatedDebounceButtonTime = accumulatedDebounceButtonTime +
 TIME_INCREMENT_MS;
 break;

 case BUTTON_DOWN:
 if(!enterButton) {
 enterButtonState = BUTTON_RISING;
 accumulatedDebounceButtonTime = 0;
 }
 break;

 case BUTTON_RISING:
 if(accumulatedDebounceButtonTime >= DEBOUNCE_BUTTON_TIME_MS) {
 if(!enterButton) {

138

A Beginner’s Guide to Designing Embedded System Applications

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 enterButtonState = BUTTON_UP;
 enterButtonReleasedEvent = true;
 } else {
 enterButtonState = BUTTON_DOWN;
 }
 }
 accumulatedDebounceButtonTime = accumulatedDebounceButtonTime +
 TIME_INCREMENT_MS;
 break;

 default:
 debounceButtonInit();
 break;
 }
 return enterButtonReleasedEvent;
}

Code 4.3 Details of the function debounceButtonUpdate().

nOTE: In Code 4.3, the four different states are indicated by BUTTON_UP,
BUTTON_FALLING, BUTTON_DOWN, and BUTTON_RISING. In the Under the Hood
section, these four states and their corresponding transitions are shown alongside
the signal variations over time, in order to show in more detail how the glitches and
bounces are processed.

Proposed Exercise

1. How can the code be modified in order to properly debounce a button with a bouncing time of
about 400 ms?

Answer to the Exercise

1. The value of DEBOUNCE_BUTTON_TIME_MS could be increased above 400. It should be noted
that if the user presses and releases the Enter button in less than 400 ms with this implemented,
then the implemented code will ignore the pressing of the Enter Button. The reader is encouraged
to test this behavior.

Example 4.2: introduce the Usage of the Matrix Keypad

Objective

Get familiar with the usage of FSMs.

Summary of the Expected Behavior

The matrix keypad buttons labeled A, B, C, and D should replace the functionality of the buttons
connected to D4, D5, D6, and D7, respectively.

Test the Proposed Solution on the Board

Import the project “Example 4.2” using the URL available in [4], build the project, and drag the .bin file

Chapter 4 | Finite-State Machines and the Real-Time Clock

139

onto the NUCLEO board. Press the Alarm test button (button connected to D2) to activate the alarm.
The Alarm LED (LD1) should start blinking at a rate of 100 ms on and 100 ms off. Enter an incorrect
code to deactivate the alarm by means of pressing first the “A” key, then the “C” key, and finally the
“#” key, which is used as the Enter button. The Incorrect code LED (LD3) will turn on. Double click the
Enter button (the “#” key). The Incorrect code LED (LD3) turns off to indicate that a new attempt to
enter the code can be made. Press the keys “A”, “B”, then “#” and the alarm should deactivate.

Discussion of the Proposed Solution

The proposed solution is based on an FSM that has three states. One state is used to scan the matrix
keypad, another state is used to debounce the key pressed at the matrix keypad, and the last state is
used to determine if a key has been held pressed or released.

Implementation of the Proposed Solution

In Table 4.3, the #defines that were added to Example 4.1 are shown. The numbers of rows and
columns have been defined as four in both cases. A new enumerated data type has also been defined,
named matrixKeypadState_t, having the three states that will be used in the FSM (MATRIX_KEYPAD_
SCANNING, MATRIX_KEYPAD_DEBOUNCE, and MATRIX_KEYPAD_KEY_HOLD_PRESSED).

In the section “Declaration and initialization of public global objects,” two arrays of objects are
declared. One, keypadRowPins, will be used to introduce signals into the matrix keypad by means of
pins PB_3, PB_5, PC_7, and PA_15. This array is declared as an array of DigitalOut. The second array,
keypadColPins, will be used to read the signals at the pins PB_12, PB_13, PB_15, and PC_6. This is
declared as an array of DigitalIn. Note that this is the first time in the book that arrays of DigitalIn and
DigitalOut objects are created.

The variables accumulatedDebounceMatrixKeypadTime and matrixKeypadLastKeyPressed are
declared and initialized to zero and the null character (‘\0’), respectively. An array of char,
matrixKeypadIndexToCharArray, is declared and initialized and will be used to identify the keys being
pressed on the matrix keypad. Finally, a variable of the user-defined type matrixKeypadState_t is
declared as matrixKeypadState.

In the section “Declarations (prototypes) of public functions,” three new functions are declared:
matrixKeypadInit(), matrixKeypadScan(), and matrixKeypadUpdate(). These functions are explained in the
example.

Finally, Table 4.3 shows that a call to the function matrixKeypadInit() is included in the function
inputsInit().

140

A Beginner’s Guide to Designing Embedded System Applications

Table 4.3 Sections and functions in which lines were added to Example 4.1.

Section or function Lines that were added

Definitions #define KEYPAD_NUMBER_OF_ROWS 4

#define KEYPAD_NUMBER_OF_COLS 4

Declaration of public data types typedef enum{

 MATRIX_KEYPAD_SCANNING,

 MATRIX_KEYPAD_DEBOUNCE,

 MATRIX_KEYPAD_KEY_HOLD_PRESSED

} matrixKeypadState_t;

Declaration and initialization of public global
objects

DigitalOut keypadRowPins[KEYPAD_NUMBER_OF_ROWS] =

 {PB_3, PB_5, PC_7, PA_15};

DigitalIn keypadColPins[KEYPAD_NUMBER_OF_COLS] =

 {PB_12, PB_13, PB_15, PC_6};

Declaration and initialization of public global
variables

int accumulatedDebounceMatrixKeypadTime = 0;

char matrixKeypadLastKeyPressed = '\0';

char matrixKeypadIndexToCharArray[] = {

 '1', '2', '3', 'A',

 '4', '5', '6', 'B',

 '7', '8', '9', 'C',

 '*', '0', '#', 'D',

};

matrixKeypadState_t matrixKeypadState;

Declarations (prototypes) of public functions void matrixKeypadInit();

char matrixKeypadScan();

char matrixKeypadUpdate();

Function inputsInit() matrixKeypadInit();

In Code 4.4, the new implementation of the function alarmDeactivationUpdate() is shown. The changes
begin on line 5, where a variable called keyReleased is defined and assigned the returned value of
the function matrixKeypadUpdate(). On line 6 it can be seen that if keyReleased is not equal to the null
character or '#', then there is a switch over keyReleased; if the key pressed is equal to “A”, “B”, “C”, or “D”,
then the corresponding position of the array buttonsPressed is set to 1.

On line 22 it is determined whether there was an Enter button released event or the “#” key was
pressed on the matrix keypad. If so, lines 23 to 27 are executed, having similar behavior to lines 6 to
10 of Code 4.2. The difference is that lines 28 to 31 set all the positions of the array buttonsPressed to
zero. Note that in the implementations of alarmDeactivationUpdate() used in previous chapters, it was
not necessary to set all the positions of the array buttonsPressed to zero because all the buttons were
read simultaneously. In the case of the matrix keypad, the keys are pressed one after the other, and
when a given key is pressed, a “1” is stored in the corresponding position of the buttonsPressed array.
For example, if “A” is pressed, a “1” is stored in buttonsPressed[0], and if “B” is pressed, a “1” is stored in
buttonsPressed[1]. Because of this, the array must be reset (i.e., all its positions set to zero) in order to
allow a new attempt to enter the code.

Note that because this implementation is the same, the order in which the keys are pressed, or even
if one of the keys is pressed many times, is irrelevant. For example, if the user presses the keys “A”,
“B”, “#”, “#” it will be considered a correct code, but “B”, “A”, “#”, “#” or “A”, “A”, “B”, “#”, “#” will also be
considered correct.

Chapter 4 | Finite-State Machines and the Real-Time Clock

141

The remaining lines of Code 4.4 are identical to the corresponding lines of Code 4.2.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

void alarmDeactivationUpdate()
{
 if (numberOfIncorrectCodes < 5) {
 bool enterButtonReleasedEvent = debounceButtonUpdate();
 char keyReleased = matrixKeypadUpdate();
 if(keyReleased != '\0' && keyReleased != '#') {
 switch (keyReleased) {
 case 'A':
 buttonsPressed[0] = 1;
 break;
 case 'B':
 buttonsPressed[1] = 1;
 break;
 case 'C':
 buttonsPressed[2] = 1;
 break;
 case 'D':
 buttonsPressed[3] = 1;
 break;
 }
 }
 if(enterButtonReleasedEvent || keyReleased == '#') {
 if(incorrectCodeLed) {
 numberOfEnterButtonReleasedEvents++;
 if(numberOfEnterButtonReleasedEvents >= 2) {
 incorrectCodeLed = OFF;
 numberOfEnterButtonReleasedEvents = 0;
 buttonsPressed[0] = 0;
 buttonsPressed[1] = 0;
 buttonsPressed[2] = 0;
 buttonsPressed[3] = 0;
 }
 } else {
 if (alarmState) {
 if (enterButtonReleasedEvent) {
 buttonsPressed[0] = aButton;
 buttonsPressed[1] = bButton;
 buttonsPressed[2] = cButton;
 buttonsPressed[3] = dButton;
 }
 if (areEqual()) {
 alarmState = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 }
 }
 }
 } else {
 systemBlockedLed = ON;
 }
}

Code 4.4 Details of the function alarmDeactivationUpdate().

Code 4.5 shows the implementation of the function matrixKeypadInit(). The initial state of
matrixKeypadState is set on line 3 to MATRIX_KEYPAD_SCANNING. On line 4, the variable pinIndex
is declared and set to zero. The for loop on line 5 is used to properly configure each of the pins of
keypadColPins.

142

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8

void matrixKeypadInit()
{
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 int pinIndex = 0;
 for(pinIndex=0; pinIndex<KEYPAD_NUMBER_OF_COLS; pinIndex++) {
 (keypadColPins[pinIndex]).mode(PullUp);
 }
}

Code 4.5 Details of the function matrixKeypadInit().

The implementation of the function matrixKeypadScan() is shown in Code 4.6. On lines 3 and 4, the
variables row and col are declared. They will be used as indexes in for loops to indicate which row and
column is being scanned. The variable i is used in another for loop, as is explained below.

On line 7, it can be seen that there is a for loop that is used to scan all the rows of the matrix keypad.
On line 9, the four keypad row pins are first set to ON by means of a for loop. On line 13, the pin of the
current row being scanned is set to OFF. On line 15, another for loop is used to scan all the columns,
one after the other. If a given key is being pressed, its value is returned on line 17 by returning the
value in the appropriate position of the array matrixKeypadIndexToCharArray. Otherwise, if no key is
being pressed in the matrix keypad, then the null character (‘\0’) is returned on line 21.

nOTE: Once a key press is detected, the scanning is stopped, as can be seen on line 17
of Code 4.6. In this way, if, for example, keys “1” and “2” are pressed simultaneously,
only key “1” is reported. In the same way, if keys “A” and “B” are pressed
simultaneously, only key “A” is reported.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

char matrixKeypadScan()
{
 int row = 0;
 int col = 0;
 int i = 0;

 for(row=0; row<KEYPAD_NUMBER_OF_ROWS; row++) {

 for(i=0; i<KEYPAD_NUMBER_OF_ROWS; i++) {
 keypadRowPins[i] = ON;
 }

 keypadRowPins[row] = OFF;

 for(col=0; col<KEYPAD_NUMBER_OF_COLS; col++) {
 if(keypadColPins[col] == OFF) {
 return matrixKeypadIndexToCharArray[row*KEYPAD_NUMBER_OF_ROWS + col];
 }
 }
 }
 return '\0';
}

Code 4.6 Details of the function matrixKeypadScan().

Chapter 4 | Finite-State Machines and the Real-Time Clock

143

Code 4.7 shows the implementation of the function matrixKeypadUpdate(). On lines 3 and 4, the
variables keyDetected and keyReleased are declared and initialized to the null character. On line 6
there is a switch over the variable matrixKeypadState. In the case of MATRIX_KEYPAD_SCANNING,
the matrix keypad is scanned, and the resulting value is stored in keyDetected. If no key was pressed
(identified on line 10), then matrixKeypadLastKeyPressed is assigned the value of keyDetected,
accumulatedDebounceMatrixKeypadTime is set to zero, and matrixKeypadState is set to MATRIX_
KEYPAD_DEBOUNCE.

In the case of MATRIX_KEYPAD_DEBOUNCE, if accumulatedDebounceMatrixKeypadTime is greater
than or equal to DEBOUNCE_BUTTON_TIME_MS, then the matrix keypad is scanned, and the
resulting value is stored in keyDetected (line 20). If keyDetected is equal to matrixKeypadLastKeyPressed,
then matrixKeypadState is set to MATRIX_KEYPAD_HOLD_PRESSED. Otherwise, matrixKeypadState
is set to MATRIX_KEYPAD_SCANNING. Finally, on line 27, accumulatedDebounceMatrixKeypadTime is
incremented.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

char matrixKeypadUpdate()
{
 char keyDetected = '\0';
 char keyReleased = '\0';

 switch(matrixKeypadState) {

 case MATRIX_KEYPAD_SCANNING:
 keyDetected = matrixKeypadScan();
 if(keyDetected != '\0') {
 matrixKeypadLastKeyPressed = keyDetected;
 accumulatedDebounceMatrixKeypadTime = 0;
 matrixKeypadState = MATRIX_KEYPAD_DEBOUNCE;
 }
 break;

 case MATRIX_KEYPAD_DEBOUNCE:
 if(accumulatedDebounceMatrixKeypadTime >=
 DEBOUNCE_BUTTON_TIME_MS) {
 keyDetected = matrixKeypadScan();
 if(keyDetected == matrixKeypadLastKeyPressed) {
 matrixKeypadState = MATRIX_KEYPAD_KEY_HOLD_PRESSED;
 } else {
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 }
 accumulatedDebounceMatrixKeypadTime =
 accumulatedDebounceMatrixKeypadTime + TIME_INCREMENT_MS;
 break;

 case MATRIX_KEYPAD_KEY_HOLD_PRESSED:
 keyDetected = matrixKeypadScan();
 if(keyDetected != matrixKeypadLastKeyPressed) {
 if(keyDetected == '\0') {
 keyReleased = matrixKeypadLastKeyPressed;
 }
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 break;

 default:
 matrixKeypadInit();
 break;
 }
 return keyReleased;
}

Code 4.7 Details of the function matrixKeypadUpdate().

144

A Beginner’s Guide to Designing Embedded System Applications

The case for MATRIX_KEYPAD_HOLD_PRESSED is shown on line 31. First, the matrix keypad is
scanned (line 32). If keyDetected is not equal to matrixKeypadLastKeyPressed and if keyDetected is equal
to the null character, then matrixKeypadLastKeyPressed is assigned to keyReleased. The fact that the
state remains in MATRIX_KEYPAD_HOLD_PRESSED avoids the issue of a key being held for a long
time and the same value being returned many times. In this way, it exits the state only if the pressed
key is released or if a key connected to a row or column with a “higher priority” in the scanning (i.e., a
lower number of row or col) is pressed.

Finally, matrixKeypadState is assigned to MATRIX_KEYPAD_SCANNING. This is done to allow the
detection of a new key being pressed, as the MATRIX_KEYPAD_SCANNING state is the only one in
which the FSM is waiting for a new key to be pressed.

Line 41 implements the “default” statement of the implementation of the FSM. It ensures that the
function matrixKeypadInit() is executed if for any reason the value of matrixKeypadState is neither
MATRIX_KEYPAD_SCANNING, MATRIX_KEYPAD_DEBOUNCE, nor MATRIX_KEYPAD_HOLD_
PRESSED.

nOTE: Defining a default case in the implementation of the FSM is a safety measure
that is strongly recommended to handle errors.

Finally, on line 45, the value of keyReleased is returned. This value was used in Code 4.4 as described
previously.

Proposed Exercise

1. What should be adapted in the code if a keypad having five rows and five columns is to be used?

Answer to the Exercise

1. The definitions KEYPAD_NUMBER_OF_ROWS and KEYPAD_NUMBER_OF_COLS should
be set to 5, and more elements should be added to keypadRowPins, keypadColPins, and
matrixKeypadIndexToCharArray.

Example 4.3: implementation of numeric Codes using the Matrix Keypad

Objective

Explore more advanced functionality regarding the usage of the matrix keypad.

Summary of the Expected Behavior

The code implemented in the previous example, based only on the keys A, B, C, and D, is replaced by a
numeric code that is entered by means of the matrix keypad.

Chapter 4 | Finite-State Machines and the Real-Time Clock

145

nOTE: In this example, the buttons connected to D4–D7 (aButton–dButton) are not
used anymore. Consequently, buttonBeingPressed will be replaced by keyBeingPressed,
as discussed below.

Test the Proposed Solution on the Board

Import the project “Example 4.3” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Press the Alarm test button (implemented hereafter with B1 USER button)
to activate the alarm. The Alarm LED (LD1) should start blinking at a rate of 100 ms on and 100 ms off.
Press the keys “1”, “8”, “0”, “5”, and “#” on the matrix keypad. The Alarm LED (LD1) should be turned off.
Press the Alarm test button to activate the alarm. The Alarm LED (LD1) should start blinking. Press
the keys “1”, “8”, “5”, “5” (incorrect code), and “#” on the matrix keypad. The Incorrect code LED (LD3)
should be turned on. Press “#” twice in the matrix keypad. The incorrect code LED (LD3) should be
turned off.

nOTE: The code “1805” is configured by default in this example; the user can change
it by pressing “5” on the PC keyboard. The code would be “1805” again after resetting
or powering off the NUCLEO board.

Press the Alarm test button again to activate the alarm. Now press the “4” key on the PC keyboard.
Type the code “1805” to deactivate the alarm. Now press the “5” key on the PC keyboard. The code
can be modified.

Discussion of the Proposed Solution

The proposed solution is based on the program code that was introduced in previous examples. By
means of the matrix keypad functionality that was presented in Example 4.1 and Example 4.2, the
keys pressed by the user are read and compared with the correct code (1805). The function uartTask()
is modified in order to adapt the commands related to pressing keys “4” and “5” on the PC keyboard.
These are the commands used to enter a code from the PC and to change the correct code from the
PC, respectively.

Implementation of the Proposed Solution

Table 4.4 shows the variables matrixKeypadCodeIndex and numberOfHashKeyReleasedEvents that
are declared in this example. The variable matrixKeypadCodeIndex will be used to keep track of the
buttons that are pressed on the matrix keypad. The variable numberOfHashKeyReleasedEvents will be
used to keep track of the number of times that the “#” key of the matrix keypad is pressed. In addition,
Table 4.4 shows that BUTTON1 is assigned to the alarmTestButton object. Therefore, B1 User is now
the Alarm test button and the button connected to D2 can be removed from the setup.

In Table 4.5, the definitions, variable names, and variable initializations that were modified are shown.
It can be seen that “button” was replaced by “key” and the array of char codeSequence is assigned
{ '1', '8', '0', '5' }. Note that it is not a string because it is not ended by a null character, ‘\0’. Because

146

A Beginner’s Guide to Designing Embedded System Applications

the functionality of the Enter button and the buttons connected to D4–D7 is replaced by the matrix
keypad, all the data types, variables, and functions related to them are removed. This is shown in
Table 4.6 and Table 4.7. Additionally, the implementations of the functions debounceButtonInit() and
debounceButtonUpdate() are removed.

nOTE: codeSequence and keyPressed are the only arrays of char in this book initialized
using = { ‘x’, ‘y’, ‘z’ }. In upcoming chapters, it will be shown how to assign values to an
array of char when it is used as a string.

Table 4.4 Sections in which lines were added to Example 4.2.

Section Lines that were modified

Declaration and initialization of public global variables int matrixKeypadCodeIndex = 0;

int numberOfHashKeyReleasedEvents = 0;

Declaration and initialization of public global objects DigitalIn alarmTestButton(BUTTON1);

Table 4.5 Definitions, variable names, and variable initializations that were modified from Example 4.2.

Declaration in Example 4.2 Declaration in Example 4.3

#define DEBOUNCE_BUTTON_TIME_MS 40 #define DEBOUNCE_KEY_TIME_MS 40

int buttonBeingCompared = 0; int keyBeingCompared = 0;

int codeSequence[NUMBER_OF_KEYS] =

{ 1, 1, 0, 0 };

char codeSequence[NUMBER_OF_KEYS] =

{ '1', '8', '0', '5' };

int buttonsPressed[NUMBER_OF_KEYS] =

{ 0, 0, 0, 0 };

char keyPressed[NUMBER_OF_KEYS] =

{ '0', '0', '0', '0' }

Table 4.6 Sections in which lines were removed from Example 4.2.

Section Lines that were removed

Declaration of public data types typedef enum {

 BUTTON_UP,

 BUTTON_DOWN,

 BUTTON_FALLING,

 BUTTON_RISING

} buttonState_t;

Declaration and initialization of public global objects DigitalIn enterButton(BUTTON1);

DigitalIn alarmTestButton(D2);

DigitalIn aButton(D4);

DigitalIn bButton(D5);

DigitalIn cButton(D6);

DigitalIn dButton(D7);

Declaration and initialization of public global variables int accumulatedDebounceButtonTime = 0;

int numberOfEnterButtonReleasedEvents = 0;

buttonState_t enterButtonState;

Declarations (prototypes) of public functions void debounceButtonInit();

bool debounceButtonUpdate();

Chapter 4 | Finite-State Machines and the Real-Time Clock

147

Table 4.7 Functions in which lines were removed from Example 4.2.

Section Lines that were removed

void inputsInit() aButton.mode(PullDown);

bButton.mode(PullDown);

cButton.mode(PullDown);

dButton.mode(PullDown);

debounceButtonInit();

Code 4.8 shows the new implementation of the function alarmDeactivationUpdate(). On line 3, the
number of incorrect codes is checked to see if it is less than 5. If so, the matrix keypad is read on
line 4. If there was a released key (i.e., keyReleased != '\0') and if the released key was not “#”, then
the keyReleased is assigned to the current position of the buttonsPressed array (line 6). On line 7, a
check is made to see if matrixKeypadCodeIndex is greater than or equal to NUMBER_OF_KEYS. If so,
matrixKeypadCodeIndex is set to zero, and if not, then it is incremented by one.

The remaining lines of Code 4.8 are identical to the corresponding lines of Code 4.2 except for the
removal of the lines related to the external buttons and the addition of line 26 that assigns 0 to
matrixKeypadCodeIndex.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

void alarmDeactivationUpdate()
{
 if (numberOfIncorrectCodes < 5) {
 char keyReleased = matrixKeypadUpdate();
 if(keyReleased != '\0' && keyReleased != '#') {
 keyPressed[matrixKeypadCodeIndex] = keyReleased;
 if(matrixKeypadCodeIndex >= NUMBER_OF_KEYS) {
 matrixKeypadCodeIndex = 0;
 } else {
 matrixKeypadCodeIndex++;
 }
 }
 if(keyReleased == '#') {
 if(incorrectCodeLed) {
 numberOfHashKeyReleasedEvents++;
 if(numberOfHashKeyReleasedEvents >= 2) {
 incorrectCodeLed = OFF;
 numberOfHashKeyReleasedEvents = 0;
 matrixKeypadCodeIndex = 0;
 }
 } else {
 if (alarmState) {
 if (areEqual()) {
 alarmState = OFF;
 numberOfIncorrectCodes = 0;
 matrixKeypadCodeIndex = 0;
 } else {
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 }
 }
 }
 } else {
 systemBlockedLed = ON;
 }
}

Code 4.8 Details of the function alarmDeactivationUpdate().

148

A Beginner’s Guide to Designing Embedded System Applications

In Code 4.9, the lines that were modified in the function uartTask() are shown. In the case of '4', the
user is asked to enter the four-digit numeric code (lines 2 and 3), and incorrectCode is set to false
(line 5). On line 7, there is a for loop, where the keys pressed on the PC keyboard are read until
NUMBER_OF_KEYS keys have been read sequentially. The read keys are stored in receivedChar (line
10) and compared with the corresponding position of codeSequence on line 11; incorrectCode is set to
true (line 12) if one of the keys does not match the code sequence. Line 14 is used to print a “*” on the
PC in correspondence with each key that is pressed.

If incorrectCode is equal to false on line 17, then the user is informed (line 18) and the corresponding
values of alarmState, incorrectCodeLed, and numberOfIncorrectCodes are set (lines 19 to 21).
Otherwise, if the code is incorrect, the user is informed (line 23), incorrectCodeLed is set to ON, and
numberOfIncorrectCodes is incremented by one.

In the case of ‘5’ (line 29), the user is asked to enter the new four-digit numeric code. The for loop from
lines 33 to 38 is used to get the keys and store them in codeSequence. Line 12 is used to inform the user
that the new code has been configured.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

case '4':
 uartUsb.write("Please enter the four digits numeric code ", 42);
 uartUsb.write("to deactivate the alarm: ", 25);

 incorrectCode = false;

 for (keyBeingCompared = 0;
 keyBeingCompared < NUMBER_OF_KEYS;
 keyBeingCompared++) {
 uartUsb.read(&receivedChar, 1);
 uartUsb.write("*", 1);
 if (codeSequence[keyBeingCompared] != receivedChar) {
 incorrectCode = true;
 }
 }

 if (incorrectCode == false) {
 uartUsb.write("\r\nThe code is correct\r\n\r\n", 25);
 alarmState = OFF;
 incorrectCodeLed = OFF;
 numberOfIncorrectCodes = 0;
 } else {
 uartUsb.write("\r\nThe code is incorrect\r\n\r\n", 27);
 incorrectCodeLed = ON;
 numberOfIncorrectCodes++;
 }
 break;

case '5':
 uartUsb.write("Please enter the new four digits numeric code ", 46);
 uartUsb.write("to deactivate the alarm: ", 25);

 for (keyBeingCompared = 0;
 keyBeingCompared < NUMBER_OF_KEYS;
 keyBeingCompared++) {
 uartUsb.read(&receivedChar, 1);
 uartUsb.write("*", 1);
 }

 uartUsb.write("\r\nNew code generated\r\n\r\n", 24);
 break;

Code 4.9 Lines that were modified in the function uartTask().

Chapter 4 | Finite-State Machines and the Real-Time Clock

149

Proposed Exercise

1. How can the code be modified in order to use a three-digit code?

Answer to the Exercise

1. In the arrays codeSequence and buttonsPressed, three positions must be assigned, and
NUMBER_OF_KEYS must be defined as 3.

Example 4.4: Report Date and Time of alarms to the PC Based on the RTC

Objective

Introduce the use of data structures and the RTC.

Summary of the Expected Behavior

The smart home system should store up to 20 events, each one with the corresponding date and time
of occurrence, and display those events on the serial terminal when they are requested.

Test the Proposed Solution on the Board

Import the project “Example 4.4” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Press “s” on the PC keyboard in order to configure the date and time of the
RTC of the NUCLEO board. Press “t” on the PC keyboard to confirm that the RTC is working properly.
Press the Alarm test button to activate the alarm. The Alarm LED (LD1) should start blinking at a
rate of 100 ms on and 100 ms off. Enter the code to deactivate the alarm (1805#). Press “e” on the PC
keyboard to view the date and time that the gas and over temperature detection and alarm activation
occurred.

Discussion of the Proposed Solution

The proposed solution is based on the RTC of the STM32 microcontroller of the NUCLEO board. Its
date and time are used to tag the events related to the alarm. In order to have a meaningful date and
time related to each event, the RTC must be configured.

nOTE: The registered events and the date and time configuration of the RTC are lost
when power is removed from the NUCLEO board.

Implementation of the Proposed Solution

Table 4.8 shows the sections in which lines were added to Example 4.3. First, two #defines were
included: EVENT_MAX_STORAGE, to limit the number of stored events to 20, and
EVENT_NAME_MAX_LENGTH, to limit the number of characters associated with each event.

In the section “Declaration of public data types,” a new public data type is declared. The reserved word
struct is used to declare special types of variables that have internal members. These members can

150

A Beginner’s Guide to Designing Embedded System Applications

have different types and different lengths. The type systemEvents_t is declared, having two members:
seconds, of type time_t, and an array of char called typeOfEvent.

The type time_t used to represent times is part of the standard C++ library and is implemented by
the Mbed OS [5]. For historical reasons, it is generally implemented as an integer value representing
the number of seconds elapsed since 00:00 hours, Jan 1, 1970 UTC, which is usually called Unix
timestamp or epoch time. The maximum date that can be represented using this format is 03:14:07
UTC on 19 January 2038.

Many variables are also declared. The variable eventsIndex will be used to keep track of the number of
events stored.

Table 4.8 shows that an array arrayOfStoredEvents is declared, being of type systemEvents_t (the struct
that has been declared in the section “Declaration of public data types”), as well as the variable
timeAux of type time_t.

Finally, two functions are declared: eventLogUpdate() and systemElementStateUpdate(). These functions
will be shown and analyzed in the code below.

Table 4.8 Sections in which lines were added to Example 4.3.

Section Lines that were added

Definitions #define EVENT_MAX_STORAGE 20

#define EVENT_NAME_MAX_LENGTH 14

Declaration of public data types typedef struct systemEvent {

 time_t seconds;

 char typeOfEvent[EVENT_NAME_MAX_LENGTH];

} systemEvent_t;

Declaration and initialization of public global
variables

bool alarmLastState = OFF;

bool gasLastState = OFF;

bool tempLastState = OFF;

bool ICLastState = OFF;

bool SBLastState = OFF;

int eventsIndex = 0;

systemEvent_t arrayOfStoredEvents[EVENT_MAX_STORAGE];

Declarations (prototypes) of public functions void eventLogUpdate();

void systemElementStateUpdate(bool lastState,

 bool currentState,

 const char* elementName);

In Code 4.10, some of the lines that were included in the function uartTask() are shown. Starting at
lines 1 and 2, the reader can see that in case of the keys “s” or “S” being pressed, the variable rtcTime
is declared in line 3, being a struct of the type tm. The struct tm is part of the standard C++ library,

Chapter 4 | Finite-State Machines and the Real-Time Clock

151

is implemented by Mbed OS, and has the members detailed in Table 4.9. The member tm_sec is
generally in the range 0–59, but sometimes 60 is used, or even 61 to accommodate leap seconds in
certain systems. The Daylight Saving Time flag (tm_isdst) is greater than zero if Daylight Saving Time
is in effect, zero if Daylight Saving Time is not in effect, and less than zero if the information is not
available. In line 4, strIndex is declared to be used as discussed below.

Table 4.9 Details of the struct tm.

Member Type Meaning Range

tm_sec int seconds after the minute 0–59

tm_min int minutes after the hour 0–59

tm_hour int hours since midnight 0–23

tm_mday int day of the month 1–31

tm_mon int months since January 0–11

tm_year int years since 1900

tm_wday int days since Sunday 0–6

tm_yday int days since January 1 0–365

tm_isdst int Daylight Saving Time flag

The user is asked to enter, one after the other, the values of most of the members of the variable
rtcTime (lines 6 to 58). In each case, first a message is displayed using uartUsb.write(). Then, a for loop is
used to read a character, store that character in a given position of the array, and send that character
to the serial terminal using uartUsb.write(), so the user has an echo of the entered character. After this,
the null character is appended to the string, as, for example, on line 11. Then the function atoi(), which
is provided by Mbed OS, is used to convert the string to an integer, as, for example, on line 12. The
resulting value is stored in the corresponding member of rtcTime, as can be seen on line 12. Finally,
“\r\n” is written to move to a new line.

Note that some minor operations are made on the values entered by the user, such as on line 12,
where 1900 is subtracted, and on line 211, where 1 is subtracted. Also note that str[strIndex] is
preceded by the reference operator (&), as in line 8 or 9. The reference operator is related to the
usage of pointers and will be discussed in more detail in upcoming chapters. Finally, note that no
check is made on the digits entered by the user. If values outside the ranges indicated in Table 4.9 are
entered, unexpected behavior may result.

nOTE: The scope of rtcTime and strIndex is the switch-case where they are declared
(i.e., those variables don’t exist outside the brackets of the corresponding switch-
case).

152

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

case 's':
case 'S':
 struct tm rtcTime;
 int strIndex;

 uartUsb.write("\r\nType four digits for the current year (YYYY): ", 48);
 for(strIndex=0; strIndex<4; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[4] = '\0';
 rtcTime.tm_year = atoi(str) - 1900;
 uartUsb.write("\r\n", 2);

 uartUsb.write("Type two digits for the current month (01-12): ", 47);
 for(strIndex=0; strIndex<2; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[2] = '\0';
 rtcTime.tm_mon = atoi(str) - 1;
 uartUsb.write("\r\n", 2);

 uartUsb.write("Type two digits for the current day (01-31): ", 45);
 for(strIndex=0; strIndex<2; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[2] = '\0';
 rtcTime.tm_mday = atoi(str);
 uartUsb.write("\r\n", 2);

 uartUsb.write("Type two digits for the current hour (00-23): ", 46);
 for(strIndex=0; strIndex<2; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[2] = '\0';
 rtcTime.tm_hour = atoi(str);
 uartUsb.write("\r\n", 2);

 uartUsb.write("Type two digits for the current minutes (00-59): ", 49);
 for(strIndex=0; strIndex<2; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[2] = '\0';
 rtcTime.tm_min = atoi(str);
 uartUsb.write("\r\n", 2);

 uartUsb.write("Type two digits for the current seconds (00-59): ", 49);
 for(strIndex=0; strIndex<2; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[2] = '\0';
 rtcTime.tm_sec = atoi(str);
 uartUsb.write("\r\n", 2);

 rtcTime.tm_isdst = -1;
 set_time(mktime(&rtcTime));
 uartUsb.write("Date and time has been set\r\n", 28);

 break;

 Code 4.10 Lines that were included in the function uartTask() (Part 1/2).

Chapter 4 | Finite-State Machines and the Real-Time Clock

153

On line 60, the value of the member tm_isdst is set to “-1” to indicate that the information is not
available. On line 61, two operations are carried out. First the function mktime(), which is provided by
the implementation of the library time.h by Mbed OS, is used to convert the variable rtcTime from the
tm structure to the time_t structure. Then, the function set_time() is called to set the time on the RTC
of the STM32 microcontroller. This function is also provided by Mbed OS. Note that the reference
operator (&) is used in line 61. Lastly, the message “Date and time has been set” is written in line 62.

The case of the keys “t” or “T” being pressed is shown in Code 4.11. Lines 3 and 4 are used to
declare the variable epochSeconds, of type time_t, and to store the value of the RTC of the STM32
microcontroller in the variable epochSeconds. This is done on line 4 by means of the function time(),
which is also provided by Mbed OS. Then, the function ctime() is used on line 5 to convert the time_t
value of seconds to a string having the format Www Mmm dd hh:mm:ss yyyy, where Www is the
weekday, Mmm the month (in letters), dd the day of the month, hh:mm:ss the time, and yyyy the year.
The string is written to uartUsb on line 6.

In the case of the keys “e” or “E” being pressed, all the events stored in arrayOfStoredEvents are
transmitted one after the other to the PC, as can be seen on lines 10 to 21 of Code 4.11.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

case 't':
case 'T':
 time_t epochSeconds;
 epochSeconds = time(NULL);
 sprintf (str, "Date and Time = %s", ctime(&epochSeconds));
 uartUsb.write(str , strlen(str));
 uartUsb.write("\r\n", 2);
 break;

case 'e':
case 'E':
 for (int i = 0; i < eventsIndex; i++) {
 sprintf (str, "Event = %s\r\n",
 arrayOfStoredEvents[i].typeOfEvent);
 uartUsb.write(str , strlen(str));
 sprintf (str, "Date and Time = %s\r\n",
 ctime(&arrayOfStoredEvents[i].seconds));
 uartUsb.write(str , strlen(str));
 uartUsb.write("\r\n", 2);
 }
 break;

 Code 4.11 Lines that were included in the function uartTask() (part 2/2).

Code 4.12 shows the new implementation of the function availableCommands(). The new values “s”, “t”,
and “e” have been included.

154

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void availableCommands()
{
 uartUsb.write("Available commands:\r\n", 21);
 uartUsb.write("Press '1' to get the alarm state\r\n", 34);
 uartUsb.write("Press '2' to get the gas detector state\r\n", 41);
 uartUsb.write("Press '3' to get the over temperature detector state\r\n", 54);
 uartUsb.write("Press '4' to enter the code sequence\r\n", 38);
 uartUsb.write("Press '5' to enter a new code\r\n", 31);
 uartUsb.write("Press 'f' or 'F' to get lm35 reading in Fahrenheit\r\n", 52);
 uartUsb.write("Press 'c' or 'C' to get lm35 reading in Celsius\r\n", 49);
 uartUsb.write("Press 's' or 'S' to set the date and time\r\n", 43);
 uartUsb.write("Press 't' or 'T' to get the date and time\r\n", 43);
 uartUsb.write("Press 'e' or 'E' to get the stored events\r\n\r\n", 45);
}

Code 4.12 New implementation of the function availableCommands().

In order to periodically check if there is an event to be stored, the main() function is modified, as can be
seen in Code 4.13. A call to the function eventLogUpdate() has been added on line 9.

1
2
3
4
5
6
7
8
9
10
11
12

int main()
{
 inputsInit();
 outputsInit();
 while (true) {
 alarmActivationUpdate();
 alarmDeactivationUpdate();
 uartTask();
 eventLogUpdate();
 delay(TIME_INCREMENT_MS);
 }
}

Code 4.13 New implementation of the function main().

In Code 4.14, the implementation of the function eventLogUpdate() is shown. It calls the function
systemElementStateUpdate() to determine if there has been a change in the state of any of the
elements. For example, on line 3, the function systemElementStateUpdate() is called to determine if the
state of the alarm has changed. After calling systemElementStateUpdate(), the value of alarmLastState is
updated on line 4. On the following lines (6 to 16), the same procedure is followed for the gas detector,
the over temperature, the Incorrect code LED, and the System blocked LED.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void eventLogUpdate()
{
 systemElementStateUpdate(alarmLastState, alarmState, "ALARM");
 alarmLastState = alarmState;

 systemElementStateUpdate(gasLastState, !mq2, "GAS_DET");
 gasLastState = !mq2;

 systemElementStateUpdate(tempLastState, overTempDetector, "OVER_TEMP");
 tempLastState = overTempDetector;

 systemElementStateUpdate(ICLastState, incorrectCodeLed, "LED_IC");
 ICLastState = incorrectCodeLed;

 systemElementStateUpdate(SBLastState, systemBlockedLed, "LED_SB");
 SBLastState = systemBlockedLed;
}

Code 4.14 Implementation of the function eventLogUpdate().

Chapter 4 | Finite-State Machines and the Real-Time Clock

155

The implementation of the function systemElementStateUpdate() is shown in Code 4.15. This function
accepts three parameters: the last state, the current state, and the element name. The element
names are stored in arrays of char type, so the third parameter of this function is a memory address
of an array of char. This is indicated by char* (line 3), which means “a pointer to a char type.” In this
way, elementName is a pointer that points to the first position of an array of char. Note that the third
parameter type is declared as const char* (line 3). In this context, the addition of the reserved word
const indicates that the content of the memory address pointed by elementName cannot be modified
by the function systemElementStateUpdate(). The usage of pointers is discussed in detail in upcoming
chapters.

On line 5, an array of char called eventAndStateStr is declared, having EVENT_NAME_MAX_LENGTH
positions. It is initialized using “”, which assigns the null character to its first position (i.e.,
eventAndStateStr[0] = '\0'), which makes eventAndStateStr an empty string (a string with no printable
characters). On line 7, it is determined if lastState is different from currentState. If so, on line 9 the
content of the array of char pointed by elementName is appended to the string eventAndStateStr by
means of the function strncat(), provided by Mbed OS.

nOTE: More functions regarding strings are available in [6]. Some of them are used in
the next chapters.

In lines 10 to 14, ON or OFF is appended to eventAndStateStr, depending on the value of currentState.
The members of arrayOfStoredEvents (seconds and typeOfEvent) at the position eventsIndex are assigned
the time of the RTC of the STM32 microcontroller using the function time() (line 16) and the type of
event by means of the function strcpy(), provided by Mbed OS (line 17). On line 18, a check is made
whether eventsIndex is smaller than EVENT_MAX_STORAGE - 1. If so, there is still space in the array
to store new events, and eventsIndex is incremented by one. If not, the array is full, and eventsIndex is
set to zero in order to start filling the array arrayOfStoredEvents again from its first position. Finally, the
eventAndStateStr is printed on the serial terminal (lines 24 and 25).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

void systemElementStateUpdate(bool lastState,
 bool currentState,
 const char* elementName)
{
 char eventAndStateStr[EVENT_NAME_MAX_LENGTH] = "";

 if (lastState != currentState) {

 strcat(eventAndStateStr, elementName);
 if (currentState) {
 strcat(eventAndStateStr, "_ON");
 } else {
 strcat(eventAndStateStr, "_OFF");
 }

 arrayOfStoredEvents[eventsIndex].seconds = time(NULL);
 strcpy(arrayOfStoredEvents[eventsIndex].typeOfEvent,eventAndStateStr);
 if (eventsIndex < EVENT_MAX_STORAGE - 1) {

156

A Beginner’s Guide to Designing Embedded System Applications

19
20
21
22
23
24
25
26
27

 eventsIndex++;
 } else {
 eventsIndex = 0;
 }

 uartUsb.write(eventAndStateStr , strlen(eventAndStateStr));
 uartUsb.write("\r\n", 2);
 }
}

Code 4.15 Implementation of the function systemElementStateUpdate().

WaRning: The improper usage of pointers can lead to software errors. In upcoming
chapters it will be shown that the memory address pointed to by the pointer can be
modified (i.e., increased or decreased) and that a value can be assigned to the memory
address pointed to by the pointer using the reference operator (&), as, for example, in
line 8 of Code 4.10. This means that the pointer can be pointed to a memory address
that is already in use and an improper modification of the content of that memory
address can be made.

A similar problem can take place when string-related functions are used without the
proper precautions. For example, in line 9 of Code 4.15, a copy of elementName is
appended to eventAndStateStr. This operation will happen no matter the number of
positions that were reserved for eventAndStateStr in line 5 of Code 4.15. Therefore, a
“buffer overflow” may occur if elementName has more characters than
EVENT_NAME_MAX_LENGTH. The usage of objects of type string instead of using
arrays of char can be a solution in certain situations, but it may lead to memory issues
when applied in the context of embedded systems. In upcoming chapters, different
solutions for safely managing strings in embedded systems are discussed.

Proposed Exercise

1. How can a change be implemented in the code in order to allow up to 1000 events to be stored?

Answer to the Exercise

1. The value of MAX_NUMBER_OF_EVENTS should be changed to 1000.

4.3 Under the Hood

4.3.1 graphical Representation of a Finite-State Machine

This section explains how an FSM can be represented by means of a diagram. It is common to start
by drawing the diagram of the FSM, then analyze and adjust the behavior of the system using the
diagram. Only when the behavior is as expected is the corresponding code implemented.

Chapter 4 | Finite-State Machines and the Real-Time Clock

157

Before introducing the graphical representation, the behavior of the FSM should be reviewed.

In Figure 4.8, the voltage at a given button over time is shown by a red line, following the diagram
that was introduced in section 4.2.1. Initially (at t0) the button is released, the voltage is 3.3 V, and the
FSM is in the BUTTON_UP state (as indicated by the light blue line). Then there is a glitch at t1, after
which the signal goes back to 3.3 V. It can be seen that the FSM state changes to BUTTON_FALLING
(because of the glitch) and then reverts to BUTTON_UP at t2 because it is determined that it was not
an actual change in the button state.

At t3 , bounce in the voltage signal is shown because the button is pressed. It can be seen that the
FSM state changed to BUTTON_FALLING. At t4 , the FSM state changes to BUTTON_DOWN as
the voltage signal is stable at 0 V. At t5 there is a new glitch, after which the FSM state changes to
BUTTON_RISING. But, as after the glitch the voltage signal remains at 0 V, the FSM state reverts back
to BUTTON_DOWN at t6.

At t7, there is a transition from released to pressed, which is accompanied by a bounce in the signal.
It can be seen that the FSM state changed to BUTTON_RISING. After the bounce time, the signal
stabilizes to 3.3 V and, therefore, at t8 the FSM state changes to BUTTON_UP.

The behavior shown in Figure 4.8 continues over time as the button is pressed and released. It might be
that there are no glitches or there are many glitches. If so, the transitions between the FSM states will
be the same as shown in Figure 4.8, with the only difference being the number of BUTTON_FALLING
states between two consecutive BUTTON_UP and BUTTON_DOWN states and the number of
BUTTON_RISING states between two consecutive BUTTON_DOWN and BUTTON_UP states.

3.3V

V

t0V

BUTTON_FALLING

BUTTON_RISING BUTTON_UPBUTTON_UP

BUTTON_DOWN States

t0 t1 t3t2 t4 t5 t6 t7 t8

Figure 4.8 Voltage signal over time for a given button as it is pressed or released.

Figure 4.9 shows a state diagram for the FSM discussed above Figure 4.8. This is the FSM that was
implemented in Example 4.1 by means of the statements shown in Code 4.3.

158

A Beginner’s Guide to Designing Embedded System Applications

nOTE: In Figure 4.9, and in the corresponding discussion that is presented below,
“== 1” is used to indicate that a given Boolean variable is in the true state, and
“== 0” is used to indicate that a given Boolean variable is in the false state. Do not
confuse this with “= 0”, which is used to indicate that the value zero is assigned to
the integer variable accumulatedDebounceTime. In the case of the Boolean variable
enterButtonReleasedEvent, “= true” is used to indicate that the logical value true is
assigned.

Figure 4.9 Diagram of the FSM implemented in Example 4.1.

The four states of the FSM implemented in Code 4.3 are represented in Figure 4.9 by means of the
light blue ovals (i.e., BUTTON_UP, BUTTON_RISING, BUTTON_DOWN, and BUTTON_FALLING).
The arrows from one state to another state, or from a given state to itself, or from the start point to a
state, represent a transition. A transition can be between a given state and another state, to the same
state, or could be the initial transition.

The red labels over the arrows indicate the input that triggers a given transition, while the blue label
over an arrow indicates the action that is performed before the transition takes place. Note that every
transition is triggered by a given input, but not all the transitions have an action associated with them.

After power on, the FSM is at the start point. Depending on the value of enterButton, the initial
transition from the start point is to BUTTON_UP (if enterButton is 0, implying that the button is
initially not pressed) or to BUTTON_DOWN (if enterButton is 1, implying that the button is initially
pressed). This was implemented in the debounceButtonInit() function shown in Code 4.1. The FSM will
remain in those states (BUTTON_UP or BUTTON_DOWN) while there are no changes in the value of
enterButton.

Consider, for example, that at the start point enterButton is 0 (implying that the button is initially
not pressed) and, therefore, the first state is BUTTON_UP. By referring back to Code 4.3, it can be
seen that the only way of moving to a different state is if enterButton becomes 1 (i.e., the button is
pressed). In that condition, BUTTON_FALLING is assigned to enterButtonState (line 8 of Code 4.3),
and accumulatedDebounceTime is set to zero (line 9). This is shown in Figure 4.9 by the arrow from

Chapter 4 | Finite-State Machines and the Real-Time Clock

159

BUTTON_UP to BUTTON_FALLING, and a red label “enterButton == 1” indicates the condition that
triggers the transition, as well as the blue label “accumulatedDebounceTime = 0” indicating the action
that is performed during the transition.

Once in the BUTTON_FALLING state, Code 4.3 can be analyzed to determine all the possible
transitions. It can be seen on line 14 that in order to have a transition, accumulatedDebounceTime
has to reach DEBOUNCE_BUTTON_TIME_MS. In that situation, if enterButton is 1 (i.e., the button is
pressed), the transition is to the BUTTON_DOWN state (line 16), and if enterButton is 0 (i.e., the button
is not pressed), the transition is to the BUTTON_UP state (line 18). While in BUTTON_FALLING state,
accumulatedDebounceTime is incremented by TIME_INCREMENT_MS every 10 ms. This is indicated by
the re-entering arrow above BUTTON_FALLING and is implemented on line 22 of Code 4.3.

The only possible transition from BUTTON_DOWN is to BUTTON_RISING. This transition takes place
if enterButton == 0, as is shown in Figure 4.9. This represents the behavior of line 26 in Code 4.3.

Finally, it can be seen in Figure 4.9 that the behavior at the BUTTON_RISING state is very similar to
the behavior at the BUTTON_FALLING state, in the same way as lines 13 to 23 of Code 4.3 are very
similar to lines 32 to 43 of the same code. The only difference is that in the BUTTON_FALLING state,
the variable enterButtonReleasedEvent() is set to true on line 36. This call is shown in Figure 4.9 by the
arrow that goes from BUTTON_RISING to BUTTON_UP.

nOTE: The states BUTTON_UP and BUTTON_DOWN last until there is a glitch or the
button is either pressed or released. The states BUTTON_FALLING and BUTTON_
RISING always last the same amount of time (i.e., DEBOUNCE_BUTTON_TIME_MS),
as can be seen in Figure 4.8.

WaRning: The diagram used in Figure 4.9 is only one of multiple possible
representations of an FSM, known as a “Mealy machine.” It is beyond the scope of this
book to introduce other representations of FSMs.

Proposed Exercise

1. How can the FSM used in the implementation of Example 4.2 be represented by means of a diagram
similar to the one used in Figure 4.9 to illustrate the FSM of Example 4.1?

Answer to the Exercise

1. The diagram is shown in Figure 4.10.

160

A Beginner’s Guide to Designing Embedded System Applications

Figure 4.10 Diagram of the FSM implemented in Example 4.2.

4.4 Case Study

4.4.1 Smart Door Locks

In chapter 1, the case study of the smart door lock was introduced [7]. A representation of the keypad
that is used by the smart door lock is shown in Figure 4.11. This is very similar to the matrix keypad
that was introduced in this chapter.

The smart door lock is not provided with RTC functionality. However, the reader may realize that
interesting access control features could be included if information about date and time is available.
For example, each user may be provided with a specific time range to open the lock. This idea is
explored in the proposed exercise.

Chapter 4 | Finite-State Machines and the Real-Time Clock

161

1

4

7

*

2

5

8

0

3

6

9

#

Figure 4.11 Smart door lock built with Mbed contains a keypad similar to the one introduced in this chapter.

Proposed Exercise

1. How can a program be implemented in order to achieve the following behavior?

 n The lock should open only if the code 1-4-7 is entered, and the current time is within the designated
opening hours (8 am to 4 pm).

 n To enter the code, the letter “A” should be pressed.

Answer to the Exercise

1. The proposed solution is shown in this section. The aim is to analyze a whole program (from
the include files to all the functions used) in order to familiarize the reader with solving real-life
problems.

Test the Proposed Solution on the Board

Import the project “Case Study Chapter 4” using the URL available in [4], build the project, and drag
the .bin file onto the NUCLEO board. The LED LD2 will turn on to indicate that the door is locked.
Press the “s” key on the PC keyboard to set a time between 8 am and 4 pm. Press the “t” key on the PC
keyboard to get the current time and date. Press the keys “A”, “1”, “4”, “7” on the matrix keypad. The
LED LD1 should turn on to indicate that the door is now open. Press the B1 USER button to represent
that the door has been closed. The LED LD2 will turn on to indicate that the door is locked.

162

A Beginner’s Guide to Designing Embedded System Applications

Press the keys “A”, “1”, “2”, “3” on the matrix keypad. The LED LD3 will turn on to indicate that an
incorrect code has been entered. Press the keys “A”, “1”, “4”, “7” on the matrix keypad. The LED LD1
should turn on to indicate that the door is now open. Press the B1 USER button to represent that the
door has been closed. The LED LD2 will turn on to indicate that the door is locked.

Press the “s” key on the PC keyboard to set a time not in the range of 8 am to 4 pm. Press the keys “A”,
“1”, “4”, “7” on the matrix keypad. The LED LD1 will not turn on because it is not the correct opening
hour.

Discussion of the Proposed Solution

The proposed solution is very similar to the solution presented throughout this chapter. However,
some variations have been introduced in order to show the reader other ways to implement the code.
These variations are discussed below as the proposed implementation is introduced.

Implementation of the Proposed Solution

In Code 4.16, the libraries that are used in the proposed solution are included: mbed.h and arm_book_lib.h.
The definitions are also shown in Code 4.16. The number of digits of the code is defined as 3 (line 8). Then,
the number of rows and columns of the keypad is defined (lines 9 and 10). The two definitions that are
used in the FSMs to manage time, TIME_INCREMENT_MS and DEBOUNCE_BUTTON_TIME_MS, are
defined on lines 11 and 12. Finally, on lines 13 and 14, the opening hours are defined.

In Code 4.17, the declaration of the public data type doorState_t is shown. It is used to implement an
FSM and has three states: DOOR_CLOSED, DOOR_UNLOCKED, and DOOR_OPEN. In Code 4.17, the
data type matrixKeypadState_t is also declared, just as in Example 4.2.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

//=====[Defines]===

#define CODE_DIGITS 3
#define KEYPAD_NUMBER_OF_ROWS 4
#define KEYPAD_NUMBER_OF_COLS 4
#define TIME_INCREMENT_MS 10
#define DEBOUNCE_BUTTON_TIME_MS 40
#define START_HOUR 8
#define END_HOUR 16

Code 4.16 Libraries and definitions used in the proposed solution.

Chapter 4 | Finite-State Machines and the Real-Time Clock

163

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

//=====[Declaration of public data types]======================================

typedef enum {
 DOOR_CLOSED,
 DOOR_UNLOCKED,
 DOOR_OPEN
} doorState_t;

typedef enum {
 MATRIX_KEYPAD_SCANNING,
 MATRIX_KEYPAD_DEBOUNCE,
 MATRIX_KEYPAD_KEY_HOLD_PRESSED
} matrixKeypadState_t;

Code 4.17 Declaration of the public data types doorState_t and matrixKeypadState_t.

The section “Declaration and initialization of public global objects” is shown in Code 4.18. On line
3, an array of DigitalOut objects, called keypadRowPins, is defined. This array is used to indicate the
pins used to connect the matrix keypad pins corresponding to the rows, as in Example 4.2. A similar
implementation is used on line 4 to indicate the pins used to connect the matrix keypad columns.

On line 6 of Code 4.18, the DigitalIn object doorHandle is declared and linked to the B1 User button.
This button will be used to indicate whether the door handle is in the opened or locked position. LD1,
LD2, and LD3 are assigned on lines 8 to 10 to doorUnlockedLed, doorLockedLed, and incorrectCodeLed,
respectively. Finally, on line 12 the UnbufferedSerial object uartUsb is created, in the same way as in
the smart home system.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

//=====[Declaration and initialization of public global objects]===============

DigitalOut keypadRowPins[KEYPAD_NUMBER_OF_ROWS] = {PB_3, PB_5, PC_7, PA_15};
DigitalIn keypadColPins[KEYPAD_NUMBER_OF_COLS] = {PB_12, PB_13, PB_15, PC_6};

DigitalIn doorHandle(BUTTON1);

DigitalOut doorUnlockedLed(LED1);
DigitalOut doorLockedLed(LED2);
DigitalOut incorrectCodeLed(LED3);

UnbufferedSerial uartUsb(USBTX, USBRX, 115200);

Code 4.18 Declaration of the public global objects.

In Code 4.19, the section “Declaration and initialization of public global variables” is shown. On lines
3 and 5, the variables accumulatedDebounceMatrixKeypadTime and matrixKeypadLastKeyPressed are
declared and initialized to zero and the null character, respectively. On line 6, an array of char that
will be used to get the character corresponding to the pressed key is defined. This is based on the
column and row that are activated, as in Example 4.2. On line 12, a variable of the user-defined type
matrixKeypadState_t is declared as matrixKeypadState. On line 14, the variable DoorState, which is used
to implement the FSM, is declared. On lines 16 and 18, the variables rtcTime and seconds are declared,
just as in Example 4.4. Finally, on line 22 the array codeSequence is declared and assigned the code 1-4-7.

164

A Beginner’s Guide to Designing Embedded System Applications

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

//=====[Declaration and initialization of public global variables]=============

int accumulatedDebounceMatrixKeypadTime = 0;

char matrixKeypadLastkeyReleased = '\0';
char matrixKeypadIndexToCharArray[] = {
 '1', '2', '3', 'A',
 '4', '5', '6', 'B',
 '7', '8', '9', 'C',
 '*', '0', '#', 'D',
};
matrixKeypadState_t matrixKeypadState;

doorState_t doorState;

struct tm RTCTime;

time_t seconds;

char codeSequence[CODE_DIGITS] = {'1','4','7'};

 Code 4.19 Declaration and initialization of public global variables.

In Code 4.20, the public functions are declared. The functions uartTask() and availableCommands()
have the same role as in the smart home system but will have an implementation that is specific
to this proposed exercise. The functions doorInit() and doorUpdate() are used to initiate and
implement the FSM related to the door. The functions matrixKeypadInit(), matrixKeypadScan(),
and matrixKeypadUpdate() are used to initiate, scan, and update the state of the matrix keypad,
respectively. From lines 10 to 12, three functions that will be used to get and send strings and
characters using serial communication with the PC are declared. Note that some of these functions
use pointers (lines 10 and 12), a concept that was introduced in Example 3.5.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

//=====[Declarations (prototypes) of public functions]=========================

void uartTask();
void availableCommands();
void doorInit();
void doorUpdate();
void matrixKeypadInit();
char matrixKeypadScan();
char matrixKeypadUpdate();
void pcSerialComStringWrite(const char* str);
char pcSerialComCharRead();
void pcSerialComStringRead(char* str, int strLength);

Code 4.20 Declaration of public functions used in the proposed solution.

The implementation of the main() function is shown in Code 4.21. First, the door and the matrix
keypad are initialized (lines 5 and 6) and then there is a while (true) loop to continuously update the
door state (line 8) and communicate with the PC using the uart (line 9).

Chapter 4 | Finite-State Machines and the Real-Time Clock

165

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

//=====[Main function, the program entry point after power on or reset]========

int main()
{
 doorInit();
 matrixKeypadInit();
 while (true) {
 doorUpdate();
 uartTask();
 }
}

Code 4.21 Declaration of public functions used in the proposed solution.

In Code 4.22, the implementation of the uartTask() function is shown. The principal idea is the same
as in the uartTask() function used in the smart home system implementation. If the key “s” is pressed,
then the user is asked to enter the date and time (lines 17 to 52), in quite a similar way to the
implementation introduced in Example 4.4. By means of comparing lines 19 to 52 with Code 4.10, the
reader can see that the same functionality is now obtained using a more modular program. Finally, in
lines 54 to 60, the implementation for the key “t” is shown, as in Example 4.4.

nOTE: The function pcSerialComStringRead() that is called on lines 20, 25, 30, 35,
40, and 45 reads the number of characters indicated by its second parameter (for
example, four characters when it is called on line 20), stores the read characters in the
array of char indicated by its first parameter (e.g., year when it is called on line 20), and
writes the null character, '\0', in the next position of the array (e.g., the fifth position
of year when it is called on line 20). The implementation of pcSerialComStringRead() is
discussed below.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void uartTask()
{
 char str[100] = "";
 char receivedChar = '\0';
 struct tm rtcTime;
 char year[5] = "";
 char month[3] = "";
 char day[3] = "";
 char hour[3] = "";
 char minute[3] = "";
 char second[3] = "";
 time_t epochSeconds;
 receivedChar = pcSerialComCharRead();
 if(receivedChar != '\0') {
 switch (receivedChar) {

 case 's':
 case 'S':
 pcSerialComStringWrite("\r\nType four digits for the current year (YYYY): ");
 pcSerialComStringRead(year, 4);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_year = atoi(year) - 1900;

166

A Beginner’s Guide to Designing Embedded System Applications

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

 pcSerialComStringWrite("Type two digits for the current month (01-12): ");
 pcSerialComStringRead(month, 2);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_mon = atoi(month) - 1;

 pcSerialComStringWrite("Type two digits for the current day (01-31): ");
 pcSerialComStringRead(day, 2);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_hour = atoi(hour);

 pcSerialComStringWrite("Type two digits for the current hour (00-23): ");
 pcSerialComStringRead(hour, 2);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_hour = atoi(hour);

 pcSerialComStringWrite("Type two digits for the current minutes (00-59): ");
 pcSerialComStringRead(minute, 2);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_min = atoi(minute);

 pcSerialComStringWrite("Type two digits for the current seconds (00-59): ");
 pcSerialComStringRead(second, 2);
 pcSerialComStringWrite("\r\n");
 rtcTime.tm_sec = atoi(second);

 rtcTime.tm_isdst = -1;
 set_time(mktime(&rtcTime));
 pcSerialComStringWrite("Date and time has been set\r\n");
 break;

 case 't':
 case 'T':
 epochSeconds = time(NULL);
 sprintf (str, "Date and Time = %s", ctime(&epochSeconds));
 pcSerialComStringWrite(str);
 pcSerialComStringWrite("\r\n");
 break;

 default:
 availableCommands();
 break;
 }
 }
}

Code 4.22 Implementation of the function uartTask().

The implementation of the function availableCommands() is shown in Code 4.23. This function is used
to list all the available commands. In this particular case there are only two: set the time and get the
time.

In Code 4.24, the statements used in the function doorInit() are shown. The LEDs used to indicate that
the door is unlocked and that an incorrect code has been entered are turned off. The LED used to
indicate that the door is locked is turned on, and the door state is set to DOOR_CLOSED.

Chapter 4 | Finite-State Machines and the Real-Time Clock

167

Code 4.25 shows the implementation of the function doorUpdate(). From lines 3 to 7, the variables
incorrectCode, keyPressed, currentTime, prevKeyPressed, and i are declared. The variable currentTime is
preceded by a “*” symbol. This indicates that this variable is a pointer and is used because the function
localtime (on line 14) needs this type of variable, as discussed in Example 4.4.

On line 9, there is a switch over the doorState variable. In the case of DOOR_CLOSED, the matrix
keypad is scanned (line 11), and if the “A” key is pressed, the date and time of the RTC of the STM32
microcontroller is assigned to currentTime (line 14). On line 16, it is determined whether the current
time corresponds to the opening hours. If so, incorrectCode is set to false (line 17), and prevKeyPressed
is set to “A” (line 18). The for loop on lines 21 to 31 is used to read a number of digits equal to
CODE_DIGITS (line 21). Lines 22 to 26 are used to wait until a new key (different to the previous
one) is pressed. On line 27, the new key is stored in prevKeyReleased. On line 28, the key pressed is
compared with the corresponding digit of the code; if they are not equal, then incorrectCode is set to
true. On line 33, incorrectCode is evaluated and if true then the Incorrect code LED is turned on for
one second (lines 34 to 36); otherwise, doorState is set to DOOR_UNLOCKED, the doorLockedLED is
turned off, and the doorUnlockedLED is turned on.

In the case of DOOR_UNLOCKED (line 46), if doorHandle is true, then doorUnlockedLED is set to
OFF and doorState is set to DOOR_OPEN. Lastly, in the case of DOOR_OPEN (line 53), if doorHandle
is false, doorLockedLED is set to ON and doorState is set to DOOR_CLOSED. In the default case, the
function doorInit() is called, as was described in Example 4.2 (it is safest to always define a default
case).

In Code 4.26, Code 4.27, and Code 4.28, the implementation of the functions matrixKeypadInit(),
matrixKeypadScan(), and matrixKeypadUpdate() are shown. It can be seen that this is the same code as
in Code 4.6. Therefore, the explanation is not repeated here.

1
 2
 3
 4
 5
 6

void availableCommands()
{
 pcSerialComStringWrite("Available commands:\r\n");
 pcSerialComStringWrite("Press 's' or 'S' to set the time\r\n\r\n");
 pcSerialComStringWrite("Press 't' or 'T' to get the time\r\n\r\n");
}

Code 4.23 Implementation of the function availableCommands().

1
 2
 3
 4
 5
 6
 7

void doorInit()
{
 doorUnlockedLed = OFF;
 doorLockedLed = ON;
 incorrectCodeLed = OFF;
 doorState = DOOR_CLOSED;
}

Code 4.24 Implementation of the function doorInit().

168

A Beginner’s Guide to Designing Embedded System Applications

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

void doorUpdate()
{
 bool incorrectCode;
 char keyReleased;
 struct tm * currentTime;
 char prevkeyReleased;
 int i;

 switch(doorState) {
 case DOOR_CLOSED:
 keyReleased = matrixKeypadUpdate();
 if (keyReleased == 'A') {
 seconds = time(NULL);
 currentTime = localtime (&seconds);

 if ((currentTime->tm_hour >= START_HOUR) &&
 (currentTime->tm_hour <= END_HOUR)) {
 incorrectCode = false;
 prevkeyReleased = 'A';

 for (i = 0; i < CODE_DIGITS; i++) {
 while ((keyReleased == '\0') ||
 (keyReleased == prevkeyReleased)) {

 keyReleased = matrixKeypadUpdate();
 }
 prevkeyReleased = keyReleased;
 if (keyReleased != codeSequence[i]) {
 incorrectCode = true;
 }
 }

 if (incorrectCode) {
 incorrectCodeLed = ON;
 delay (1000);
 incorrectCodeLed = OFF;
 } else {
 doorState = DOOR_UNLOCKED;
 doorLockedLed = OFF;
 doorUnlockedLed = ON;
 }
 }
 }
 break;

 case DOOR_UNLOCKED:
 if (doorHandle) {
 doorUnlockedLed = OFF;
 doorState = DOOR_OPEN;
 }
 break;

 case DOOR_OPEN:
 if (!doorHandle) {
 doorLockedLed = ON;
 doorState = DOOR_CLOSED;
 }
 break;

 default:
 doorInit();
 break;
 }
}

Code 4.25 Implementation of the function doorUpdate().

Chapter 4 | Finite-State Machines and the Real-Time Clock

169

1
 2
 3
 4
 5
 6
 7
 8

void matrixKeypadInit()
{
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 int pinIndex = 0;
 for(pinIndex=0; pinIndex<KEYPAD_NUMBER_OF_COLS; pinIndex++) {
 (keypadColPins[pinIndex]).mode(PullUp);
 }
}

Code 4.26 Implementation of the function keypadInit().

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

char matrixKeypadScan()
{
 int r = 0;
 int c = 0;
 int i = 0;

 for(r=0; r<KEYPAD_NUMBER_OF_ROWS; r++) {

 for(i=0; i<KEYPAD_NUMBER_OF_ROWS; i++) {
 keypadRowPins[i] = ON;
 }

 keypadRowPins[r] = OFF;

 for(c=0; c<KEYPAD_NUMBER_OF_COLS; c++) {
 if(keypadColPins[c] == OFF) {
 return matrixKeypadIndexToCharArray[r*KEYPAD_NUMBER_OF_ROWS + c];
 }
 }
 }
 return '\0';
}

Code 4.27 Implementation of the function matrixKeypadScan().

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

char matrixKeypadUpdate()
{
 char keyDetected = '\0';
 char keyReleased = '\0';

 switch(matrixKeypadState) {

 case MATRIX_KEYPAD_SCANNING:
 keyDetected = matrixKeypadScan();
 if(keyDetected != '\0') {
 matrixKeypadLastkeyReleased = keyDetected;
 accumulatedDebounceMatrixKeypadTime = 0;
 matrixKeypadState = MATRIX_KEYPAD_DEBOUNCE;
 }
 break;

 case MATRIX_KEYPAD_DEBOUNCE:
 if(accumulatedDebounceMatrixKeypadTime >=
 DEBOUNCE_BUTTON_TIME_MS) {
 keyDetected = matrixKeypadScan();
 if(keyDetected == matrixKeypadLastkeyReleased) {
 matrixKeypadState = MATRIX_KEYPAD_KEY_HOLD_PRESSED;
 } else {
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 }
 accumulatedDebounceMatrixKeypadTime =
 accumulatedDebounceMatrixKeypadTime + TIME_INCREMENT_MS;

170

A Beginner’s Guide to Designing Embedded System Applications

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 break;

 case MATRIX_KEYPAD_KEY_HOLD_PRESSED:
 keyDetected = matrixKeypadScan();
 if(keyDetected != matrixKeypadLastkeyReleased) {
 if(keyDetected == '\0') {
 keyReleased = matrixKeypadLastkeyReleased;
 }
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 break;

 default:
 matrixKeypadInit();
 break;
 }
 return keyReleased;
}

Code 4.28 Implementation of the function matrixKeypadUpdate().

Finally, in Code 4.29 the functions related to sending and receiving characters using the serial
communication with the PC are shown. On line 1, pcSerialComStringWrite() is implemented in order to
be able to send a string to the serial terminal. pcSerialComCharRead() on line 6 implements the reading
of a single character. It returns '\0' if there is not a character to be read, or the received character
otherwise. Lastly, pcSerialComStringRead() implements the reading of a number of characters specified
by its second parameter, strLength. The read characters are stored in the array of char pointed to by
the first parameter of this function, str.

WaRning: If the value of strLength is greater than the number of positions in the
array of char pointed by str, then a buffer overflow will take place. As discussed in
Example 4.4, this can lead to software errors.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void pcSerialComStringWrite(const char* str)
{
 uartUsb.write(str, strlen(str));
}

char pcSerialComCharRead()
{
 char receivedChar = '\0';
 if(uartUsb.readable()) {
 uartUsb.read(&receivedChar, 1);
 }
 return receivedChar;
}

void pcSerialComStringRead(char* str, int strLength)
{
 int strIndex;
 for (strIndex = 0; strIndex < strLength; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[strLength]='\0';
}

Code 4.29 Implementation of the functions related to the PC serial communication.

Chapter 4 | Finite-State Machines and the Real-Time Clock

171

 References
[1] “4x4 Keypad Module Pinout, Configuration, Features, Circuit & Datasheet”. Accessed July 9,

2021.

[2] “Breadboard Power Supply Module”. Accessed July 9, 2021.
https://components101.com/modules/5v-mb102-breadboard-power-supply-module

[3] “UM1974 User manual - STM32 Nucleo-144 boards (MB1137)”. Accessed July 9, 2021.
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-
mb1137-stmicroelectronics.pdf

[4] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[5] “Time - API references and tutorials | Mbed OS 6 Documentation”. Accessed July 9, 2021.
https://os.mbed.com/docs/mbed-os/v6.12/apis/time.html

[6] “<cstring> (string.h) - C++ Reference”. Accessed July 9, 2021.
https://www.cplusplus.com/reference/cstring/

[7] “Smart door locks | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/smart-door-locks/

http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/modules/5v-mb102-breadboard-power-supply-module
https://components101.com/modules/5v-mb102-breadboard-power-supply-module
https://components101.com/modules/5v-mb102-breadboard-power-supply-module
http://paperpile.com/b/bGTbn5/XKJz
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/docs/mbed-os/v6.12/apis/time.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/time.html
http://paperpile.com/b/bGTbn5/XKJz
https://www.cplusplus.com/reference/cstring/
https://www.cplusplus.com/reference/cstring/
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/smart-door-locks/
https://os.mbed.com/built-with-mbed/smart-door-locks/

Modularization Applied to
Embedded Systems Programming

Chapter 5

174

A Beginner’s Guide to Designing Embedded System Applications

5.1 Roadmap

5.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how the concept of modularity can be applied to embedded systems programming.

 n Develop programs that are organized into modules and are separated into different files.

 n Summarize the fundamental concepts of public and private variables and functions.

5.1.2 Review of Previous Chapters

In the preceding chapters, the smart home system was incrementally provided with a broad range
of functionality. The main goal was to introduce different concepts about embedded systems
programming by means of practical examples. The resultant code had hundreds of lines, as can be
seen in the final example in Chapter 4. The reader may have noticed that it starts to become hard to
remember which part of the program relates to which implemented function of the system. It can be
even harder to find specific functionality within the code. It becomes increasingly difficult to introduce
new functionality and improvements to the program.

5.1.3 Contents of This Chapter

This chapter will explain how to overcome this issue by means of modularization. For this purpose,
the code presented in Example 4.4 is revised and the program is reorganized into different modules.
Each resulting module will contain a piece of code that deals with a particular area of the smart
home system functionality. In this way, the resultant code will be easier to understand, maintain,
and improve. The original 600 lines of code will be divided into a set of files, each having precise
functionality and a correspondingly smaller number of lines.

NOTE: In this chapter, the reader may notice that there are no Example, Case Study,
or Under the Hood sections. In addition, in this chapter there are just a few Proposed
Exercises, all located at the end. This is due to the fact that this chapter is not about
including new functionality in the program, but rather explaining to the reader how
the code that was introduced in the previous chapters can be improved.

5.2 Basic Principles of Modularization

5.2.1 Modularity Principle

Modularity is a basic principle in engineering. The principle states that it is better to build systems from
loosely coupled components, called modules. These modules should have well-defined functionality
and must be easy to understand, reuse, and replace.

Chapter 5 | Modularization Applied to Embedded Systems Programming

175

The advantages of using modularization in embedded systems programming can be summarized as
follows:

 n It is easier to understand a program made of independent modules (the maintainability is improved).

 n It is simple to reuse modules in different programs, which improves the productivity of the
programmer.

The reader may remember that subsection 2.2.2 Modularization of a Program in Functions was an initial
introduction to the topic of modularization. A program that was previously organized into a single
long piece of code was divided into different, shorter pieces of code called functions. These functions
complete one or more specific tasks and can be used in a given program one or more times.

The problem arises when a given function has a very specific task, but this task is closely related to the
tasks of another function. For example, consider the following two functions:

 n Function 1: turns the alarm on or off after reading a code the user enters using the matrix keypad

 n Function 2: turns the alarm on or off after reading a code the user enters using the PC keyboard

Both of these functions have very specific tasks, but they are closely coupled, as both of them modify
the state of the alarm. If something should be modified in the way the alarm is turned on or off, then
the two functions (Function 1 and Function 2) must both be modified.

The scenario changes if the same functionality is implemented in the following way:

 n Function A: read a code that the user enters using the matrix keypad

 n Function B: read a code that the user enters using the PC keyboard

 n Function C: gets a code that the user enters using either the matrix keypad (Function A) or the PC
keyboard (Function B) and, depending on the code, turns the alarm on or off.

Here it can be seen that Functions A and B are loosely coupled to one other, and that only Function C
deals with turning off the alarm. This increases software maintainability, which means that the code is
easier for different programmers to understand, repair, and enhance over time.

In this context, two very important concepts in computer programming arise, namely cohesion and
coupling.

DEfiNiTiON: Cohesion refers to the degree to which the elements inside a module
belong together, while Coupling is a measure of how closely connected two routines
or modules are.

176

A Beginner’s Guide to Designing Embedded System Applications

This whole chapter is about taking the code from Example 4.4 as the starting point and improving it
by means of applying modularization techniques. This is because, for pedagogical reasons, the code
used in Example 4.4 was gradually developed through the preceding chapters and is, therefore, not
properly modularized.

The process of restructuring existing code – changing the factoring without changing its external
behavior – is called code refactoring. In the following section, the code used in Example 4.4 will be
refactored, as a first step to increase its modularity, by preparing modules with appropriate cohesion
and coupling.

5.3 Applying Modularization to the Program Code of the Smart
Home System

5.3.1 Refactoring the Program Code of the Smart Home System

As was discussed in the previous section, the code of the proposed solution introduced in Example 4.4
does not follow the principles of modularity. For example, the function uartTask() has approximately
one hundred and fifty lines and deals with a broad range of functionality:

 n Gets and processes the keys that are pressed on the PC keyboard

 n Sends the messages that are displayed to the user on the PC

 n Turns on/off several LEDs depending on the entered code

 n Shows the present temperature read by the LM35 sensor

 n Configures the new code used to deactivate the alarm

 n Sets the date and time of the real-time clock

 n Displays the list of events stored in memory.

The function uartTask() is only one example; there are many other functions in the code used in
Example 4.4 that do not follow the principles of modularity:

 n alarmActivationUpdate(): gets the reading of the sensors and also turns on/off the Alarm LED.

 n alarmDeactivationUpdate(): assesses the entered code and also turns on/off the Incorrect code and
System blocked LEDs.

Conversely, availableCommands() can be mentioned as an example of a function that does follow
the principles of modularity; this function only displays messages to the user on the PC. It has well-
defined functionality and is easy to understand, reuse, and replace.

Chapter 5 | Modularization Applied to Embedded Systems Programming

177

In order to modularize the functionality of the smart home system, the core functionality can initially
be grouped into the modules shown in Figure 5.1. The colors and the layout used in Figure 5.1 are
intentionally the same as in Figure 1.2 so as to stress that the current smart home system functionality
is very similar to the smart home system proposed in Chapter 1. The proposed improvement
(i.e., modularize the code) must be done without interfering with the current smart home system
functionality.

Figure 5.1 Diagram of the first attempt to modularize the smart home system program.

It is important to note that Figure 5.1 represents a first approach to the software modules, while
Figure 1.2 represents the hardware modules. Very often a software module is directly related to a
given hardware module, but this is not always the case. A hardware module might not have a software
module related to it (because it is not controlled by a microcontroller), or it may have more than one
software module related to it.

Another important concept that was mentioned previously is that it is desirable to write the modules
in such a way that they can be reused in other projects. Therefore, it is convenient to have a main()
function as small and simple as possible, its role being to call a few functions that in turn trigger all the
functionality of the system.

Finally, the modules should be organized with consideration of future improvements and functionality
that could be added to the system. This is a strong reason to group the system functionalities into
small modules, with all modules having a well-defined functionality.

Considering all these concepts, the proposed modules for the smart home system implementation
are shown in Figure 5.2. The main.cpp file is not a module. However, it is included in Figure 5.2 to
stress that it only uses functions provided by the smart home system module. In turn, to implement
the system functionality, the smart home system module will call functions from other modules. The
functionality of each module is briefly described in Table 5.1. In the table, the role of each module is
classified as system, subsystem, or driver.

178

A Beginner’s Guide to Designing Embedded System Applications

Figure 5.2 Diagram of the modules used in the smart home system program.

Table 5.1 Functionalities and roles of the smart home system modules.

Module Description of its functionality Role

Smart home system Manages the functionality of all the subsystems. System

Fire alarm Controls the siren and the strobe light. Subsystem

Code Assesses entered codes and manages setting of new codes. Subsystem

User interface Manages the user interface (LEDs and matrix keypad). Subsystem

PC serial com Manages the communication with the PC (send/receive data). Subsystem

Event log Logs the system events. Subsystem

Siren Drives the siren (implemented by a buzzer). Driver

Strobe light Drives the strobe light (implemented by an LED). Driver

Gas sensor Reads the MQ-2 gas sensor. Driver

Temperature sensor Reads the LM35 temperature sensor. Driver

Matrix keypad Reads the keys pressed on the matrix keypad. Driver

Date and time Reads and writes the date and time of the real-time clock. Driver

In Tables 5.2 to 5.13, the functions provided by each of the proposed modules shown in Table 5.1 are
detailed, together with a brief description of their functionality and the modules (or main.cpp file) that
make use of each function. The tables are presented following the order used in Table 5.1. The code
will be shown and discussed in detail in subsection 5.3.2.

It is important to note that in Tables 5.2 to 5.13, there is a bold line to separate functions that are
called by other modules from functions that are used only within the module itself. For example,
in Table 5.3, the first four functions (from fireAlarmInit() to overTemperatureDetectorStateRead()) are

Chapter 5 | Modularization Applied to Embedded Systems Programming

179

used by functions that belong to other modules, while the last six functions (from gasDetectedRead()
to fireAlarmStrobeTime()) are used only by functions that belong within the fire alarm module
itself. There is no reason to grant other modules access to the functions gasDetectedRead(),
overTemperatureDetectedRead(), fireAlarmActivationUpdate(), fireAlarmDeactivationUpdate(),
fireAlarmDeactivate(), and fireAlarmStrobeTime(). The terminology and concepts related to this
differentiation are discussed in this chapter.

Table 5.2 Functions of the smart home system module.

Name of the function Description of its functionality file that uses it

smartHomeSystem
Init()

Initializes the subsystems and drivers of the smart home system. main.cpp

smartHomeSystem
Update()

Calls the functions that update the modules Fire alarm, User interface, PC serial
com, and Event log. Also manages the system timing.

main.cpp

Table 5.3 Functions of the fire alarm module.

Name of the function Description of its functionality Modules that use it

fireAlarmInit() Initializes the fire alarm subsystem by calling
temperatureSensorInit(), gasSensorInit(), sirenInit(), and
strobeLightInit().

Smart home system

fireAlarmUpdate() Updates the fire alarm subsystem by calling
fireAlarmActivationUpdate(), fireAlarmDeactivationUpdate(),
sirenUpdate(), and strobeLightUpdate().

Smart home system

gasDetectorStateRead() Returns the current state of the gas detector. Event log
PC serial com

overTemperatureDetectorState
Read()

Returns the current state of the over temperature detector. Event log
PC serial com

gasDetectedRead() Returns true if gas has been detected. Fire alarm

overTemperatureDetectedRead() Returns true if over temperature has been detected. Fire alarm

fireAlarmActivationUpdate() Controls the activation of the siren and the strobe light. Fire alarm

fireAlarmDeactivationUpdate() Controls the deactivation of the siren and the strobe light. Fire alarm

fireAlarmDeactivate() Implements the deactivation of the siren and the strobe light. Fire alarm

fireAlarmStrobeTime() Controls the siren and strobe light time. Fire alarm

Table 5.4 Functions of the code module.

Name of the function Description of its functionality Modules that use it

codeWrite() Writes the new code set by the user into CodeSequence[]. PC serial com

codeMatchFrom() Checks if a new code is entered and assesses the code. Fire alarm

codeMatch() Returns a Boolean indicating if the code is correct. Code

codeDeactivate() Sets systemBlockedState and incorrectCodeState to OFF. Code

180

A Beginner’s Guide to Designing Embedded System Applications

Table 5.5 Functions of the user interface module.

Name of the function Description of its functionality Modules that use it

userInterfaceInit() Sets systemBlockedState and incorrectCodeState to OFF
and calls matrixKeypadInit().

Smart home system

userInterfaceUpdate() Calls incorrectCodeIndicatorUpdate(),
userInterfaceMatrixKeypadUpdate(), and
systemBlockedIndicatorUpdate().

Smart home system

userInterfaceCodeCompleteRead() Returns a Boolean indicating if the read of the code is
complete or not.

Code

userInterfaceCodeCompleteWrite() Sets the state of codeComplete. Code

incorrectCodeStateRead() Returns a Boolean indicating if the code is correct or
incorrect.

Event log
User interface

incorrectCodeStateWrite() Sets the state of incorrectCodeState. Code

systemBlockedStateRead() Returns a Boolean indicating if the system is blocked or not. Event log
User interface

systemBlockedStateWrite() Sets the state of systemBlockedState. Code

incorrectCodeIndicatorUpdate() Controls the object incorrectCodeLed. User interface

systemBlockedIndicatorUpdate() Controls the object systemBlockedLed. User Interface

userInterfaceMatrixKeypadUpdate() Gets a new code using the matrix keypad and manages
incorrectCodeState.

User interface

Table 5.6 Functions of the PC serial communication module.

Name of the function Description of its functionality Modules that use it

pcSerialComInit() Calls the function availableCommands(). Smart home system

pcSerialComStringWrite() Writes a string to the PC serial port. Code
Event log

pcSerialComUpdate() Gets the commands and the entered codes. Smart home system

pcSerialComCodeComplete
Read()

Returns a Boolean variable indicating if the code read from
the PcSerialCom is complete.

Code

pcSerialComCodeComplete
Write()

Writes the state of codeCompleteFromPcSerialCom. Code

pcSerialComCharRead() Returns a char corresponding to a read value. PC serial com

pcSerialComStringRead() Reads a string from the PC serial port. PC serial com

pcSerialComSaveCode
Update()

Receives a new char of the entered code. PC serial com

pcSerialComSaveNewCode
Update()

Receives a new char of the new code. PC serial com

pcSerialComCommand
Update()

Depending on the entered char, triggers one of the
commands of the PC serial com module.

PC serial com

availableCommands() Displays the available commands on the PC. PC serial com

Chapter 5 | Modularization Applied to Embedded Systems Programming

181

Name of the function Description of its functionality Modules that use it

commandShowCurrent
AlarmState()

Displays whether the alarm is activated or not on the PC. PC serial com

commandShowCurrent
GasDetectorState()

Displays whether the gas is being detected or not on the PC. PC serial com

commandShowCurrent
OverTempDetectorState()

Displays whether the temperature is above the maximum
level or not on the PC.

PC serial com

commandEnterCode
Sequence()

Configures the UART to receive a code and displays a
message on the PC asking for the code.

PC serial com

commandEnterNewCode() Configures the UART to receive a code and displays a
message on the PC asking for the new code.

PC serial com

commandShowCurrent
TemperatureInCelsius()

Displays the temperature in Celsius on the PC. PC serial com

commandShowCurrent
TemperatureInFahrenheit()

Displays the temperature in Fahrenheit on the PC. PC serial com

commandSetDateAndTime() Gets date and time and writes it to the RTC. PC serial com

commandShowDateAndTime() Displays the date and time on the PC. PC serial com

commandShowStoredEvents() Displays the stored events on the PC. PC serial com

Table 5.7 Main functionality of the event log module.

Name of the function Description of its functionality Modules that use it

eventLogUpdate() Updates the log of events. Smart home system

eventLogNumberOfStoredEvents() Returns the number of stored events. PC serial com

eventLogRead() Reads an event stored in the log. PC serial com

eventLogWrite() Stores an event in the log. Event log

eventLogElementStateUpdate() Stores the new events in the log. Event log

Table 5.8 Functions of the siren module.

Name of the function Description of its functionality Modules that use it

sirenInit() Sets the siren to OFF (OpenDrain). Fire alarm

sirenUpdate() Updates the state of the siren. Fire alarm

sirenStateRead() Returns the Boolean variable sirenState. Event log
Fire alarm
PC serial com
User interface

sirenStateWrite() Writes the state of Boolean variable sirenState. Fire alarm

182

A Beginner’s Guide to Designing Embedded System Applications

Table 5.9 Functions of the strobe light module.

Name of the function Description of its functionality Modules that use it

strobeLightInit() Sets alarmLed to OFF. Fire alarm

strobeLightUpdate() Updates the state of the strobe light. Fire alarm

strobeLightStateRead() Returns the Boolean variable strobeLightState. Fire alarm
User interface

strobeLightStateWrite() Writes the state of Boolean variable strobeLightState. Fire alarm

Table 5.10 Functions of the gas sensor module.

Name of the function Description of its functionality Modules that use it

gasSensorInit() Has no functionality. Reserved for future use. Fire alarm

gasSensorUpdate() Has no functionality. Reserved for future use. Fire alarm

gasSensorRead() Returns the reading of the gas sensor detector. Fire alarm

Table 5.11 Functions of the temperature sensor module.

Name of the function Description of its functionality Modules that use it

temperatureSensorInit() Has no functionality. Reserved for future use. Fire alarm

temperatureSensorUpdate() Updates the temperature reading. Fire alarm

temperatureSensorReadCelsius() Returns the temperature in ºC. Fire alarm

temperatureSensorReadFahrenheit() Returns the temperature in ºF. PC serial com

celsiusToFahrenheit() Converts a reading in ºC to ºF. Temperature sensor

analogReadingScaledWithTheLM35Formula() Converts an LM35 reading to temp. Temperature sensor

Table 5.12 Main functionality of the matrix keypad module.

Name of the function Description of its functionality Modules that use it

matrixKeypadInit() Initializes the matrix keypad pins and FSM. User interface

matrixKeypadUpdate() Implements the matrix keypad FSM. User interface

matrixKeypadScan() Scans the matrix keypad and returns the read char. Matrix keypad

matrixKeypadReset() Resets the matrix keypad FSM. Matrix keypad

Table 5.13 Functions of the date and time module.

Name of the function Description of its functionality Modules that use it

dateAndTimeRead() Returns the RTC date and time. PC serial com

dateAndTimeWrite() Writes the RTC date and time. PC serial com

Looking at Tables 5.2 to 5.13, it can be appreciated how the different modules are related to each
other. These relationships are summarized in Figure 5.3.

Chapter 5 | Modularization Applied to Embedded Systems Programming

183

Figure 5.3 Diagram of the relationships between the modules used in the smart home system.

NOTE: For the sake of simplicity, the Siren and Strobe light modules are drawn
together in Figure 5.3 despite being independent modules. In section 5.3.2, it will be
shown that they have many similarities.

As was briefly described in Table 5.1, the roles of the modules indicated in Figure 5.3 are:

 n The Smart home system is the only module that is called from the main.cpp (its role is system).

 n The Fire alarm, Code, User interface, PC serial communication, and Event log are subsystem
modules. They are called by other modules and call functions from other modules.

 n The Siren, Strobe light, Gas sensor, Temperature sensor, Matrix keypad, and Date and time are
driver modules. They are called by other modules, but they do not call functions from other modules.

5.3.2 Detailed implementation of the Refactored Code of the Smart Home System

This subsection shows the program code that is proposed in order to implement the functions
introduced in Tables 5.2 to 5.13. The whole program can be imported using the URL available in [1].

The libraries and defines that are used are shown in Code 5.1. It can be seen that the #defines are now
organized according to the different modules that were defined. Some names have been changed in
comparison with Example 4.4 (for example, OVER_TEMP_LEVEL was changed to TEMPERATURE_C_
LIMIT_ALARM, KEYPAD_NUMBER_OF_ROWS was changed to MATRIX_KEYPAD_NUMBER_OF_
ROWS), and some prefixes have been incorporated, such as “CODE_”, “EVENT_LOG_”, and “SIREN_”.

184

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

//=====[Defines]===

// Module: code ---------------------------------------

#define CODE_NUMBER_OF_KEYS 4

// Module: event_log ----------------------------------

#define EVENT_LOG_MAX_STORAGE 20
#define EVENT_HEAD_STR_LENGTH 8
#define EVENT_LOG_NAME_MAX_LENGTH 13
#define DATE_AND_TIME_STR_LENGTH 18
#define CTIME_STR_LENGTH 25
#define NEW_LINE_STR_LENGTH 3
#define EVENT_STR_LENGTH (EVENT_HEAD_STR_LENGTH + \
 EVENT_LOG_NAME_MAX_LENGTH + \
 DATE_AND_TIME_STR_LENGTH + \
 CTIME_STR_LENGTH + \
 NEW_LINE_STR_LENGTH)

// Module: fire_alarm ---------------------------------

#define TEMPERATURE_C_LIMIT_ALARM 50.0
#define STROBE_TIME_GAS 1000
#define STROBE_TIME_OVER_TEMP 500
#define STROBE_TIME_GAS_AND_OVER_TEMP 100

// Module: matrix_keypad ------------------------------

#define MATRIX_KEYPAD_NUMBER_OF_ROWS 4
#define MATRIX_KEYPAD_NUMBER_OF_COLS 4
#define DEBOUNCE_BUTTON_TIME_MS 40

// Module: smart_home_system --------------------------

#define SYSTEM_TIME_INCREMENT_MS 10

// Module: temperature_sensor -------------------------

#define LM35_NUMBER_OF_AVG_SAMPLES 100

Code 5.1 Libraries and defines used in the refactored version of the smart home system code.

NOTE: From now on, the names of modules will be written following the snake_case
format shown on lines 12, 26, 33, 39, and 43 of Code 5.1. In this format, each space is
replaced by an underscore (_) character, and the first letter of each word is written in
lowercase.

Many definitions were added to the event_log module, as can be seen between lines 14 and 24.
Figure 5.4 shows a diagram that illustrates the rationale behind the number of characters assigned to
each of these definitions, as it can be obtained after analyzing the implementation of eventLogRead(),
which is introduced later in this chapter. EVENT_STR_LENGTH, which is obtained as the sum of the
other values (line 20 to line 24), will be used in the function commandShowStoredEvents(), as discussed
below.

Chapter 5 | Modularization Applied to Embedded Systems Programming

185

Figure 5.4 Diagram showing how the definitions of the event_log module were made.

NOTE: Remember that the characters '\0' (null), '\r' (carriage return), and '\n' (line
feed) are not printed on the serial terminal, but still occupy one position in an array of
char. '\0' is stored with the code 0, '\r' with the code 10, and '\n' with the code 13.

In Code 5.2, the declarations of public data types are shown. The first data type that is declared,
codeOrigin_t, as well as the last data type that is declared, pcSerialComMode_t, are introduced in this
chapter with the aim of modularizing the program code, as discussed below. All of the remaining data
types are the same as in Example 4.4, but they are now grouped with regard to the respective modules
where they are used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

//=====[Declaration of public data types]======================================

// Module: code ---------------------------------------

typedef enum{
 CODE_KEYPAD,
 CODE_PC_SERIAL,
} codeOrigin_t;

// Module: event_log ----------------------------------

typedef struct systemEvent {
 time_t seconds;
 char typeOfEvent[EVENT_LOG_NAME_MAX_LENGTH];
} systemEvent_t;

// Module: matrix_keypad ------------------------------

typedef enum {
 MATRIX_KEYPAD_SCANNING,
 MATRIX_KEYPAD_DEBOUNCE,
 MATRIX_KEYPAD_KEY_HOLD_PRESSED
} matrixKeypadState_t;

// Module: pc_serial_com ------------------------------

typedef enum{
 PC_SERIAL_COMMANDS,
 PC_SERIAL_GET_CODE,
 PC_SERIAL_SAVE_NEW_CODE,
} pcSerialComMode_t;

Code 5.2 Public data types of the refactored version of the smart home system code.

186

A Beginner’s Guide to Designing Embedded System Applications

In Code 5.3, the declarations and initializations of public global objects are shown. Again, the objects
are the same as in Example 4.4, although they have been subdivided into modules. The only object
that is declared in a different way is sirenPin (PE_10). This object was introduced in Example 3.5 and
declared in Chapters 3 and 4 as a DigitalInOut object to turn on the buzzer by asserting 0 V in PE_10
and turn off the buzzer by configuring PE_10 as an open drain input.

In Code 5.3, it can be seen that PE_10 is now declared as a DigitalOut object. Using this method, the
buzzer can be turned on by asserting 0 V to PE_10 and turned off by asserting 3.3 V to PE_10. From
now on, when the alarm is activated, the buzzer will be turned off and on intermittently, concurrently
with the LD1 alarmLed. The code to implement this behavior is simpler if PE_10 is declared as a
DigitalOut object. In this way, the buzzer will now generate a “beep beep” sound instead of the
continuous sound that was implemented in previous chapters.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//=====[Declaration and initialization of public global objects]===============

// Module: fire_alarm ---------------------------------

DigitalIn alarmTestButton(BUTTON1);

// Module: gas_sensor ---------------------------------

DigitalIn mq2(PE_12);

// Module: matrix_keypad ------------------------------

DigitalOut keypadRowPins[MATRIX_KEYPAD_NUMBER_OF_ROWS] = {PB_3, PB_5, PC_7, PA_15};
DigitalIn keypadColPins[MATRIX_KEYPAD_NUMBER_OF_COLS] = {PB_12, PB_13, PB_15, PC_6};

// Module: pc_serial_com ------------------------------

Serial uartUsb(USBTX, USBRX, 115200);

// Module: siren --------------------------------------

DigitalOut sirenPin(PE_10);

// Module: strobe_light -------------------------------

DigitalOut strobeLight(LED1);

// Module: temperature_sensor -------------------------

AnalogIn lm35(A1);

// Module: user_interface -----------------------------

DigitalOut incorrectCodeLed(LED3);
DigitalOut systemBlockedLed(LED2);

Code 5.3 Public global objects of the refactored version of the smart home system code.

Chapter 5 | Modularization Applied to Embedded Systems Programming

187

NOTE: When sirenPin is defined as a DigitalOut object (line 22 of Code 5.3), the buzzer
does not turn off completely when PE_10 is configured in HIGH state but makes a
very soft sound. This is due to the fact that when 3.3 V is applied to PE_10, there is 1.7
V between the “+” and “-” buzzer pins, as shown in Figure 5.5. In order to completely
turn off the buzzer while using PE_10 as a DigitalOut object, the circuit shown in
Figure 5.6 can be used. In this circuit, PE_10 activates or deactivates transistor Q1,
which allows current to circulate through the buzzer, just like a switch. RB1 is used to
limit the base current.

Figure 5.5. Diagram of the voltage through the buzzer pins when PE_10 is set to 0 V and 3.3 V.

GND

R 1KB

Black: 0

Gold: 5%
tolerance

Brown: 1

Red: x100

5V

PE_10

5V
Piezo
Buzzer-

+

T1
B

C

E

C = Collector
B = Base
E = Emitter

BC548C

C

B
E

548CBC

Figure 5.6 Diagram of the circuit that can be used to completely turn on and off the buzzer.

NOTE: In the implementation shown in Figure 5.5, the buzzer is turned on when 0 V
is asserted in PE_10 and is turned off when 3.3 V is asserted in PE_10. However, in the
circuit shown in Figure 5.6, the buzzer is turned on when 3.3 V is asserted in PE_10
and is turned off when 0 V is asserted in PE_10. As a consequence, the code should be
modified if the latter circuit is used. This is discussed below.

188

A Beginner’s Guide to Designing Embedded System Applications

In Code 5.4, the declaration and initialization of public global variables is shown. In this new
implementation, the variables gasDetected and overTemperatureDetected are used to indicate
that gas and over temperature have been detected, respectively, while gasDetectorState and
overTemperatureDetectorState are used to indicate, respectively, that gas and over temperature are
currently being detected.

The reader should note that the new variables systemBlockedState and incorrectCodeState are used to
indicate the state of the LEDs, in order to differentiate them from the LEDs themselves. These are
managed by means of the objects systemBlockedLed and incorrectCodeLed. This is a consequence of
the modularization: the state of systemBlockedState and incorrectCodeState are controlled by the code
module, while the LEDs are controlled by the user_interface module.

The reader should also note that there are many new variables declared, for example in the pc_serial_com
and siren modules. The use of these variables will be explained in the following pages, together with the
functions of the modules.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//=====[Declaration and initialization of public global variables]=============

// Module: code ---------------------------------------

int numberOfIncorrectCodes = 0;
char codeSequence[CODE_NUMBER_OF_KEYS] = { '1', '8', '0', '5' };

// Module: event_log ----------------------------------

bool sirenLastState = OFF;
bool gasLastState = OFF;
bool tempLastState = OFF;
bool ICLastState = OFF;
bool SBLastState = OFF;
int eventsIndex = 0;
systemEvent_t arrayOfStoredEvents[EVENT_LOG_MAX_STORAGE];

// Module: fire_alarm ---------------------------------

bool gasDetected = OFF;
bool overTemperatureDetected = OFF;
bool gasDetectorState = OFF;
bool overTemperatureDetectorState = OFF;

// Module: matrix_keypad ------------------------------

matrixKeypadState_t matrixKeypadState;
int timeIncrement_ms = 0;
int accumulatedDebounceMatrixKeypadTime = 0;
char matrixKeypadLastKeyPressed = '\0';

// Module: pc_serial_com ------------------------------

char codeSequenceFromPcSerialCom[CODE_NUMBER_OF_KEYS];
pcSerialComMode_t pcSerialComMode = PC_SERIAL_COMMANDS;
bool codeCompleteFromPcSerialCom = false;
int numberOfCodeCharsFromPcSerialCom = 0;
char newCodeSequence[CODE_NUMBER_OF_KEYS];

Chapter 5 | Modularization Applied to Embedded Systems Programming

189

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// Module: siren --------------------------------------

bool sirenState = OFF;
int accumulatedTimeAlarm = 0;

// Module: strobe_light --------------------------------

bool strobeLightState = OFF;

// Module: temperature_sensor -------------------------

float lm35TemperatureC = 0.0;
float lm35ReadingsArray[LM35_NUMBER_OF_AVG_SAMPLES];
int lm35SampleIndex = 0;

// Module: user_interface -----------------------------

char codeSequenceFromUserInterface[CODE_NUMBER_OF_KEYS];
bool incorrectCodeState = OFF;
bool systemBlockedState = OFF;
bool codeComplete = false;
int numberOfCodeChars = 0;
int numberOfHashKeyReleased = 0;

Code 5.4 Public global variables of the refactored version of the smart home system code.

In Code 5.5 and Code 5.6, the declarations of the public functions are shown. All these functions will
be discussed one after the other in the following pages.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

//=====[Declarations (prototypes) of public functions]=========================

// Module: code ---------------------------------------

void codeWrite(char* newCodeSequence);
bool codeMatchFrom(codeOrigin_t codeOrigin);
bool codeMatch(char* codeToCompare);
void codeDeactivate();

// Module: date_and_time ------------------------------

char* dateAndTimeRead();
void dateAndTimeWrite(int year, int month, int day,
 int hour, int minute, int second);

// Module: event_log ----------------------------------

void eventLogUpdate();
int eventLogNumberOfStoredEvents();
void eventLogRead(int index, char* str);
void eventLogWrite(bool currentState, const char* elementName);
void eventLogElementStateUpdate(bool lastState,
 bool currentState,
 const char* elementName);

// Module: fire_alarm ---------------------------------

void fireAlarmInit();
void fireAlarmUpdate();

190

A Beginner’s Guide to Designing Embedded System Applications

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

bool gasDetectorStateRead();
bool overTemperatureDetectorStateRead();
bool gasDetectedRead();
bool overTemperatureDetectedRead();
void fireAlarmActivationUpdate();
void fireAlarmDeactivationUpdate();
void fireAlarmDeactivate();
int fireAlarmStrobeTime();

// Module: gas_sensor ---------------------------------

void gasSensorInit();
void gasSensorUpdate();
bool gasSensorRead();

// Module: matrix_keypad ------------------------------

void matrixKeypadInit(int updateTime_ms);
char matrixKeypadUpdate();
char matrixKeypadScan();
void matrixKeypadReset();

Code 5.5 Declarations of public functions of the refactored version of the smart home system code (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Module: pc_serial_com ------------------------------

void pcSerialComInit();
char pcSerialComCharRead();
void pcSerialComStringWrite(const char* str);
void pcSerialComStringRead(char* str, int strLength);
void pcSerialComUpdate();
bool pcSerialComCodeCompleteRead();
void pcSerialComCodeCompleteWrite(bool state);
void pcSerialComGetCodeUpdate(char receivedChar);
void pcSerialComSaveNewCodeUpdate(char receivedChar);
void pcSerialComCommandUpdate(char receivedChar);
void availableCommands();
void commandShowCurrentAlarmState();
void commandShowCurrentGasDetectorState();
void commandShowCurrentOverTemperatureDetectorState();
void commandEnterCodeSequence();
void commandEnterNewCode();
void commandShowCurrentTemperatureInCelsius();
void commandShowCurrentTemperatureInFahrenheit();
void commandSetDateAndTime();
void commandShowDateAndTime();
void commandShowStoredEvents();

// Module: siren --------------------------------------

void sirenInit();
bool sirenStateRead();
void sirenStateWrite(bool state);
void sirenUpdate(int strobeTime);

// Module: strobe_light -------------------------------

void strobeLightInit();
bool strobeLightStateRead();

Chapter 5 | Modularization Applied to Embedded Systems Programming

191

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

void strobeLightStateWrite(bool state);
void strobeLightUpdate(int strobeTime);

// Module: smart_home_system --------------------------

void smartHomeSystemInit();
void smartHomeSystemUpdate();

// Module: temperature_sensor -------------------------

void temperatureSensorInit();
void temperatureSensorUpdate();
float temperatureSensorReadCelsius();
float temperatureSensorReadFahrenheit();
float celsiusToFahrenheit(float tempInCelsiusDegrees);
float analogReadingScaledWithTheLM35Formula(float analogReading);

// Module: user_interface -----------------------------

void userInterfaceInit();
void userInterfaceUpdate();
bool userInterfaceCodeCompleteRead();
void userInterfaceCodeCompleteWrite(bool state);
bool incorrectCodeStateRead();
void incorrectCodeStateWrite(bool state);
void incorrectCodeIndicatorUpdate();
bool systemBlockedStateRead();
void systemBlockedStateWrite(bool state);
void systemBlockedIndicatorUpdate();
void userInterfaceMatrixKeypadUpdate();

Code 5.6 Declarations of public functions of the refactored version of the smart home system code (part 2/2).

The main function of the refactored version of the smart home system code is shown in Code 5.7. Just
one function is used to initialize the system (smartHomeSystemInit()), and only one function is used to
update the system (smartHomeSystemUpdate()).

1
2
3
4
5
6
7
8
9

//=====[Main function, the program entry point after power on or reset]========

int main()
{
 smartHomeSystemInit();
 while (true) {
 smartHomeSystemUpdate();
 }
}

Code 5.7 The main function of the refactored version of the smart home system code.

In Code 5.8, the implementations of some of the functions of the code module are shown. The function
codeWrite() receives as a parameter a pointer to the new code set by the user (recall from Chapter 4
that a pointer is a variable that stores a memory address, usually corresponding to another variable)
and writes the new code into CodeSequence[]. The implementation of this functionality was previously
in case '5' of the switch of the uartTask() function. In this new implementation, the storage of the
code is detached from the functionality of sending the code through the UART. This improves the
responsiveness of the system (e.g., in the previous implementation the system remained waiting for
the four digits, which impacted the blinking of the LEDs).

192

A Beginner’s Guide to Designing Embedded System Applications

The function codeMatch() receives as a parameter a pointer to the code to compare (i.e., the memory
address where codeToCompare is stored) and returns a Boolean indicating whether the code is correct.
This functionality was previously implemented by the function areEqual() for the control panel and
directly coded in case '4' of the uartTask() function for the serial communication. By means of this new
function, the functionality of assessing the code is unified for both the code entered using the PC and
the code entered using the matrix keypad.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

//=====[Implementations of public functions]===================================

// Module: code ---------------------------------------

void codeWrite(char* newCodeSequence)
{
 int i;
 for (i = 0; i < CODE_NUMBER_OF_KEYS; i++) {
 codeSequence[i] = newCodeSequence[i];
 }
}

bool codeMatch(char* codeToCompare)
{
 int i;
 for (i = 0; i < CODE_NUMBER_OF_KEYS; i++) {
 if (codeSequence[i] != codeToCompare[i]) {
 return false;
 }
 }
 return true;
}

Code 5.8 Implementation of the functions of the code module (Part 1/2).

In Code 5.9, the implementations of the remaining functions of the code module are shown.
codeMatchFrom() checks if a new code is entered, assesses the code, and, if it is correct, deactivates the
alarm. This function receives the parameter codeOrigin of type codeOrigin_t, as introduced in Code 5.2,
to indicate where the code came from. It is called by fireAlarmDeactivationUpdate() and compares two
codes. By using the functions pcSerialComCodeCompleteRead() and userInterfaceCodeCompleteRead(), it
checks if there is a new code to call codeMatch() to assess if the code is correct.

On line 8 of Code 5.9, it can be seen that userInterfaceCodeCompleteWrite() is used to set the variable
codeCompleteFromUserInterface to false, while on line 21 pcSerialComCodeCompleteWrite() is used
to set codeCompleteFromPcSerialCom to false. If the code entered by means of the user_interface
module or the pc_serial_com module is correct, the function codeDeactivate() is called (lines 10 and
23) in order to turn off the systemBlockedState and the incorrectCodeState (lines 46 and 47) as well as
setting the variable numberOfIncorrectCodes (line 48) to zero. If the entered code is incorrect, then
incorrectCodeState is set to on, and numberOfIncorrectCodes is incremented (lines 12 and 13 and lines
26 and 27).

Chapter 5 | Modularization Applied to Embedded Systems Programming

193

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

bool codeMatchFrom(codeOrigin_t codeOrigin)
{
 bool codeIsCorrect = false;
 switch (codeOrigin) {
 case CODE_KEYPAD:
 if(userInterfaceCodeCompleteRead()) {
 codeIsCorrect = codeMatch(codeSequenceFromUserInterface);
 userInterfaceCodeCompleteWrite(false);
 if (codeIsCorrect) {
 codeDeactivate();
 } else {
 incorrectCodeStateWrite(ON);
 numberOfIncorrectCodes++;
 }
 }
 break;

 case CODE_PC_SERIAL:
 if(pcSerialComCodeCompleteRead()) {
 codeIsCorrect = codeMatch(codeSequenceFromPcSerialCom);
 pcSerialComCodeCompleteWrite(false);
 if (codeIsCorrect) {
 codeDeactivate();
 pcSerialComStringWrite("\r\nThe code is correct\r\n\r\n");
 } else {
 incorrectCodeStateWrite(ON);
 numberOfIncorrectCodes++;
 pcSerialComStringWrite("\r\nThe code is incorrect\r\n\r\n");
 }
 }
 break;

 default:
 break;
 }

 if (numberOfIncorrectCodes >= 5) {
 systemBlockedStateWrite(ON);
 }

 return codeIsCorrect;
}

void codeDeactivate()
{
 systemBlockedStateWrite(OFF);
 incorrectCodeStateWrite(OFF);
 numberOfIncorrectCodes = 0;
}

Code 5.9 Implementation of the functions of the code module (part 2/2).

In Code 5.10, the implementation of the functions of the module date_and_time is shown. The function
dateAndTimeRead() reads the date and time from the RTC, while the function dateAndTimeWrite()
configures the RTC using the date and time indicated by the received parameters. This functionality
was previously implemented inside cases ‘s’ and ‘t’ of the function uartTask().

194

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Module: date_and_time ------------------------------

char* dateAndTimeRead()
{
 time_t epochSeconds;
 epochSeconds = time(NULL);
 return ctime(&epochSeconds);
}

void dateAndTimeWrite(int year, int month, int day,
 int hour, int minute, int second)
{
 struct tm rtcTime;

 rtcTime.tm_year = year - 1900;
 rtcTime.tm_mon = month - 1;
 rtcTime.tm_mday = day;
 rtcTime.tm_hour = hour;
 rtcTime.tm_min = minute;
 rtcTime.tm_sec = second;

 rtcTime.tm_isdst = -1;

 set_time(mktime(&rtcTime));
}

Code 5.10 Implementation of the functions of the date_and_time module.

In Code 5.11, the implementation of the function eventLogUpdate() of the event_log module is shown.
This function updates the log of events. The reader should note the usage of the variable currentState
in each of the five parts of this function, together with calls to functions from different modules (i.e.,
sirenStateRead(), gasDetectorStateRead(), etc.).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Module: event_log ----------------------------------

void eventLogUpdate()
{
 bool currentState = sirenStateRead();
 eventLogElementStateUpdate(sirenLastState, currentState, "ALARM");
 sirenLastState = currentState;

 currentState = gasDetectorStateRead();
 eventLogElementStateUpdate(gasLastState, currentState, "GAS_DET");
 gasLastState = currentState;

 currentState = overTemperatureDetectorStateRead();
 eventLogElementStateUpdate(tempLastState, currentState, "OVER_TEMP");
 tempLastState = currentState;

 currentState = incorrectCodeStateRead();
 eventLogElementStateUpdate(ICLastState, currentState, "LED_IC");
 ICLastState = currentState;

 currentState = systemBlockedStateRead();
 eventLogElementStateUpdate(SBLastState ,currentState, "LED_SB");
 SBLastState = currentState;
}

Code 5.11 Implementation of the functions of the Event log module (Part 1/2).

Chapter 5 | Modularization Applied to Embedded Systems Programming

195

In Code 5.12, the new function eventLogNumberOfStoredEvents(), which returns the number of stored
events, is shown. The function eventLogRead(), which reads an event stored in the log, is also shown.
In Example 4.4, this functionality was implemented in case 'E' of the uartTask() function, and is now
called by the function commandShowStoredEvents(), as will be seen in Code 5.20. The first parameter
of eventLogRead() is the event index. Its second parameter, str, is a pointer to an array of chars. In that
array, first “Event = ” (line 9) is written, then the content of the corresponding type of event: arrayOf
StoredEvents[index].typeOfEvent (line 10), then “\r\nDate and Time = ” (line 11), then the corresponding
time, ctime(&arrayOfStoredEvents[index].seconds (line 12), and finally “\r\n” (line 13). Remember that
Figure 5.4 showed a diagram about the content that is obtained for the array str after executing this
function.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

int eventLogNumberOfStoredEvents()
{
 return eventsIndex;
}

void eventLogRead(int index, char* str)
{
 str[0] = '\0';
 strcat(str, "Event = ");
 strcat(str, arrayOfStoredEvents[index].typeOfEvent);
 strcat(str, "\r\nDate and Time = ");
 strcat(str, ctime(&arrayOfStoredEvents[index].seconds));
 strcat(str, "\r\n");
}

void eventLogWrite(bool currentState, const char* elementName)
{
 char eventAndStateStr[EVENT_LOG_NAME_MAX_LENGTH] = "";

 strcat(eventAndStateStr, elementName);
 if (currentState) {
 strcat(eventAndStateStr, "_ON");
 } else {
 strcat(eventAndStateStr, "_OFF");
 }

 arrayOfStoredEvents[eventsIndex].seconds = time(NULL);
 strcpy(arrayOfStoredEvents[eventsIndex].typeOfEvent, eventAndStateStr);
 if (eventsIndex < EVENT_LOG_MAX_STORAGE - 1) {
 eventsIndex++;
 } else {
 eventsIndex = 0;
 }

 pcSerialComStringWrite(eventAndStateStr);
 pcSerialComStringWrite("\r\n");
}

void eventLogElementStateUpdate(bool lastState,
 bool currentState,
 const char* elementName)
{
 if (lastState != currentState) {
 eventLogWrite(currentState, elementName);
 }
}

Code 5.12 Implementation of the functions of the event_log module (Part 2/2).

196

A Beginner’s Guide to Designing Embedded System Applications

Finally, the implementation of systemElementStateUpdate() is replaced by the functions eventLogWrite(),
which stores an event in the log, and eventLogElementStateUpdate(), which calls the function
eventLogWrite() if the state being evaluated changes. Note that these functions receive a pointer to a
constant string as a parameter (named elementName in both cases). Remember that more information
about the functions strcat and strcpy, which were introduced in Chapter 4 and are used in Code 5.12, is
available in [2].

Many functions of the fire_alarm module are shown in Code 5.13. fireAlarmInit() initializes the fire
alarm subsystem by calling the functions gasSensorInit(), temperatureSensorInit(), and sirenInit();
fireAlarmUpdate() updates the fire alarm subsystem by calling the functions fireAlarmActivationUpdate(),
fireAlarmDeactivationUpdate(), and sirenUpdate(); gasDetectorStateRead() returns the state of the gas
detector; overTemperatureDetectorStateRead() returns the state of the over temperature detector;
gasDetectedRead() returns true if gas is being detected; and overTemperatureDetectedRead() returns
true if over temperature is being detected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// Module: fire_alarm ---------------------------------

void fireAlarmInit()
{
 temperatureSensorInit();
 gasSensorInit();
 sirenInit();
 strobeLightInit();

 alarmTestButton.mode(PullDown);
}

void fireAlarmUpdate()
{
 fireAlarmActivationUpdate();
 fireAlarmDeactivationUpdate();
 sirenUpdate(fireAlarmStrobeTime());
 strobeLightUpdate(fireAlarmStrobeTime());
}

bool gasDetectorStateRead()
{
 return gasDetectorState;
}

bool overTemperatureDetectorStateRead()
{
 return overTemperatureDetectorState;
}

bool gasDetectedRead()
{
 return gasDetected;
}

bool overTemperatureDetectedRead()
{
 return overTemperatureDetected;
}

Code 5.13 Implementation of the functions of the fire_alarm module (Part 1/2).

Chapter 5 | Modularization Applied to Embedded Systems Programming

197

In Code 5.14, other functions of the fire_alarm module are shown. The function
fireAlarmActivationUpdate() controls the activation of the siren. In the previous code, this functionality
was part of alarmActivationUpdate(). On lines 3 and 4, the functions temperatureSensorUpdate() and
gasSensorUpdate() are called in order to update the reading of those sensors, since the functions
temperatureSensorReadCelsius() on line 6 and gasSensorRead() on line 15 return the last readings
without updating.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

void fireAlarmActivationUpdate()
{
 temperatureSensorUpdate();
 gasSensorUpdate();

 overTemperatureDetectorState = temperatureSensorReadCelsius() >
 TEMPERATURE_C_LIMIT_ALARM;

 if (overTemperatureDetectorState) {
 overTemperatureDetected = ON;
 sirenStateWrite(ON);
 strobeLightStateWrite(ON);
 }

 gasDetectorState = !gasSensorRead();

 if (gasDetectorState) {
 gasDetected = ON;
 sirenStateWrite(ON);
 strobeLightStateWrite(ON);
 }

 if (alarmTestButton) {
 overTemperatureDetected = ON;
 gasDetected = ON;
 sirenStateWrite(ON);
 strobeLightStateWrite(ON);
 }
}

void fireAlarmDeactivationUpdate()
{
 if (sirenStateRead()) {
 if (codeMatchFrom(CODE_KEYPAD) ||
 codeMatchFrom(CODE_PC_SERIAL)) {
 fireAlarmDeactivate();
 }
 }
}

void fireAlarmDeactivate()
{
 sirenStateWrite(OFF);
 strobeLightStateWrite(OFF);
 overTemperatureDetected = OFF;
 gasDetected = OFF;
}

int fireAlarmStrobeTime()
{
 if(gasDetectedRead() && overTemperatureDetectedRead()) {
 return STROBE_TIME_GAS_AND_OVER_TEMP;
 } else if (gasDetectedRead()) {
 return STROBE_TIME_GAS;
 } else if (overTemperatureDetectedRead()) {
 return STROBE_TIME_OVER_TEMP;
 } else {
 return 0;
 }
}

Code 5.14 Implementation of the functions of the fire_alarm module (Part 2/2).

198

A Beginner’s Guide to Designing Embedded System Applications

The function fireAlarmDeactivationUpdate() controls the deactivation of the siren. When the alarm
is active, the function codeMatchFrom() on lines 34 and 35 assesses if there is a new deactivation
code to check. If there is a new deactivation code, the fireAlarmDeactivate() function is called. This
implementation decouples the condition to deactivate the alarm from the actual deactivation of the
alarm.

The function fireAlarmDeactivate() implements the deactivation of the siren and the strobe light by
setting them to the OFF state, as well as setting overTemperatureDetected and gasDetected to OFF. The
function fireAlarmStrobeTime() controls the siren and the strobe light on and off time. This function was
part of the function alarmActivationUpdate() in the former version of the code.

In general, much of the functionality that was included in alarmActivationUpdate() in the previous
version of the code (Example 4.4) is now organized in the fire_alarm and siren modules in order
to decouple the control of the activation and deactivation of the siren from the activation and
deactivation itself. In this way, more actions can be easily included on line 9 and/or line 17, following
the modularity principle. For example, water sprinklers could be turned on, or a phone call could be
made (which are not included in this example).

In Code 5.15, the implementation of the gas sensor functionality is shown. This module implements
the reading of the gas sensor. The first two functions are actually useless but are included in order to
keep the same structure as in the other module.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// Module: gas_sensor ---------------------------------

void gasSensorInit()
{
}

void gasSensorUpdate()
{
}

bool gasSensorRead()
{
 return mq2;
}

Code 5.15 Implementation of the functions of the gas_sensor module.

In Code 5.16, Code 5.17, and Code 5.18 the functions of the matrix_keypad module are shown. There
are small changes from the previous version of the code:

 n The function matrixKeypadInit() receives the parameter timeIncrement_ms instead of using the value
defined by TIME_INCREMENT_MS.

 n The implementation of the function matrixKeypadReset() is used to reset the FSM of the matrix
keypad. In the previous version of the code, this was done by matrixKeypadInit().

Chapter 5 | Modularization Applied to Embedded Systems Programming

199

1
2
3
4
5
6
7
8
9
10
11

// Module: matrix_keypad ------------------------------

void matrixKeypadInit(int updateTime_ms)
{
 timeIncrement_ms = updateTime_ms;
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 int pinIndex = 0;
 for(pinIndex=0; pinIndex<MATRIX_KEYPAD_NUMBER_OF_COLS; pinIndex++) {
 (keypadColPins[pinIndex]).mode(PullUp);
 }
}

Code 5.16 Implementation of the functions of the matrix_keypad module (Part 1/3).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

char matrixKeypadUpdate()
{
 char keyDetected = '\0';
 char keyReleased = '\0';

 switch(matrixKeypadState) {

 case MATRIX_KEYPAD_SCANNING:
 keyDetected = matrixKeypadScan();
 if(keyDetected != '\0') {
 matrixKeypadLastKeyPressed = keyDetected;
 accumulatedDebounceMatrixKeypadTime = 0;
 matrixKeypadState = MATRIX_KEYPAD_DEBOUNCE;
 }
 break;

 case MATRIX_KEYPAD_DEBOUNCE:
 if(accumulatedDebounceMatrixKeypadTime >=
 DEBOUNCE_KEY_TIME_MS) {
 keyDetected = matrixKeypadScan();
 if(keyDetected == matrixKeypadLastKeyPressed) {
 matrixKeypadState = MATRIX_KEYPAD_KEY_HOLD_PRESSED;
 } else {
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 }
 accumulatedDebounceMatrixKeypadTime =
 accumulatedDebounceMatrixKeypadTime + timeIncrement_ms;
 break;

 case MATRIX_KEYPAD_KEY_HOLD_PRESSED:
 keyDetected = matrixKeypadScan();
 if(keyDetected != matrixKeypadLastKeyPressed) {
 if(keyDetected == '\0') {
 keyReleased = matrixKeypadLastKeyPressed;
 }
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
 }
 break;

 default:
 matrixKeypadReset();
 break;
 }
 return keyReleased;
}

Code 5.17 Implementation of the functions of the matrix_keypad module (Part 2/3).

200

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

char matrixKeypadScan()
{
 int row = 0;
 int col = 0;
 int i = 0;

 char matrixKeypadIndexToCharArray[] = {
 '1', '2', '3', 'A',
 '4', '5', '6', 'B',
 '7', '8', '9', 'C',
 '*', '0', '#', 'D',
 };

 for(row=0; row<MATRIX_KEYPAD_NUMBER_OF_ROWS; row++) {

 for(i=0; i<MATRIX_KEYPAD_NUMBER_OF_ROWS; i++) {
 keypadRowPins[i] = ON;
 }

 keypadRowPins[row] = OFF;

 for(col=0; col<MATRIX_KEYPAD_NUMBER_OF_COLS; col++) {
 if(keypadColPins[col] == OFF) {
 return matrixKeypadIndexToCharArray[
 row*MATRIX_KEYPAD_NUMBER_OF_ROWS + col];
 }
 }
 }
 return '\0';
}

void matrixKeypadReset()
{
 matrixKeypadState = MATRIX_KEYPAD_SCANNING;
}

Code 5.18 Implementation of the functions of the matrix_keypad module (Part 3/3).

The communication with the PC is implemented in the pc_serial_com module, as shown from Code 5.19
to Code 5.22. The function uartTask(), which was implemented in previous chapters, was removed,
and its behavior is now implemented in a different way. One of the reasons for this change is that
uartUsb.read() was used in uartTask() in such a way that the responsiveness of the program was
affected. In particular, uartUsb.read() was used four times in uartTask(): first, to assess if there is a
readable character in uartUsb; second, to get the four digits of the numeric code, one after the other;
third, to get the four digits to set a new numeric code, one after the other; and fourth, to flush uartUsb
once a new date and time had been set. The usage of uartUsb.read() in the second and third cases
blocked the program execution until four new characters were entered, which reduced the program’s
responsiveness to other inputs.

In order to solve this problem, the new implementation of the program uses uartUsb.read() only twice:
first, to assess if there is a readable character in uartUsb (in the new function pcSerialComCharRead(),
line 12 of Code 5.19); second, to read one character in pcSerialComStringRead(), in line 5 of Code 5.20.
With the new implementation, if the alarm is activated, the Alarm LED does not stop blinking when
the program is waiting for the user to enter the alarm deactivation code, as can be concluded from the
following explanation.

Chapter 5 | Modularization Applied to Embedded Systems Programming

201

In this new implementation, pcSerialComCharRead() is called only in line 24 of Code 5.19 by the
function pcSerialComUpdate(). This function implements an FSM, as can be seen from lines 22 to 41
of Code 5.19. There is a switch over pcSerialComMode and, depending on its value, the functions
pcSerialComCommandUpdate(), pcSerialComGetCodeUpdate(), or pcSerialComSaveNewCodeUpdate() are
executed. The implementation of these three functions is shown on Code 5.20 and is discussed below.

It is important to note that prior to the first execution of pcSerialComUpdate(), pcSerialComMode is
initialized as PC_SERIAL_COMMANDS (line 35 of Code 5.4). So, the first time a character is received,
the FSM will call pcSerialComCommandUpdate() in order to determine what function to call depending
on the received command, as can be seen from lines 37 to 52 of Code 5.20.

If the received command is '4', the function commandEnterCodeSequence() is called (line 43 of
Code 5.20). This function modifies the state of pcSerialComMode to PC_SERIAL_GET_CODE, as
can be seen on line 31 of Code 5.21. In this way, the next time the FSM is executed, the function
pcSerialComGetCodeUpdate() is called (line 31 of Code 5.19). This function will be called by the FSM
until four characters are received, because once the statement of line 16 of Code 5.20 becomes true,
pcSerialComMode is set to PC_SERIAL_COMMANDS on line 17. In this way, a new command will be
expected by the FSM. A similar behavior is true for pcSerialComSaveNewCodeUpdate(), which can be
seen from lines 23 to 35 of Code 5.20.

The remaining program code shown in Code 5.19 to Code 5.22 is very similar to the program code
discussed in the previous chapters, the only difference being that the code is now refactored into
functions in order to increase its modularity, with appropriate cohesion and coupling. Also note that
pcSerialComInit() calls availableCommands(). Thus, the list of available commands is printed during the
initialization process.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Module: pc_serial_com ------------------------------

void pcSerialComInit()
{
 availableCommands();
}

char pcSerialComCharRead()
{
 char receivedChar = '\0';
 if(uartUsb.readable()) {
 uartUsb.read(&receivedChar, 1);
 }
 return receivedChar;
}

void pcSerialComStringWrite(const char* str)
{
 uartUsb.write(str, strlen(str));
}

void pcSerialComUpdate()
{
 char receivedChar = pcSerialComCharRead();
 if(receivedChar != '\0') {
 switch (pcSerialComMode) {

202

A Beginner’s Guide to Designing Embedded System Applications

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 case PC_SERIAL_COMMANDS:
 pcSerialComCommandUpdate(receivedChar);
 break;
 case PC_SERIAL_GET_CODE:
 pcSerialComGetCodeUpdate(receivedChar);
 break;
 case PC_SERIAL_SAVE_NEW_CODE:
 pcSerialComSaveNewCodeUpdate(receivedChar);
 break;
 default:
 pcSerialComMode = PC_SERIAL_COMMANDS;
 break;
 }
 }
}

bool pcSerialComCodeCompleteRead()
{
 return codeComplete;
}

void pcSerialComCodeCompleteWrite(bool state)
{
 codeComplete = state;
}

Code 5.19 Implementation of the functions of the pc_serial_com module (Part 1/4).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

void pcSerialComStringRead(char* str, int strLength)
{
 int strIndex;
 for (strIndex = 0; strIndex < strLength; strIndex++) {
 uartUsb.read(&str[strIndex] , 1);
 uartUsb.write(&str[strIndex] ,1);
 }
 str[strLength]='\0';
}

void pcSerialComGetCodeUpdate(char receivedChar)
{
 codeSequenceFromPcSerialCom[numberOfCodeChars] = receivedChar;
 pcSerialComStringWrite("*");
 numberOfCodeChars++;
 if (numberOfCodeChars >= CODE_NUMBER_OF_KEYS) {
 pcSerialComMode = PC_SERIAL_COMMANDS;
 codeComplete = true;
 numberOfCodeChars = 0;
 }
}

void pcSerialComSaveNewCodeUpdate(char receivedChar)
{
 char newCodeSequence[CODE_NUMBER_OF_KEYS];
 newCodeSequence[numberOfCodeChars] = receivedChar;
 pcSerialComStringWrite("*");
 numberOfCodeChars++;
 if (numberOfCodeChars >= CODE_NUMBER_OF_KEYS) {
 pcSerialComMode = PC_SERIAL_COMMANDS;
 numberOfCodeChars = 0;
 codeWrite(newCodeSequence);
 pcSerialComStringWrite("\r\nNew code configured\r\n\r\n");
 }

Chapter 5 | Modularization Applied to Embedded Systems Programming

203

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

}

void pcSerialComCommandUpdate(char receivedChar)
{
 switch (receivedChar) {
 case '1': commandShowCurrentAlarmState(); break;
 case '2': commandShowCurrentGasDetectorState(); break;
 case '3': commandShowCurrentOverTemperatureDetectorState(); break;
 case '4': commandEnterCodeSequence(); break;
 case '5': commandEnterNewCode(); break;
 case 'c': case 'C': commandShowCurrentTemperatureInCelsius(); break;
 case 'f': case 'F': commandShowCurrentTemperatureInFahrenheit(); break;
 case 's': case 'S': commandSetDateAndTime(); break;
 case 't': case 'T': commandShowDateAndTime(); break;
 case 'e': case 'E': commandShowStoredEvents(); break;
 default: availableCommands(); break;
 }
}

void availableCommands()
{
 pcSerialComStringWrite("Available commands:\r\n");
 pcSerialComStringWrite("Press '1' to get the alarm state\r\n");
 pcSerialComStringWrite("Press '2' to get the gas detector state\r\n");
 pcSerialComStringWrite("Press '3' to get the over temperature detector state\r\n");
 pcSerialComStringWrite("Press '4' to enter the code to deactivate the alarm\r\n");
 pcSerialComStringWrite("Press '5' to enter a new code to deactivate the alarm\r\n");
 pcSerialComStringWrite("Press 'f' or 'F' to get lm35 reading in Fahrenheit\r\n");
 pcSerialComStringWrite("Press 'c' or 'C' to get lm35 reading in Celsius\r\n");
 pcSerialComStringWrite("Press 's' or 'S' to set the date and time\r\n");
 pcSerialComStringWrite("Press 't' or 'T' to get the date and time\r\n");
 pcSerialComStringWrite("Press 'e' or 'E' to get the stored events\r\n");
 pcSerialComStringWrite("\r\n");
}

Code 5.20 Implementation of the functions of the pc_serial_com module (Part 2/4).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void commandShowCurrentAlarmState()
{
 if (sirenStateRead()) {
 pcSerialComStringWrite("The alarm is activated\r\n");
 } else {
 pcSerialComStringWrite("The alarm is not activated\r\n");
 }
}

void commandShowCurrentGasDetectorState()
{
 if (gasDetectorStateRead()) {
 pcSerialComStringWrite("Gas is being detected\r\n");
 } else {
 pcSerialComStringWrite("Gas is not being detected\r\n");
 }
}

void commandShowCurrentOverTemperatureDetectorState()
{
 if (overTemperatureDetectorStateRead()) {
 pcSerialComStringWrite("Temperature is above the maximum level\r\n");
 } else {
 pcSerialComStringWrite("Temperature is below the maximum level\r\n");
 }

204

A Beginner’s Guide to Designing Embedded System Applications

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

}

void commandEnterCodeSequence()
{
 if(sirenStateRead()) {
 pcSerialComStringWrite("Please enter the four digits numeric code ");
 pcSerialComStringWrite("to deactivate the alarm: ");
 pcSerialComMode = PC_SERIAL_GET_CODE;
 codeComplete = false;
 numberOfCodeChars = 0;
 } else {
 pcSerialComStringWrite("Alarm is not activated.\r\n");
 }
}

void commandEnterNewCode()
{
 pcSerialComStringWrite("Please enter the new four digits numeric code ");
 pcSerialComStringWrite("to deactivate the alarm: ");
 numberOfCodeChars = 0;
 pcSerialComMode = PC_SERIAL_SAVE_NEW_CODE;

}

void commandShowCurrentTemperatureInCelsius()
{
 char str[100] = "";
 sprintf (str, "Temperature: %.2f \xB0 C\r\n",
 temperatureSensorReadCelsius());
 pcSerialComStringWrite(str);
}

void commandShowCurrentTemperatureInFahrenheit()
{
 char str[100] = "";
 sprintf (str, "Temperature: %.2f \xB0 C\r\n",
 temperatureSensorReadFahrenheit());
 pcSerialComStringWrite(str);
}

Code 5.21 Implementation of the functions of the pc_serial_com module (Part 3/4).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

void commandSetDateAndTime()
{
 char year[5] = "";
 char month[3] = "";
 char day[3] = "";
 char hour[3] = "";
 char minute[3] = "";
 char second[3] = "";

 pcSerialComStringWrite("\r\nType four digits for the current year (YYYY): ");
 pcSerialComStringRead(year, 4);
 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Type two digits for the current month (01-12): ");
 pcSerialComStringRead(month, 2);
 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Type two digits for the current day (01-31): ");
 pcSerialComStringRead(day, 2);

Chapter 5 | Modularization Applied to Embedded Systems Programming

205

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Type two digits for the current hour (00-23): ");
 pcSerialComStringRead(hour, 2);
 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Type two digits for the current minutes (00-59): ");
 pcSerialComStringRead(minute, 2);
 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Type two digits for the current seconds (00-59): ");
 pcSerialComStringRead(second, 2);
 pcSerialComStringWrite("\r\n");

 pcSerialComStringWrite("Date and time has been set\r\n");

 dateAndTimeWrite(atoi(year), atoi(month), atoi(day),
 atoi(hour), atoi(minute), atoi(second));
}

void commandShowDateAndTime()
{
 char str[100] = "";
 sprintf (str, "Date and Time = %s", dateAndTimeRead());
 pcSerialComStringWrite(str);
 pcSerialComStringWrite("\r\n");
}

void commandShowStoredEvents()
{
 char str[EVENT_STR_LENGTH];
 int i;
 for (i = 0; i < eventLogNumberOfStoredEvents(); i++) {
 eventLogRead(i, str);
 pcSerialComStringWrite(str);
 pcSerialComStringWrite("\r\n");
 }
}

Code 5.22 Implementation of the functions of the pc_serial_com module (Part 4/4).

NOTE: The implementations of pcSerialComCharRead() and pcSerialComStringWrite(),
which are shown in Code 5.19, and pcSerialComStringRead(), which is shown in
Code 5.20, were already introduced in the Case Study section of Chapter 4 and,
therefore, are not discussed here.

Code 5.23 shows the implementation of the functions of the siren module. The functions of this
module are called by the functions fireAlarmActivationUpdate() and fireAlarmDeactivationUpdate(). They
have the duty of turning on and off the siren (implemented by means of the buzzer), as can be seen
on line 26, which is used to toggle the state of the buzzer every time accumulatedTimeAlarm reaches
strobeTime. In this way, the buzzer now generates an intermittent sound instead of the continuous
sound that was implemented in Chapter 3.

206

A Beginner’s Guide to Designing Embedded System Applications

NOTE: On lines 5 and 29 of Code 5.23, the sirenPin is set to ON in order to turn off the
buzzer. This is because of the assumption that the circuit introduced in Figure 5.5 is
being used. If, instead, the circuit introduced in Figure 5.6 is being used, lines 5 and 29
of Code 5.23 should be modified to “sirenPin = OFF” in order to turn off the buzzer.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// Module: siren --------------------------------------

void sirenInit()
{
 sirenPin = ON;
}

bool sirenStateRead()
{
 return sirenState;
}

void sirenStateWrite(bool state)
{
 sirenState = state;
}

void sirenUpdate(int strobeTime)
{
 static int accumulatedTimeAlarm = 0;
 accumulatedTimeAlarm = accumulatedTimeAlarm + SYSTEM_TIME_INCREMENT_MS;

 if(sirenState) {
 if(accumulatedTimeAlarm >= strobeTime) {
 accumulatedTimeAlarm = 0;
 sirenPin= !sirenPin;
 }
 } else {
 sirenPin = ON;
 }
}

Code 5.23 Implementation of the functions of the siren module.

The functions of the smart_home_system module are shown in Code 5.24. Both functions
smartHomeSystemInit() and smartHomeSystemUpdate() are called by main(), as was shown in Code 5.7.
By means of these functions, the user_interface, fire_alarm, and pc_serial_com modules are initialized,
and those modules, together with the event_log module, are updated at a rate given by the delay on
line 16.

Chapter 5 | Modularization Applied to Embedded Systems Programming

207

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// Module: smart_home_system --------------------------

void smartHomeSystemInit()
{
 userInterfaceInit();
 fireAlarmInit();
 pcSerialComInit();
}

void smartHomeSystemUpdate()
{
 fireAlarmUpdate();
 userInterfaceUpdate();
 pcSerialComUpdate();
 eventLogUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 5.24 Implementation of the functions of the smart_home_system module.

Code 5.25 shows the functions of the strobe_light module. Its functionality is very similar to the
functionality of the siren module and, therefore, is not discussed here.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// Module: strobe_light -------------------------

void strobeLightInit()
{
 strobeLight = OFF;
}

bool strobeLightStateRead()
{
 return strobeLightState;
}

void strobeLightStateWrite(bool state)
{
 strobeLightState = state;
}

void strobeLightUpdate(int strobeTime)
{
 static int accumulatedTimeAlarm = 0;
 accumulatedTimeAlarm = accumulatedTimeAlarm + SYSTEM_TIME_INCREMENT_MS;

 if(strobeLightState) {
 if(accumulatedTimeAlarm >= strobeTime) {
 accumulatedTimeAlarm = 0;
 strobeLight= !strobeLight;
 }
 } else {
 strobeLight = OFF;
 }
}

Code 5.25 Implementation of the functions of the strobe light module.

208

A Beginner’s Guide to Designing Embedded System Applications

Code 5.26 shows the functions of the temperature_sensor module. The functionality implemented
by temperatureSensorUpdate() was, in the previous code (Example 4.4), implemented by the function
alarmActivationUpdate(). The other functions of this module are very similar to the functions of
Example 4.4, besides the changes in their names (which were in order to indicate that they belong to
the temperature_sensor module).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Module: temperature_sensor -------------------------

void temperatureSensorInit()
{
 int i;

 for(i = 0; i < LM35_NUMBER_OF_AVG_SAMPLES ; i++) {
 lm35ReadingsArray[i] = 0;
 }
}

void temperatureSensorUpdate()
{
 static int lm35SampleIndex = 0;
 float lm35ReadingsSum = 0.0;
 float lm35ReadingsAverage = 0.0;

 int i = 0;

 lm35ReadingsArray[lm35SampleIndex] = lm35.read();
 lm35SampleIndex++;
 if (lm35SampleIndex >= LM35_NUMBER_OF_AVG_SAMPLES) {
 lm35SampleIndex = 0;
 }

 lm35ReadingsSum = 0.0;
 for (i = 0; i < LM35_NUMBER_OF_AVG_SAMPLES; i++) {
 lm35ReadingsSum = lm35ReadingsSum + lm35ReadingsArray[i];
 }
 lm35ReadingsAverage = lm35ReadingsSum / LM35_NUMBER_OF_AVG_SAMPLES;
 lm35TemperatureC = analogReadingScaledWithTheLM35Formula (lm35ReadingsAverage);
}

float temperatureSensorReadCelsius()
{
 return lm35TemperatureC;
}

float temperatureSensorReadFahrenheit()
{
 return celsiusToFahrenheit(lm35TemperatureC);
}

float celsiusToFahrenheit(float tempInCelsiusDegrees)
{
 return (tempInCelsiusDegrees * 9.0 / 5.0 + 32.0);
}

float analogReadingScaledWithTheLM35Formula(float analogReading)
{
 return (analogReading * 3.3 / 0.01);
}

Code 5.26 Implementation of the functions of the temperature_sensor module.

Chapter 5 | Modularization Applied to Embedded Systems Programming

209

Finally, Code 5.27 and Code 5.28 show the implementation of the functions of the user interface. The
core of the functionality of this module is the function userInterfaceMatrixKeypadUpdate(). Two details
must be highlighted about this function:

1. On line 12 it can be seen that codeComplete is set to true once four keys have been pressed on the
matrix keypad. Hence, the “#” is not used anymore to signal the end of a code being entered.

2. If sirenStateRead() returns true and systemBlockedStateRead() returns false, then the entered keys
are stored. Alternatively, the Incorrect code LED is turned off only if the “#” key is pressed twice
(line 18).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// Module: user_interface -----------------------------

void userInterfaceInit()
{
 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
 matrixKeypadInit(SYSTEM_TIME_INCREMENT_MS);
}

void userInterfaceUpdate()
{
 userInterfaceMatrixKeypadUpdate();
 incorrectCodeIndicatorUpdate();
 systemBlockedIndicatorUpdate();
}

bool incorrectCodeStateRead()
{
 return incorrectCodeState;
}

void incorrectCodeStateWrite(bool state)
{
 incorrectCodeState = state;
}

void incorrectCodeIndicatorUpdate()
{
 incorrectCodeLed = incorrectCodeStateRead();
}

bool systemBlockedStateRead()
{
 return systemBlockedState;
}

void systemBlockedStateWrite(bool state)
{
 systemBlockedState = state;
}

void systemBlockedIndicatorUpdate()
{
 systemBlockedLed = systemBlockedState;
}

bool userInterfaceCodeCompleteRead()
{
 return codeComplete;
}

void userInterfaceCodeCompleteWrite(bool state)
{
 codeComplete = state;
}

Code 5.27 Implementation of the functions of the user_interface module (Part 1/2).

210

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void userInterfaceMatrixKeypadUpdate()
{
 char keyReleased = matrixKeypadUpdate();

 if(keyReleased != '\0') {

 if(sirenStateRead() && !systemBlockedStateRead()) {
 if(!incorrectCodeStateRead()) {
 codeSequenceFromUserInterface[numberOfCodeChars] = keyReleased;
 numberOfCodeChars++;
 if (numberOfCodeChars >= CODE_NUMBER_OF_KEYS) {
 codeComplete = true;
 numberOfCodeChars = 0;
 }
 } else {
 if(keyReleased == '#') {
 numberOfHashKeyReleased++;
 if(numberOfHashKeyReleased >= 2) {
 numberOfHashKeyReleased = 0;
 numberOfCodeChars = 0;
 codeComplete = false;
 incorrectCodeState = OFF;
 }
 }
 }
 }
 }
}

Code 5.28 Implementation of the functions of the user_interface module (Part 2/2).

NOTE: Given the changes introduced by the userInterfaceMatrixKeypadUpdate()
function, to deactivate the alarm, keys “1”, “8”, “0”, and “5” must be pressed on the
matrix keypad (i.e., it is no longer necessary to press key “#” after entering a code). If an
incorrect code is entered, the “#” key must be pressed twice on the matrix keypad to
enable the entering of a new code, just as in the implementation shown in Chapter 4.

5.4 Organizing the Modules of the Smart Home System into
Different files

5.4.1 Principles followed to Organize the Modules into files: Variables and functions

In order to organize the modules into files, each variable will be declared only in the file of the specific
module that makes use of it. Some variables are used only inside a given function, and their value
must remain in memory from one execution of that given function to the next one. For example,
when the FSM of the matrix keypad is in the MATRIX_KEYPAD_DEBOUNCE state, then the variable
accumulatedDebounceMatrixKeypadTime is incremented by timeIncrement_ms with each execution of
the matrixKeypadUpdate() function until it reaches the value DEBOUNCE_BUTTON_TIME_MS. For
this reason, accumulatedDebounceMatrixKeypadTime must remain in memory from one execution of
matrixKeypadUpdate() to the next one and, therefore, is declared as static. This can be seen on line 3 of
Code 5.29.

Chapter 5 | Modularization Applied to Embedded Systems Programming

211

1
2
3
4
5
6
7
8
9

char matrixKeypadUpdate()
{
 static int accumulatedDebounceMatrixKeypadTime = 0;
 static char matrixKeypadLastKeyPressed = '\0';

 char keyDetected = '\0';
 char keyReleased = '\0';

 switch(matrixKeypadState) {

Code 5.29 The first lines of the function matrixKeypadUpdate(), where some variables are declared as static.

On line 4 of Code 5.29, it can be seen that the variable matrixKeypadLastKeyPressed is also declared
as static, as its value must remain in memory from one execution of matrixKeypadUpdate() to the next
one. In contrast, the values of keyDetected and keyReleased are not declared as static, as the value of
keyDetected is assigned after a call to the function matrixKeypadScan(), while keyReleased is assigned
the value of matrixKeypadLastKeyPressed inside the MATRIX_KEYPAD_KEY_HOLD_PRESSED case.

In Table 5.14, the variables declared as static inside different functions are listed. These static local
variables remain in memory while the program is running, even after the execution of those functions
is completed. A variable that is not declared as static inside a function is erased when the execution of
the function is over.

Table 5.14 Variables that will be declared as static inside given functions.

Module function Variables declaration

matrix_keypad matrixKeypadUpdate() static int
 accumulatedDebounceMatrixKeypadTime = 0;
static char
 matrixKeypadLastKeyPressed = ‘\0’;

pc_serial_com pcSerialComSaveNew
CodeUpdate()

static char newCodeSequence[CODE_NUMBER_OF_KEYS];

temperature_
sensor

temperatureSensor
Update()

static int lm35SampleIndex = 0;

user_interface userInterfaceMatrix
KeypadUpdate()

static int numberOfHashKeyReleased = 0;

With the aim of guaranteeing that the private scope of each module is not invaded by other modules,
some variables that are used by multiple functions of a single module (but not outside the module) are
declared as private inside that module. This is done by means of declaring those variables as static, but
outside the functions. In this way, a variable declared as static outside of a function can only be used
by other functions within the same .c/cpp file. The public and private variables that will be declared in
each module are listed in Table 5.15. The modules date_and_time, gas_sensor, and smart_home_system
have neither private nor public variables.

212

A Beginner’s Guide to Designing Embedded System Applications

WARNiNg: Variables declared as static inside a function (as in Code 5.29 and Table
6.14) are local variables that retain their values as explained, while variables declared
as static outside of a function (as in Table 5.15) are global variables that can only be
accessed by functions declared in the same file.

Table 5.15 Public and private variables declared in each module.

Module Public variables

code None

Private variables

static int numberOfIncorrectCodes = 0;
static char codeSequence[CODE_NUMBER_OF_KEYS] = {‘1’,’8’,’0’,’5’};

Module Public variables

event_log None

Private variables

static bool sirenLastState = OFF;
static bool gasLastState = OFF;
static bool tempLastState = OFF;
static bool ICLastState = OFF;
static bool SBLastState = OFF;
static int eventsIndex = 0;
static systemEvent_t arrayOfStoredEvents[EVENT_LOG_MAX_STORAGE];

Module Public variables

fire_alarm None

Private variables

static bool gasDetected = OFF;
static bool overTemperatureDetected = OFF;
static bool gasDetectorState = OFF;
static bool overTemperatureDetectorState = OFF;

Module Public variables

matrix_keypad None

Private variables

static matrixKeypadState_t matrixKeypadState;
static int timeIncrement_ms = 0;

Module Public variables

pc_serial_com char codeSequenceFromPcSerialCom[CODE_NUMBER_OF_KEYS];

Private variables

static pcSerialComMode_t pcSerialComMode = PC_SERIAL_COMMANDS;
static bool codeCompleteFromPcSerialCom = false;
static int numberOfCodeCharsFromPcSerialCom = 0;

Chapter 5 | Modularization Applied to Embedded Systems Programming

213

Module Public variables

siren None

Private variables

static bool sirenState = OFF;

Module Public variables

strobe_light None

Private variables

static bool strobeLightState = OFF;

Module Public variables

temperature_
sensor

None

Private variables

float lm35TemperatureC = 0.0;
float lm35AvgReadingsArray[LM35_NUMBER_OF_AVG_SAMPLES];

Module Public variables

user_interface char codeSequenceFromUserInterface[CODE_NUMBER_OF_KEYS];

Private variables

static bool incorrectCodeState = OFF;
static bool systemBlockedState = OFF;
static bool codeComplete = false;
static int numberOfCodeChars = 0;

In Table 5.2 to Table 5.13, some functions were shown that are used by different modules, while other
functions are used only by functions in the same module. The functions that must be available to
other modules are called public functions, while the functions that must be available only for functions
in the same module are called private functions. Table 5.16 shows which public and private functions
will be declared in each module. The private functions are identified by the word static prior to their
declaration.

Table 5.16 Public and private functions.

Module Public functions

code void codeWrite(char* newCodeSequence);
bool codeMatchFrom(codeOrigin_t codeOrigin);

Private functions

static bool codeMatch(char* codeToCompare);
static void codeDeactivate();

214

A Beginner’s Guide to Designing Embedded System Applications

Module Public functions

date_and_time char* dateAndTimeRead();
void dateAndTimeWrite(int year, int month, int day,
 int hour, int minute, int second);

Private functions

None

Module Public functions

event_log void eventLogUpdate();
int eventLogNumberOfStoredEvents();
void eventLogRead(int index, char* str);
void eventLogWrite(bool currentState, const char* elementName);

Private functions

static void eventLogElementStateUpdate(bool lastState,
 bool currentState, const char* elementName);

Module Public functions

fire_alarm void fireAlarmInit();
void fireAlarmUpdate();
bool gasDetectorStateRead();
bool overTemperatureDetectorStateRead();
bool gasDetectedRead();
bool overTemperatureDetectedRead();

Private functions

static void fireAlarmActivationUpdate();
static void fireAlarmDeactivationUpdate();
static void fireAlarmDeactivate();
static int fireAlarmStrobeTime();

Module Public functions

gas_sensor void gasSensorInit();
void gasSensorUpdate();
bool gasSensorRead();

Private functions

None

Module Public functions

matrix_keypad void matrixKeypadInit(int updateTime_ms);
char matrixKeypadUpdate();

Private functions

static char matrixKeypadScan();
static void matrixKeypadReset();

Chapter 5 | Modularization Applied to Embedded Systems Programming

215

Module Public functions

pc_serial_com void pcSerialComInit();
char pcSerialComCharRead();
void pcSerialComStringWrite(const char* str);
void pcSerialComUpdate();
bool pcSerialComCodeCompleteRead();
void pcSerialComCodeCompleteWrite(bool state);

Private functions

static void pcSerialComStringRead(char* str, int strLength);
static void pcSerialComGetCodeUpdate(char receivedChar);
static void pcSerialComSaveNewCodeUpdate(char receivedChar);
static void pcSerialComCommandUpdate(char receivedChar);
static void availableCommands();
static void commandShowCurrentSirenStrobeLightState();
static void commandShowCurrentGasDetectorState();
static void commandShowCurrentOverTemperatureDetectorState();
static void commandEnterCodeSequence();
static void commandEnterNewCode();
static void commandShowCurrentTemperatureInCelsius();
static void commandShowCurrentTemperatureInFahrenheit();
static void commandSetDateAndTime();
static void commandShowDateAndTime();
static void commandShowStoredEvents();

Module Public functions

siren void sirenInit();
bool sirenStateRead();
void sirenStateWrite(bool state);
void sirenUpdate(int strobeTime);

Private functions

None

Module Public functions

strobe_light void strobeLightInit();
bool strobeLightStateRead();
void strobeLightStateWrite(bool state);
void strobeLightUpdate(int strobeTime);

Private functions

None

Module Public functions

smart_home_
system

void smartHomeSystemInit();
void smartHomeSystemUpdate();

Private functions

None

216

A Beginner’s Guide to Designing Embedded System Applications

Module Public functions

Temperature sensor void temperatureSensorInit();
void temperatureSensorUpdate();
float temperatureSensorReadCelsius();
float temperatureSensorReadFahrenheit();
float celsiusToFahrenheit(float tempInCelsiusDegrees);

Private functions

static float analogReadingScaledWithTheLM35Formula(
 float analogReading);

Module Public functions

User interface void userInterfaceInit();
void userInterfaceUpdate();
bool userInterfaceCodeCompleteRead();
void userInterfaceCodeCompleteWrite(bool state);
bool incorrectCodeStateRead();
void incorrectCodeStateWrite(bool state);
bool systemBlockedStateRead();
void systemBlockedStateWrite(bool state);

Private functions

static void incorrectCodeIndicatorUpdate();
static void systemBlockedIndicatorUpdate();
static void userInterfaceMatrixKeypadUpdate();

NOTE: The function eventLogWrite() is public even though no other modules use it.
The reason it is declared public instead of private is that it will be used by a module
that will be created in Example 10.3.

5.4.2 Detailed implementation of the Code of the Smart Home System in Different files

In order to implement modularization in C/C++, every module must have a well-defined interface.
By means of its interface, each module specifies how its public functions can be requested by other
modules. It is very important to understand that the modules that call a public function from another
module should not get involved in, or even get access to, the way in which those functions are
implemented. This concept is known as encapsulation. For this purpose, header (.h) files are used. This
model is shown in Figure 5.7.

Chapter 5 | Modularization Applied to Embedded Systems Programming

217

Figure 5.7 Diagram of modularization in C/C++ using header files.

The main goal is to improve the program organization and to guarantee that each module does not get
involved in the responsibilities of other modules. In order to achieve this goal, it is common to separate
the .h files and the .c/cpp files into different file folders, or even to only grant other programmers
access to the .h files, and provide the .c/cpp files as object files, which cannot be read by a programmer.

Another important concept arises here: the prototypes of the functions declared in the .h file are public,
while the prototypes of the functions declared as static in the .c/cpp file are private.

To implement the .h and .cpp files of each module, some templates that are used are available in
subsection 5.4.2 at [1].

The .h file template begins with “#include guards - begin”, where it uses the preprocessor directive
“#ifndef” to indicate that the .h file must be included only if it was not previously included. This is
to ensure that each .h file is included only once, because if a .h file is included more than once, the
compiler will report an error. The line “#include guards - end” at the end of the .h file template is used to
indicate the ending of the preprocessor directive by an #endif.

In Table 5.17, the sections of the template that are used to write the .h file of each module are shown.
The three sections of the .h file template (Declaration of public #defines, Declaration of public data types,
and Declarations (prototypes) of public functions) are all public declarations. As explained in subsection
5.2.2 Implementation of Modularization in C/C++ Programs, these .h files are the ones that should be
provided to the users of each module.

Table 5.17 Sections of the template that are used to write the .h file of each module.

Name of the section Purpose of the section

Declaration of public defines Declaration of #defines that are public.

Declaration of public data types Declaration of data types that are public.

Declarations (prototypes) of public functions Declaration functions that are public.

218

A Beginner’s Guide to Designing Embedded System Applications

In Table 5.18, the sections of the template used to write the .cpp file of each module are shown. The
reader should note that this template includes:

 n The libraries that are used by the module (i.e., a set of .h files).

 n The declaration of definitions, data types, variables, and functions.

 n The implementation of public and private functions.

Table 5.18 Sections of the template used to write the .cpp file of each module.

Name of the section Purpose of the section

Libraries Include .h files used by the module.

Declaration of private defines Declare the defines used only by the module.

Declaration of private data types Declare the data types used only by the module.

Declaration and initialization of public global objects Declare the objects that are used only by other modules and maybe
also by the same module.

Declaration of external public global variables Declare the extern public global variables (this concept is explained at
the end of this section).

Declaration and initialization of public global variables Declare the variables that are used by other modules and maybe also
by the same module.

Declaration and initialization of private global variables Declare the variables that are used only by the module.

Declarations (prototypes) of private functions Declare the private functions that are used only by the module.

Implementations of public functions Implement the public functions used by other modules.

Implementations of private functions Implement the private functions.

NOTE: The #defines and data types declared in sections Declaration of private
definitions and Declaration of private data types of a .cpp file can be used only by code
in the same .cpp file, while #defines and data types in sections Declaration of public
definitions and Declaration of public data types of a .h file are public.

Using these .h and .cpp file templates and the public and private classification of variables and
functions discussed in Table 5.15 and Table 5.16, the files and folders shown in Figure 5.8 were
prepared. An extra .cpp file for the main function and an extra .h file for the arm_book_lib library are
included.

Chapter 5 | Modularization Applied to Embedded Systems Programming

219

Figure 5.8 File organization proposed for the smart home system code.

It is important to mention that the libraries that are included in each module are just the ones that are
needed by that module. For example, the section “Libraries” of the file siren.cpp includes the following
files: mbed.h, arm_book_lib.h, siren.h, smart_home_system.h, and fire_alarm.h.

Given that all the functions have already been discussed in subsection 5.3.2, no code will be shown
or discussed in this section. The reader is encouraged to download the files and explore the code
behavior themselves. All the folders and files shown in Figure 5.8 are available in subsection 5.4.2 at
[1]. Even though the project is organized in modules, it is built in the same way as in previous chapters.
Drag the .bin file onto the NUCLEO board, and test how the program works in order to verify that
its functionality is similar to Example 4.4. Some differences are that now if the alarm is activated,
the Alarm LED does not stop blinking when the program is waiting for the user to enter the alarm
deactivation code (because of the changes introduced in the pc_serial_com module), and the list of
available commands is shown after power on even if the user does not press any key.

Table 5.19 shows the only two variables that are defined using the prefix extern. These two variables,
codeSequenceFromUserInterface and codeSequenceFromPcSerialCom, are declared in the user_interface
module and in the pc_serial_com module, respectively, and are used also in the code module. In order to
make them usable by other modules, they are declared as public variables in the section “Declaration
and initialization of public global variables” of the user_interface and pc_serial_com modules,
respectively, and due to the extern prefix, the compiler is notified that these two variables, which are
referred to in the section “Declaration of external public global variables” of the code module, are
actually declared somewhere else.

220

A Beginner’s Guide to Designing Embedded System Applications

Table 5.19 Example of extern variables that are used in the implementation of the smart home system.

Module External public global variables

code extern char codeSequenceFromUserInterface[CODE_NUMBER_OF_KEYS];
extern char codeSequenceFromPcSerialCom[CODE_NUMBER_OF_KEYS];

This concept of extern variables applies whenever a global variable must be used in different modules.
Therefore, in that case it is not valid to declare the global variable only in one of the modules and use
it in the other modules, because an error of “use of undeclared identifier” will be obtained. Neither is
it valid to declare the global variable in each of the modules, because in that case an error of “multiply
defined” will be obtained. As explained above, in that situation, the global variable must be declared in
one of the modules as usual, and in the other modules it should be declared using the reserved word
extern, as shown in Table 5.19.

Lastly, it is very important to note that as a consequence of the modularization process, some libraries
were created that can be reused in other systems. For example, the temperature_sensor module can
be used in any other system provided with an LM35 sensor. The matrix_keypad module could also be
reused by the reader in future projects.

NOTE: This book started from a non-modular design for pedagogical reasons. It is
always recommended to start with a modularized design from the beginning.

Proposed Exercises

1. What should be modified in order to change the blinking time of the siren?

2. What should be modified in order to change the conversion formula of the temperature sensor?

Answers to the Exercises

1. The values of the #defines STROBE_TIME_GAS, STROBE_TIME_OVER_TEMP, and
STROBE_TIME_GAS_AND_OVER_TEMP should be modified in the file fire_alarm.cpp.

2. The conversion formula should be modified in the function
analogReadingScaledWithTheLM35Formula() of the temperature_sensor module.

 References
[1] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.

https://github.com/armBookCodeExamples/Directory/

[2] “<cstring> (string.h) - C++ Reference”. Accessed July 9, 2021.
https://www.cplusplus.com/reference/cstring/

https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://www.cplusplus.com/reference/cstring/
https://www.cplusplus.com/reference/cstring/

LCD Displays and Communication
between Integrated Circuits

Chapter 6

222

A Beginner’s Guide to Designing Embedded System Applications

6.1 Roadmap

6.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Explain and compare the characteristics of the most commonly used buses for connecting
integrated circuits.

 n Describe how to connect an LCD display to the NUCLEO board using GPIOs, I2C, and SPI buses.

 n Develop programs to show information as characters and graphics on suitable LCD displays.

 n Summarize the concept of a hardware abstraction layer (HAL).

Definition: A typical definition of bus in computer architecture is a communication
system that transfers data between components inside a computer. The term covers
all related hardware components and software, including communication protocols.
Buses can have parallel or serial wired connections (i.e., not wireless).

Definition: A communication protocol is a system of rules that allows two or more
entities to transmit information via any kind of variation of a physical quantity. The
protocol defines the rules, syntax, semantics, and synchronization of communication
and possible error recovery methods.

6.1.2 Review of Previous Chapters

In previous chapters, different sensors and elements were connected to the NUCLEO board using
GPIOs and analog inputs. The NUCLEO board was connected to a PC using serial communication
implemented through a UART. In this way, the information gathered by means of the sensors was
shown on the PC screen using the serial terminal.

6.1.3 Contents of this Chapter

It is not always feasible or possible to use a PC to show information, due to room and cost limitations;
an LCD display can be more convenient. There are also modules whose interface is neither a set of
GPIO pins nor an analog output, but a serial communication protocol based on something other than
the UART technology introduced in previous chapters.

In this chapter, two different types of LCD displays will be connected to the NUCLEO board: character
displays and graphical displays. The former is able to display only characters, while the latter is able
to display graphics as well as characters. The character LCD display will be connected to the NUCLEO
board by means of GPIOs (General Purpose Input Output pins) and the I2C (Inter-Integrated
Circuit) bus, while the graphical LCD display connection will be made using the SPI (Serial Peripheral
Interface) bus.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

223

The aim is to introduce most of the buses used to connect integrated circuits and sensors, and through
examples show how software implementation can be made independent from the hardware details.
This will be explained by means of a software module that displays information on an LCD display,
regardless of whether the LCD is a character or a graphical display, or whether the connection to
the display is by means of GPIOs, the I2C bus, or the SPI bus. In this way, the concept of a hardware
abstraction layer (HAL) will be introduced.

note: In previous chapters, the details of the connections to be made and the
explanation of the technical concepts that were used in the examples were all located
at the beginning of the chapter. In this chapter, these sections are interleaved with
the examples as the same character display is connected to the NUCLEO board in
different ways, using different technologies. In this chapter, the explanations of the
technologies involved have a higher level of detail than in the previous chapters. This
level of detail is necessary to understand how LCD displays can be controlled using
I2C and SPI buses.

6.2 LCD Display Connection using GPios, i2C, and SPi Buses

6.2.1 Connect a Character LCD Display to the Smart Home System using GPios

In this chapter, an LCD display is connected to the smart home system, as shown in Figure 6.1. In this
way, it is possible to show in the Alarm control panel information regarding temperature reading, as
well as the state of the gas detector and the activation of the alarm.

A321

B654

C987

D#0*

Incorrect Code

System Blocked

Alarm control panel

Alarm controllerGas etectord Alarm

PC

Over
emperaturet

etectord

°F
°C
/

Figure 6.1 The smart home system is now connected to an LCD display.

224

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.2 shows how to connect the character LCD display module [1], which is based on the
HD44780 dot matrix liquid crystal display (LCD) controller [2]. The reader may notice that standard
inputs and outputs of the NUCLEO board, usually called GPIOs (General Purpose Input Output), are
used, as summarized in Figure 6.3. The aim of this setup is to introduce the basics of character LCD
displays.

 Figure 6.2 The smart home system connected to the character LCD display using GPIOs.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

225

WaRninG: Some displays have a different pin layout. In that case make the
connections following the pin names indicated in Figure 6.3, even if the pins are
arranged in a different way on the display.

In Figure 6.3, the connections that must be made are shown. The GPIOs D0–D9 are used to send
commands to the LCD display, as discussed below. The contrast of the character LCD display can be
adjusted by means of the trimmer potentiometer or “trimpot.” The 1 kΩ resistor connected to the A
(anode) pin together with the K (cathode) pin are used to power the backlight of the character LCD
display.

Figure 6.3 Diagram of the connections between the character LCD display and the NUCLEO board using GPIOs.

WaRninG: Some displays require different resistor values. Check the datasheet of
the display you use.

To test if the character LCD display is working, the .bin file of the program “Subsection 6.2.1” should
be downloaded from the URL available in [3] and dragged onto the NUCLEO board. After power on,
the most pertinent information from the smart home system should be shown on the character LCD
display, as in Figure 6.2.

note: As in previous chapters, the code that is provided to test the connections will
not be discussed. The code to control the LCD character and graphical displays will be
explained in detail in the examples.

226

A Beginner’s Guide to Designing Embedded System Applications

 Figure 6.4 CN11 and CN12 headers of the NUCLEO-F429ZI board scheme made using information available from [4].

Chapter 6 | LCD Displays and Communication between Integrated Circuits

227

tiP: If the display is not working as expected, the corresponding connections can
be checked using the CN11 and CN12 headers and a multimeter. For example, in
Figure 6.3 it can be seen that pin D8 of the NUCLEO board (which corresponds to
PF_12, as can be seen in [4]) should be connected by means of a wire to pin RS of
the character LCD display. However, once this wire is connected it is not easy to
access the D8 pin of the CN7 header to make a continuity test using a multimeter.
Nevertheless, PF_12 is also available on the CN12 connector, as can be seen in
Figure 6.4 (adapted from [4]). Hence, a continuity test can be made between PF_12
and pin RS of the character LCD display by placing one probe at the pin corresponding
to PF_12 in the CN12 header and placing the other probe on pin RS of the character
LCD display. If they are continuous, and the multimeter is properly configured, it
beeps and displays a value near zero. This procedure can be used to check all the
connections shown on Figure 6.3.

WaRninG: In strict terms, the display must be controlled by signals that have a high
level of at least 0.7 × 5 V = 3.5 V, as indicated in [2], while the expected high level of
the NUCLEO board digital outputs is about 3.3 V. However, in order to avoid the
usage of many voltage-level converters, the character display is connected directly
because it was proven to work without the voltage converters. Section 6.2.5 shows
an example of how voltage converters can be used to adapt voltage levels when it is
necessary.

6.2.2 Basic Principles of Character LCD Displays

Character displays, such as the one used in this chapter, are available in a range of different layouts,
such as 20 × 4 (4 lines of 20 characters), 16 × 2, 8 × 2, 8 × 1, etc. Each character is displayed on
a 5 × 8 pixel matrix (the 8th pixel line is reserved for the cursor) as shown in Table 6.1. The code
corresponding to each character is obtained by adding the row and column values. For example, the
character “A” is in the intersection of the column labeled 64 and the row labeled 1, so its code is 65.
The character “a” is in the intersection of the column labeled 96 with the row labeled 1, so its code
is 97. The characters corresponding to the first eight codes (0 to 7) in Table 6.1 correspond to the
Custom Generated Random-Access Memory (CGRAM) characters that can be defined pixel-by-pixel by
the user. The next eight codes (8 to 15) are also mapped to the same eight CGRAM characters and are
not shown in Table 6.1. CGRAM characters are not covered in this book. Characters corresponding to
codes 16 to 31 and 128 to 159 are not included in Table 6.1 because they may vary between different
versions of the HD44780 dot matrix LCD controller, as can be seen in [2].

228

A Beginner’s Guide to Designing Embedded System Applications

Table 6.1 A typical character set of an LCD character display.

CG
RAM
(0)

CG
RAM
(1)

CG
RAM
(2)

CG
RAM
(3)

CG
RAM
(4)

CG
RAM
(5)

CG
RAM
(6)

CG
RAM
(7)

0

0

1

2

3

4

5

6

7

32 40 48 56 64 72 80 88 96 104 112 120 160 168 176 184 192 200 208 216 224 232 240 248

In Chapter 2, it was mentioned that characters transferred between the PC and the NUCLEO
board (for example, 'H', 'e', 'l', 'l', and 'o') are codified using the ASCII standard (American Standard
Code for Information Interchange), which is described in [5]. ASCII was created in the 1960s, having
128 characters. Of these, 95 are printable (digits 0 to 9, lowercase letters a to z, uppercase letters
A to Z, punctuation symbols, etc.). The other 33 are non-printing control codes, most of which are
now obsolete, although a few are still commonly used, such as the carriage return (\r), line feed (\n),
and tab codes (\t).

While 95 printable ASCII characters are sufficient in English, other languages that use Latin alphabets
need additional symbols. ISO/IEC 8859 sought to solve this problem using the eighth bit in an 8-bit
byte to allow positions for another 96 printable characters. In Table 6.2, some of the corresponding
characters are shown. The reader may notice its similarity to the character set shown in Table 6.1.
Therefore, in this chapter, characters to be sent to the display are stated in the program code in a
similar way to previous chapters. However this may not be valid in some cases, where Table 6.1 and
Table 6.2 may differ.

Table 6.2 Part of the character set defined by ASCII and ISO/IEC 8859.

0 32 40 48 56 64 72 80 88 96 104 112 120 160 168 176 184 192 200 208 216 224 232 240 248

0 \0 space (0 8 @ H P X ` h p x ¨ ° ¸ À È Ð Ø à è ð ø

1 !) 1 9 A I Q Y a i q y ¡ © ± ¹ Á É Ñ Ù á é ñ ù

2 “ * 2 : B J R Z b j r z ¢ ª ² º Â Ê Ò Ú â ê ò ú

3 # + 3 ; C K S [c k s { £ « ³ » Ã Ë Ó Û ã ë ó û

4 $, 4 < D L T \ d l t | ¤ ¬ ´ ¼ Ä Ì Ô Ü ä ì ô ü

5 % - 5 = E M U] e m u } ¥ µ ½ Å Í Õ Ý å í õ ý

6 & . 6 > F N V ^ f n v ~ ¦ ® ¶ ¾ Æ Î Ö Þ æ î ö þ

7 ‘ / 7 ? G O W _ g o w § ¯ · ¿ Ç Ï × ß ç ï ÷ ÿ

Chapter 6 | LCD Displays and Communication between Integrated Circuits

229

note: For space reasons, other character mappings are not analyzed in this book.

In an LCD character display, there is Display Data Random Access Memory (DDRAM), which stores the
character to be displayed in each position of the LCD display. In a 20 × 4 character LCD display, the
code of the character to be displayed in the first position of the first line is written into address 0 of
the DDRAM, the character to be displayed in the second position of the first line is written in address
1, and so on. The address of each position of the 20 × 4 character LCD display is shown in Figure 6.5.

80

100

81

101

82

102

83

103

16

36

17

37

18

38

19

39

0

20

64

84

65

85

66

86

67

87

68

88

69

89

70

90

71

91

72

92

73

93

74

94

75

95

76

96

77

97

78

98

79

99

1

21

2

22

3

23

4

24

5

25

6

26

7

27

8

28

9

29

10

30

11

31

12

32

13

33

14

34

15

35

Figure 6.5 Addresses corresponding to each of the positions of a 20 × 4 LCD character display.

From Figure 6.6 to Figure 6.8, the addresses of each of the positions of some typical LCD character
display layouts are shown. The reader will notice that there are more addresses than characters that
can be shown on the display. To show the characters that are written in those addresses (for example,
16 and 80 in Figure 6.6), a shift instruction is used. This idea is illustrated in Figure 6.9.

80 81 103

16 17 ...

...

390

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

80 81 103

16 17 ...

...

390

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.6 Addresses corresponding to each of the positions of a 16 × 2 LCD character display.

0

64 65 66 67 68 69 70 71

1 2 3 4 5 6 7

72 73 103

8 9 ...

...

39

Figure 6.7 Addresses corresponding to each of the positions of an 8 × 2 LCD character display.

0 1 2 3 4 5 6 7 8 9 ... 79

Figure 6.8 Addresses corresponding to each of the positions of an 8 × 1 LCD character display.

230

A Beginner’s Guide to Designing Embedded System Applications

0

64 65 66 67 68 69 70 71

1 2 3 4 5 6 7

73 103

9 ...

...

39

72

8

Figure 6.9 An 8 × 2 LCD character display where a left shift has been applied once.

note: The number 64 is written in binary notation as 01000000. Therefore, it makes
sense to use the number 64 for the position 0 of the second line considering that “01”
indicates line 2 and “000000” its first position.

note: Usually DDRAM addresses are expressed in datasheets in hexadecimal
notation. Therefore, the number “10” is indicated as “0A”, “11” is “0B”, … , “20” is “14”,
… , “64” is “40”, … , “84” is “54”, etc. In this book, decimal notation is used in order to
make addresses easier to understand for the reader.

The instructions that are used in this chapter are summarized in Table 6.3. These instructions are
sent to the display following the timing diagram shown in Figure 6.10. First, the states of the pins E
(Enable), RS (Register Select), R/W (Read, Write), and DB7 to DB0 (Data Bus) are established. Then,
a pulse is set into the E pin (it should last at least 1 µs). During the falling edge of the E pin the code is
written: if RS is set to low, the code is written into the instruction register, while if RS is set to high, the
code is written into the data register. These registers are internally used by the HD44780 dot matrix
LCD controller to process the codes received from the microcontroller [2].

Table 6.3 Summary of the character LCD display instructions that are used in this chapter.

instruction Code Description execution
time

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Clear
display

0 0 0 0 0 0 0 0 0 1 Clears entire display and sets
DDRAM address 0 in address
counter.

1.52 ms

Entry
mode set

0 0 0 0 0 0 0 1 I/D S Sets cursor move direction
and specifies display shift.

1.52 ms

Display
control

0 0 0 0 0 0 1 D C B Sets entire display (D) on/off,
cursor on/off (C), and blinking
of cursor (B).

37 µs

Function
set

0 0 0 0 1 DL N F * * Sets interface data length
(DL), number of display lines
(N), and character font (F).

37 µs

Set DDRAM
address

0 0 1 A6 A5 A4 A3 A2 A1 A0 Sets DDRAM address. 37 µs

Chapter 6 | LCD Displays and Communication between Integrated Circuits

231

instruction Code Description execution
time

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Write data
to DDRAM

1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data into DDRAM. 37 µs

I/D = 1: Increment, I/D = 0: Decrement
S = 1: Accompany display shift,
S = 0: Don’t accompany display shift,
D = 1: Display on, D = 0: Display off
C = 1: Cursor on, C = 0: Cursor off
B = 1: Cursor blink on, B = 0: Cursor blink off

DL = 1: 8 bits, DL = 0: 4 bits
N = 1: 2 lines, N = 0: 1 line
F = 1: 5 × 10 dots, F = 0: 5 × 8 dots
* = don’t care
A6 ... A0 = Address,
D7 … D0 = Data

Figure 6.10 Transfer timing sequence of writing instructions when an 8-bit interface is configured.

note: In the examples in this book, the R/W pin is connected to GND because only
write operations are made to the registers. Sometimes it might be necessary to read
a register to confirm if the previous instruction sent to the display was successfully
executed, but this is not the case in this book.

The procedure to initialize the display when an 8-bit interface is used is described in [2] and is shown
in Figure 6.11. First, there should be a waiting period of more than 40 milliseconds after power on.
Then, the “Function Set” instruction should be sent four times with different delays in between
and with DB4 (corresponding to the DL, Data Length configuration) set to 1. The first three times
“Function Set” is sent, the values of DB3 to DB0 do not matter (those bits can be set either to 1 or 0),
while the fourth time “Function Set” is sent, the values of N (number of lines in the display) and F (font
size) must be set. In the case of the 20 × 4 character display, N must be set to 1 (2 lines) and F must be
set to 0 (5 × 8 dots).

232

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.11 Initialization procedure of the graphic display when an 8-bit interface is used.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

233

note: The addresses of a 20 × 2 LCD character display are very similar to those
shown in Figure 6.6. In a 20 × 2 character display, the addresses of line 1 range from 0
to 39 and the addresses of line 2 from 64 to 103. Only addresses 0 to 19 and 64 to 83
are visible without a shift instruction. Addresses 20 to 39 and 84 to 103 can be seen
only if a shift is made. A 20 × 4 display (Figure 6.5) is considered a special case of a
20 × 2 display, where all the DDRAM content is distributed in four lines and is shown
at the same time. For this reason, N is set to two lines in a 20 × 4 character display.

In Figure 6.11, it can be seen that the “Display Control” instruction is followed by D = 0 (Display off),
C = 0 (Cursor off), and B = 0 (Cursor blink off). This is followed by the “Display Clear” instruction.
Lastly, the “Entry Mode Set” instruction is set, where the value of I/D and S can be configured
according to programmer preference. In this book, I/D is configured to 1 (Increment), in order to
automatically increment the DDRAM address immediately after a given character is written into the
display, and S is set to 0, because it is not necessary to shift the display. In this way, the initialization
ends, and messages can be shown on the display.

Typically, to write a message on the display, the “Set DDRAM address” instruction is used to indicate
the position of the first letter of the message. Then the “Write data to DDRAM” instruction is used to
write the corresponding character according to Table 6.1. Given that I/D is configured to 1, the next
character of the message can be sent to the display using the “Write data to DDRAM” instruction,
without the need to increment the DDRAM address by means of the “Set DDRAM address”
instruction. In this way, the characters of the message can easily be written one after the other, as
shown in Example 6.1.

example 6.1: indicate Present temperature, Gas Detection, and alarm on the Display

Objective

Introduce the usage of a character-based LCD display by means of a GPIO connection.

Summary of the Expected Behavior

The present temperature is shown on the first line of the character LCD display, the state of the gas
detector is shown on the second line, and the state of the alarm is shown on the third line. The fourth
line is left empty to reserve space so that in the future more information can be shown on the display.

Test the Proposed Solution on the Board

Import the project “Example 6.1” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. The present temperature, the gas detection state, and the alarm state should
be shown on the display. Hold the temperature sensor between two fingers in order to change its
reading. The corresponding value should be displayed on the first line of the display. Activate the alarm
by pressing the Alarm test button. This condition should be indicated on the display. When the alarm is
turned off (use the same steps as in the previous chapters), its state should be updated on the display.

234

A Beginner’s Guide to Designing Embedded System Applications

Discussion of the Proposed Solution

The proposed solution is based on a new software module named display. This new module is
composed of two files, display.cpp and display.h, following the modularized structure discussed in
the previous chapter. The main() function in the main.cpp remains the same as in the last section of
Chapter 5. Furthermore, the functions smartHomeSystemInit() and smartHomeSystemUpdate(), called
from the main() function, have no changes. Those functions call the functions userInterfaceInit() and
userInterfaceUpdate(), respectively, and these are the ones that make the corresponding calls to the
functions of the display module, as detailed below.

Implementation of the Proposed Solution

In Table 6.4, the sections where lines have been added to the file user_interface.cpp are summarized.
Besides the definition of DISPLAY_REFRESH_TIME_MS and the declaration of the two functions that
will be explained below, it should be noted that fire_alarm.h and display.h have been included.

Table 6.4 Sections in which lines were added to user_interface.cpp.

Section or function Lines that were added

Libraries #include "fire_alarm.h"

#include "display.h"

Definitions #define DISPLAY_REFRESH_TIME_MS 1000

Declarations (prototypes) of private functions static void userInterfaceDisplayInit();

static void userInterfaceDisplayUpdate();

As previously mentioned, the functions userInterfaceInit() and userInterfaceUpdate() are modified in
order to include the initialization and update of the display, respectively, as can be seen in Code 6.1
and Code 6.2.

1
2
3
4
5
6
7

void userInterfaceInit()
{
 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
 matrixKeypadInit(SYSTEM_TIME_INCREMENT_MS);
 userInterfaceDisplayInit();
}

 Code 6.1 New implementation of the function userInterfaceInit(), including userInterfaceDisplayInit().

1
2
3
4
5
6
7
8

void userInterfaceUpdate()
{
 userInterfaceMatrixKeypadUpdate();
 incorrectCodeIndicatorUpdate();
 systemBlockedIndicatorUpdate();
 userInterfaceDisplayUpdate();
}

Code 6.2 New implementation of the function userInterfaceUpdate(), including userInterfaceDisplayUpdate().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

235

The implementation of the function userInterfaceDisplayInit() is shown in Code 6.3. It is declared as a
private function by means of the reserved word static on line 1 of the corresponding code. On line 3,
the display is initialized by means of the function displayInit(). The details of the implementation of
displayInit() will be shown below this example.

In Code 6.3, the functions displayCharPositionWrite() and displayStringWrite() are used to move
the cursor to a given position and write a given string in that position. In this way, the strings
“Temperature”, “Gas”, and “Alarm” are written in specific positions of the display. The way in which
the corresponding positions of those strings are indicated using x and y coordinates is shown in
Figure 6.12. These coordinates are the parameters of displayCharPositionWrite(), as discussed below.
The details of the implementation of displayStringWrite() are also discussed below.

note: The messages in lines 6, 9, and 12 are strings because the '\0' (null character) is
automatically added to the end of an array of char when it is written between quotes,
as, for example, in “Temperature:”.

1
2
3
4
5
6
7
8
9
10
11
12
13

static void userInterfaceDisplayInit()
{
 displayInit();

 displayCharPositionWrite (0,0);
 displayStringWrite("Temperature:");

 displayCharPositionWrite (0,1);
 displayStringWrite("Gas:");

 displayCharPositionWrite (0,2);
 displayStringWrite("Alarm:");
}

Code 6.3 Implementation of the function userInterfaceDisplayInit().

Figure 6.12 Position of the strings that are placed in the character LCD display.

236

A Beginner’s Guide to Designing Embedded System Applications

The implementation of the function userInterfaceDisplayUpdate() is shown in Code 6.4. On lines 3 and 4,
two variables are declared: a static int accumulatedDisplayTime that is initialized to 0, and a char array
temperatureString, which has three positions because it is considered that the temperature will be in the
range of 0 to 40 °C (a third char position is reserved for the null character). On line 6, a check is made
whether accumulatedDisplayTime has reached the value established by DISPLAY_REFRESH_TIME_MS,
which is defined in user_interface.cpp as 1000. If so, the present temperature value, the state of the gas
detector, and the state of the alarm are updated on the display by means of the code on lines 6 to 31. In
this way, the display is updated every 1000 ms. The corresponding (x, y) positions of the temperature
value, the gas detection, and the alarm state can be seen in Figure 6.12. Finally, if accumulatedDisplayTime
is lower than DISPLAY_REFRESH_TIME_MS, then the value of accumulatedDisplayTime is incremented
by SYSTEM_TIME_INCREMENT_MS (lines 33 to 36).

note: The function sprintf, used in line 11 of Code 6.4, was introduced in Chapter 4.
This function creates a string (an array of char ending with a null character, ‘\0’) in the
indicated destination (in this case temperatureString), following the indicated format
(in this case “%.0f”, a float displayed without decimals) using as input the stated value
(the return value of the function temperatureSensorReadCelsius()).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

static void userInterfaceDisplayUpdate()
{
 static int accumulatedDisplayTime = 0;
 char temperatureString[3] = "";

 if(accumulatedDisplayTime >=
 DISPLAY_REFRESH_TIME_MS) {

 accumulatedDisplayTime = 0;

 sprintf(temperatureString, "%.0f", temperatureSensorReadCelsius());
 displayCharPositionWrite (12,0);
 displayStringWrite(temperatureString);
 displayCharPositionWrite (14,0);
 displayStringWrite("'C");

 displayCharPositionWrite (4,1);

 if (gasDetectorStateRead()) {
 displayStringWrite("Detected ");
 } else {
 displayStringWrite("Not Detected");
 }

 displayCharPositionWrite (6,2);

 if (sirenStateRead()) {
 displayStringWrite("ON ");
 } else {
 displayStringWrite("OFF");
 }

 } else {
 accumulatedDisplayTime =
 accumulatedDisplayTime + SYSTEM_TIME_INCREMENT_MS;
 }
}

Code 6.4 Implementation of the function userInterfaceDisplayUpdate().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

237

The implementation of the function displayInit() is shown in Code 6.5. It follows the initialization
procedure that was introduced in Figure 6.11. In line 3, there is a 50-millisecond delay in order to
have a safety margin above the 40 millisecond wait after power on. In line 5, displayCodeWrite() is
used to send the first “Function Set” instruction to the display. The implementation of this function
is discussed below, but it can be seen that the first parameter (DISPLAY_RS_INSTRUCTION) is used
to indicate that the code corresponds to an instruction, while the second parameter indicates that
it is a DISPLAY_IR_FUNCTION_SET instruction, and the third parameter (DISPLAY_IR_FUNCTION_
SET_8BITS) indicates that the 8-bit interface bit is set.

The statements between lines 8 and 42 follow the steps indicated in Figure 6.11. The only difference
is that at the end the display is turned on (lines 44 to 49).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

void displayInit()
{
 delay(50);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(5);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_CLEAR_DISPLAY);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_ENTRY_MODE_SET |
 DISPLAY_IR_ENTRY_MODE_SET_INCREMENT |
 DISPLAY_IR_ENTRY_MODE_SET_NO_SHIFT);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_ON |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);
}

Code 6.5 Implementation of the function displayInit().

238

A Beginner’s Guide to Designing Embedded System Applications

Code 6.6 shows the #defines that are used by displayCodeWrite(). The corresponding values follow the
information that was summarized in Table 6.3. The OR bitwise operator (|) is used to set the values
of the corresponding bits of the code. For example, “DISPLAY_IR_FUNCTION_SET | DISPLAY_IR_
FUNCTION_ SET_8BITS” implies the OR bitwise operator between the binary values 0b00100000
and 0b00010000, which is equal to 0b00110000. This value corresponds to the first value that should
be sent over the data bus after power on, according to Figure 6.11.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#define DISPLAY_IR_CLEAR_DISPLAY 0b00000001
#define DISPLAY_IR_ENTRY_MODE_SET 0b00000100
#define DISPLAY_IR_DISPLAY_CONTROL 0b00001000
#define DISPLAY_IR_FUNCTION_SET 0b00100000
#define DISPLAY_IR_SET_DDRAM_ADDR 0b10000000

#define DISPLAY_IR_ENTRY_MODE_SET_INCREMENT 0b00000010
#define DISPLAY_IR_ENTRY_MODE_SET_DECREMENT 0b00000000
#define DISPLAY_IR_ENTRY_MODE_SET_SHIFT 0b00000001
#define DISPLAY_IR_ENTRY_MODE_SET_NO_SHIFT 0b00000000

#define DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_ON 0b00000100
#define DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_OFF 0b00000000
#define DISPLAY_IR_DISPLAY_CONTROL_CURSOR_ON 0b00000010
#define DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF 0b00000000
#define DISPLAY_IR_DISPLAY_CONTROL_BLINK_ON 0b00000001
#define DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF 0b00000000

#define DISPLAY_IR_FUNCTION_SET_8BITS 0b00010000
#define DISPLAY_IR_FUNCTION_SET_4BITS 0b00000000
#define DISPLAY_IR_FUNCTION_SET_2LINES 0b00001000
#define DISPLAY_IR_FUNCTION_SET_1LINE 0b00000000
#define DISPLAY_IR_FUNCTION_SET_5x10DOTS 0b00000100
#define DISPLAY_IR_FUNCTION_SET_5x8DOTS 0b00000000

#define DISPLAY_20x4_LINE1_FIRST_CHARACTER_ADDRESS 0
#define DISPLAY_20x4_LINE2_FIRST_CHARACTER_ADDRESS 64
#define DISPLAY_20x4_LINE3_FIRST_CHARACTER_ADDRESS 20
#define DISPLAY_20x4_LINE4_FIRST_CHARACTER_ADDRESS 84

#define DISPLAY_RS_INSTRUCTION 0
#define DISPLAY_RS_DATA 1

#define DISPLAY_RW_WRITE 0
#define DISPLAY_RW_READ 1

Code 6.6 Defines that are used by the displayCodeWrite() function.

The implementation of displayCodeWrite() is shown in Code 6.7. It has two parameters; the first is used
to indicate the type of code to be written, and the second is to indicate the value that should be loaded
into the data bus (DB7 to DB0). Line 3 assesses if type corresponds to DISPLAY_RS_INSTRUCTION.
In that case, in line 4 the RS pin is assigned a value of 0 by means of the function displayPinWrite().
This function receives two parameters, the pin that should be written and the value that should be
written into that pin. If type is not DISPLAY_RS_INSTRUCTION, then the RS pin is assigned a value of
1 (DISPLAY_RS_DATA) in line 6.

In line 7, the R/W pin is assigned a value of 0 using the displayPinWrite() function and the definition
DISPLAY_RW_WRITE. Lastly, in line 8 the values of DB7 to DB0 are written into the data bus using
displayDataBusWrite(). This function also generates the pulse in the E pin, as will be discussed below.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

239

1
2
3
4
5
6
7
8
9

static void displayCodeWrite(bool type, uint8_t dataBus)
{
 if (type == DISPLAY_RS_INSTRUCTION)
 displayPinWrite(DISPLAY_PIN_RS, DISPLAY_RS_INSTRUCTION);
 else
 displayPinWrite(DISPLAY_PIN_RS, DISPLAY_RS_DATA);
 displayPinWrite(DISPLAY_PIN_RW, DISPLAY_RW_WRITE);
 displayDataBusWrite(dataBus);
}

Code 6.7 Implementation of the function displayCodeWrite().

note: The if-else structure in Code 6.7 is intentionally written without using { } in
order to show that if only one statement is used (as in line 4 and line 6), then the
braces are not mandatory.

Code 6.8 shows the implementation of displayPinWrite(). The parameter value is assigned to a DigitalOut
object indicated by the parameter pinName. Code 6.9 shows the DigitalOut objects that are declared. In
Code 6.10, the #defines used in this function are shown (the numbers follow the pin numeration).

It can be seen that in the case of pinName equal to DISPLAY_PIN_RW, no DigitalOut object is assigned
because the R/W pin of the display is connected to GND (only write operations can be made on the
display).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

static void displayPinWrite(uint8_t pinName, int value)
{
 switch(pinName) {
 case DISPLAY_PIN_D0: displayD0 = value; break;
 case DISPLAY_PIN_D1: displayD1 = value; break;
 case DISPLAY_PIN_D2: displayD2 = value; break;
 case DISPLAY_PIN_D3: displayD3 = value; break;
 case DISPLAY_PIN_D4: displayD4 = value; break;
 case DISPLAY_PIN_D5: displayD5 = value; break;
 case DISPLAY_PIN_D6: displayD6 = value; break;
 case DISPLAY_PIN_D7: displayD7 = value; break;
 case DISPLAY_PIN_RS: displayRS = value; break;
 case DISPLAY_PIN_EN: displayEN = value; break;
 case DISPLAY_PIN_RW: break;
 default: break;
 }
}

Code 6.8 Implementation of the function displayPinWrite().

1
2
3
4
5
6
7
8
9
10

DigitalOut displayD0(D0);
DigitalOut displayD1(D1);
DigitalOut displayD2(D2);
DigitalOut displayD3(D3);
DigitalOut displayD4(D4);
DigitalOut displayD5(D5);
DigitalOut displayD6(D6);
DigitalOut displayD7(D7);
DigitalOut displayRS(D8);
DigitalOut displayEN(D9);

Code 6.9 Declaration of public global objects in display.cpp.

240

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11

#define DISPLAY_PIN_RS 4
#define DISPLAY_PIN_RW 5
#define DISPLAY_PIN_EN 6
#define DISPLAY_PIN_D0 7
#define DISPLAY_PIN_D1 8
#define DISPLAY_PIN_D2 9
#define DISPLAY_PIN_D3 10
#define DISPLAY_PIN_D4 11
#define DISPLAY_PIN_D5 12
#define DISPLAY_PIN_D6 13
#define DISPLAY_PIN_D7 14

Code 6.10 Defines that are used by the displayPinWrite() function.

The implementation of displayDataBusWrite() is shown in Code 6.11. In line 3, the E pin is assigned a
low state. From line 4 to line 11, the pins of the data bus are written. For this purpose the AND bitwise
operator (&) is used with a value expressed in binary format. For example, line 4 uses “& 0b10000000”,
which implies that a high state (1) will be written into DISPLAY_PIN_D7 if the most significant bit of
dataBus is 1, while a low state (0) will be written into DISPLAY_PIN_D7 if the most significant bit of
dataBus is 0.

The code in lines 12 to 15 is used to generate a pulse in the E pin, as was explained in section 6.2.2.

note: Every time displayDataBusWrite() is executed, there is an extra delay of 2
milliseconds (lines 13 and 15) incorporated into smartHomeSystemUpdate(). Given that
the execution rate of smartHomeSystemUpdate() is controlled using a 10-millisecond
delay, this 2-millisecond extra delay impacts on how many times per second the
function smartHomeSystemUpdate() is executed (approximately 16% fewer times).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

static void displayDataBusWrite(uint8_t dataBus)
{
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b10000000);
 displayPinWrite(DISPLAY_PIN_D6, dataBus & 0b01000000);
 displayPinWrite(DISPLAY_PIN_D5, dataBus & 0b00100000);
 displayPinWrite(DISPLAY_PIN_D4, dataBus & 0b00010000);
 displayPinWrite(DISPLAY_PIN_D3, dataBus & 0b00001000);
 displayPinWrite(DISPLAY_PIN_D2, dataBus & 0b00000100);
 displayPinWrite(DISPLAY_PIN_D1, dataBus & 0b00000010);
 displayPinWrite(DISPLAY_PIN_D0, dataBus & 0b00000001);
 displayPinWrite(DISPLAY_PIN_EN, ON);
 delay(1);
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 delay(1);
}

Code 6.11 Implementation of the function displayDataBusWrite().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

241

In Code 6.12, the implementation of the function displayCharPositionWrite(), which was used in
Code 6.4, is shown. This function has two parameters: the position in x and y coordinates. In line 3,
there is a switch over charPositionY. Depending on the value of charPositionY, displayCodeWrite() is
called using different parameters. The first parameter of displayCodeWrite() is used to indicate that
it is an instruction that should be written to the instruction register. The second parameter is used
to indicate that it is a “Set DDRAM address” instruction and the value that should be loaded in the
DDRAM address.

For example, if charPositionY is 0 (line 4), the DDRAM address value is obtained as “DISPLAY_20x4_
LINE1_ FIRST_CHARACTER_ADDRESS + charPositionX”, where DISPLAY_20x4_LINE1_FIRST_
CHARACTER_ ADDRESS is defined as 0, as was shown in Code 6.6. If charPositionY is 1 (line 12), the
DDRAM address value is obtained as “DISPLAY_20x4_LINE2_FIRST_CHARACTER_ADDRESS +
charPositionX”, where DISPLAY_20x4_LINE2_FIRST_CHARACTER_ ADDRESS is defined as 64, as was
shown in Code 6.6.

note: There are other ways to implement displayCharPositionWrite() that lead to
shorter code. However, the implementation shown in Code 6.12 was chosen because
the program code is easy to understand.

The other function of the display module used in Code 6.4 is displayStringWrite(). The implementation
of this function is shown in Code 6.13. It has only one parameter, a pointer to a string (i.e., char* str).
As was mentioned in previous chapters, a string is an array of characters ending with a null character
(‘\0’). When, for example, displayStringWrite(“Detected”) is written in the program code, the pointer
points to the first element of “Detected”, in this case the character “D”. Then, in the while loop (line 3
of Code 6.13), the positions in the array are read one after the other, until the null element is found
(remember that a null character is added at the end of an array of char when it is written between
quotes, as in “Detected”).

In this way, displayCodeWrite() is called on line 4. In this case, the first parameter is DISPLAY_RS_DATA
to indicate that the value in the data bus should be written to the data register. The second parameter
is the character pointed by the pointer str. Thus, the corresponding character is written on the display.
The pointer is incremented to the next position of the string on line 5. In this way, one after the other
the characters of the string are written on the display until the null character ('\0') is found (that is,
*str is equal to '\0').

note: The str++ operation in line 4 of Code 6.13 is the first time in the book that a
mathematical operation has been made on a pointer. As discussed in Chapter 4, the
modification of the value of a pointer should be done carefully, because otherwise
improper access to a memory address can be made.

242

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

void displayCharPositionWrite(uint8_t charPositionX, uint8_t charPositionY)
{
 switch(charPositionY) {
 case 0:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE1_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

 case 1:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE2_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

 case 2:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE3_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

 case 3:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE4_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;
 }
}

Code 6.12 Implementation of the function displayCharPositionWrite().

1
2
3
4
5
6
7

void displayStringWrite(const char* str)
{
 while (*str) {
 displayCodeWrite(DISPLAY_RS_DATA, *str++);
 str++;
 }
}

Code 6.13 Implementation of the function displayStringWrite().

Proposed Exercises

1. How can a string “Smart Home” be placed in the center of the fourth line of the display?

2. How can the symbol “°” be placed in the position (x = 14, y = 0) to indicate the degree sign?

Chapter 6 | LCD Displays and Communication between Integrated Circuits

243

Answers to the Exercises

1. The fourth line of the display corresponds to y = 3, and the string “Smart Home” has 10 characters;
so, in order to be centered the string must be placed at x = 5. The following statements could be
used:

 displayCharPositionWrite (5,3);
 displayStringWrite("Smart Home");

2. The code for the “°” symbol in Table 6.1 is 223, so an array char buffer[3]; can be declared, and in line
15 of Code 6.4 the following statements can be used:

 sprintf (buffer, "%cC", 223);
 displayStringWrite(buffer);

example 6.2: Use of a 4-Bit Mode to Send Commands and Data to the Display

Objective

Introduce the use of a character LCD display by means of a GPIO connection with fewer wires.

Summary of the Expected Behavior

The expected behavior is the same as in the previous example, the only difference being that a
reduced number of connections is used between the display and the NUCLEO board, as shown in
Figure 6.13.

Test the Proposed Solution on the Board

Import the project “Example 6.2” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. The behavior should be the same as that discussed in Example 6.1.

Discussion of the Proposed Solution

In Code 6.5 of Example 6.1, the configuration “DISPLAY_IR_FUNCTION_SET_8BITS” was used. By
reading the datasheet of the character LCD display driver [2], the reader may notice that there is also
a 4-bit mode available, which uses only the D4 to D7 pins of the display instead of using D0 to D7. In
this example, the display module is modified in order to allow the use of both the 8-bit mode and the
4-bit mode connection.

note: Only the functions that are modified are shown. All the other code remains the
same.

244

A Beginner’s Guide to Designing Embedded System Applications

 Figure 6.13 The smart home system connected to the character LCD display using 4-bit mode interface.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

245

The transfer timing sequence of writing instructions when a 4-bit interface is configured is shown
in Figure 6.14. It can be seen that first the four bits are transferred and then the last four bits are
transferred. The only case where the transfer timing sequence shown in Figure 6.13 is not followed is
at the beginning of the 4-bit interface initialization procedure, shown in Figure 6.15, that is described
in [2]. It can be seen that the initialization procedure is very similar to the 8-bit interface initialization
procedure that was introduced in Figure 6.11. The main difference is that now transfers are done
using only the D4 to D7 pins of the LCD display and that the “Function Set” instruction is executed
five times.

Figure 6.14 Transfer timing sequence of writing instructions when a 4-bit interface is configured.

Implementation of the Proposed Solution

In Code 6.14, the new implementation of userInterfaceDisplayInit() is shown. It can be seen on line 4
that displayInit() now has a parameter, which in this case is DISPLAY_CONNECTION_GPIO_4BITS.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

static void userInterfaceDisplayInit()
{
 displayInit(DISPLAY_CONNECTION_GPIO_4BITS);

 displayCharPositionWrite (0,0);
 displayStringWrite("Temperature:");

 displayCharPositionWrite (0,1);
 displayStringWrite("Gas:");

 displayCharPositionWrite (0,2);
 displayStringWrite("Alarm:");
}

Code 6.14 Implementation of the function userInterfaceDisplayInit().

246

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.15 Initialization procedure of the graphic display when a 4-bit interface is used.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

247

In Code 6.15 and Code 6.16, the new implementation of displayInit() is shown. On line 3 of Code 6.15, a
static variable of theuser-defined type displayConnection_t named displayConnection is declared. This
type is defined in display.h and can have only two values: DISPLAY_CONNECTION_GPIO_4BITS and
DISPLAY_CONNECTION_GPIO_8BITS.

On line 5, a new private global Boolean variable named initial8BitCommunicationIsCompleted, that is
declared in display.cpp, is assigned false. In this way, it is indicated that the transfer timing sequence
must be made according to Figure 6.11 (only one E pin pulse per data transfer and only one data bus
set of values).

From lines 7 to 22, the program code remains the same as in the previous implementation of
displayInit(). This is because the first three instructions on Figure 6.11 and Figure 6.15 are the same,
the only difference being that in one case the D7 to D0 pins of the LCD display are connected to the
NUCLEO board, while in the other case only the D7 to D4 pins of the LCD display are connected to
the NUCLEO board.

On line 24, there is a switch statement over display.connection. In the case of DISPLAY_
CONNECTION_GPIO_ 8BITS, the code between lines 25 and 32 is executed; it corresponds to the
fourth instruction shown on Figure 6.11. In the case of DISPLAY_CONNECTION_GPIO_4BITS, the
code between lines 34 and 48 is executed; it corresponds to the fourth and fifth instructions shown
on Figure 6.15. It is important to note that in line 40, initial8BitCommunicationIsCompleted is assigned
true. In this way, it is indicated that from now on the transfer should be following the timing sequence
shown in Figure 6.14. Consequently, the fifth instruction shown in Figure 6.15 is transferred using two
E pin pulses per display instruction.

The second part of displayInit(), which is shown in Code 6.16, is the same as in Code 6.5, because
the last part of Figure 6.11 is equal to the last part of Figure 6.15. The only difference is how the
instructions are sent to the display: in the first case the D7 to D0 pins are used, while in the second
case only the D7 to D4 pins are used. The new implementation of displayDataBusWrite() deals with
this.

Code 6.17 shows the new implementation of displayDataBusWrite(). Lines 3 to 7 are the same as in the
previous implementation (Code 6.11). In line 8, there is a switch statement over display.connection. In
the case of DISPLAY_CONNECTION_GPIO_8BITS, lines 10 to 13 are executed, which are the same
as lines 8 to 11 of Code 6.11. In the case of DISPLAY_CONNECTION_GPIO_4BITS, the if statement
on line 17 is evaluated. If initial8BitCommunicationIsCompleted is true (it is set true on line 40 of
Code 6.15), a pulse on the E pin is generated (lines 18 to 21) and then the DigitalOut objects D7 to D4
are written with the values of DB3 to DB0 (lines 22 to 25). For example, on line 22 the statement is
displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b00001000), which implies that the fourth bit from the
left of dataBus (that is, DB3) is written into DISPLAY_PIN_D7.

Finally, in lines 30 to 33, a pulse is generated in the E pin. This pulse performs the transfer of the data,
either the data corresponding to lines 4 to 13, or 22 to 25, depending on the value of display.connection.

248

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

void displayInit(displayConnection_t connection)
{
 display.connection = connection;

 initial8BitCommunicationIsCompleted = false;

 delay(50);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(5);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;

 case DISPLAY_CONNECTION_GPIO_4BITS:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS);
 delay(1);

 initial8BitCommunicationIsCompleted = true;

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;
 }

Code 6.15 New implementation of the function displayInit() (Part 1/2).

Chapter 6 | LCD Displays and Communication between Integrated Circuits

249

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_CLEAR_DISPLAY);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_ENTRY_MODE_SET |
 DISPLAY_IR_ENTRY_MODE_SET_INCREMENT |
 DISPLAY_IR_ENTRY_MODE_SET_NO_SHIFT);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_ON |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);
}

Code 6.16 New implementation of the function displayInit() (Part 2/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

static void displayDataBusWrite(uint8_t dataBus)
{
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b10000000);
 displayPinWrite(DISPLAY_PIN_D6, dataBus & 0b01000000);
 displayPinWrite(DISPLAY_PIN_D5, dataBus & 0b00100000);
 displayPinWrite(DISPLAY_PIN_D4, dataBus & 0b00010000);
 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 displayPinWrite(DISPLAY_PIN_D3, dataBus & 0b00001000);
 displayPinWrite(DISPLAY_PIN_D2, dataBus & 0b00000100);
 displayPinWrite(DISPLAY_PIN_D1, dataBus & 0b00000010);
 displayPinWrite(DISPLAY_PIN_D0, dataBus & 0b00000001);
 break;

 case DISPLAY_CONNECTION_GPIO_4BITS:
 if (initial8BitCommunicationIsCompleted == true) {
 displayPinWrite(DISPLAY_PIN_EN, ON);
 delay(1);
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 delay(1);
 displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b00001000);
 displayPinWrite(DISPLAY_PIN_D6, dataBus & 0b00000100);
 displayPinWrite(DISPLAY_PIN_D5, dataBus & 0b00000010);
 displayPinWrite(DISPLAY_PIN_D4, dataBus & 0b00000001);
 }
 break;

 }
 displayPinWrite(DISPLAY_PIN_EN, ON);
 delay(1);
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 delay(1);
}

Code 6.17 New implementation of the function displayDataBusWrite().

250

A Beginner’s Guide to Designing Embedded System Applications

note: There are other ways to implement displayDataBusWrite() that lead to shorter
code. However, the implementation shown in Code 6.17 was chosen because the
program code is easy to understand.

The new implementation of displayPinWrite() is shown in Code 6.18. In line 3, there is a switch
statement over display.connection. In the case of DISPLAY_CONNECTION_GPIO_8BITS, the code
from lines 5 to 18 is executed, which corresponds to the same code as in Code 6.8. In the case of
DISPLAY_CONNECTION_GPIO_4BITS, the code between lines 21 and 30 is executed, which is very
similar to the code from lines 6 to 18, the difference being that the DigitalOut objects displayD0 to
displayD3 are never assigned a value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

static void displayPinWrite(uint8_t pinName, int value)
{
 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 switch(pinName) {
 case DISPLAY_PIN_D0: displayD0 = value; break;
 case DISPLAY_PIN_D1: displayD1 = value; break;
 case DISPLAY_PIN_D2: displayD2 = value; break;
 case DISPLAY_PIN_D3: displayD3 = value; break;
 case DISPLAY_PIN_D4: displayD4 = value; break;
 case DISPLAY_PIN_D5: displayD5 = value; break;
 case DISPLAY_PIN_D6: displayD6 = value; break;
 case DISPLAY_PIN_D7: displayD7 = value; break;
 case DISPLAY_PIN_RS: displayRS = value; break;
 case DISPLAY_PIN_EN: displayEN = value; break;
 case DISPLAY_PIN_RW: break;
 default: break;
 }
 break;
 case DISPLAY_CONNECTION_GPIO_4BITS:
 switch(pinName) {
 case DISPLAY_PIN_D4: displayD4 = value; break;
 case DISPLAY_PIN_D5: displayD5 = value; break;
 case DISPLAY_PIN_D6: displayD6 = value; break;
 case DISPLAY_PIN_D7: displayD7 = value; break;
 case DISPLAY_PIN_RS: displayRS = value; break;
 case DISPLAY_PIN_EN: displayEN = value; break;
 case DISPLAY_PIN_RW: break;
 default: break;
 }
 break;
 }
}

Code 6.18 New implementation of the function displayPinWrite().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

251

Proposed Exercise

1. How can Code 6.14 be modified in order to use an 8-bit mode connection?

Answer to the Exercise

1. Line 3 should be modified as follows:

 displayInit(DISPLAY_CONNECTION_GPIO_8BITS);

WaRninG: If an 8-bit mode connection is set, then the eight data pins of the display
(D0 to D7) should be connected, as shown in Figure 6.2.

note: An 8-bit mode connection implies less time to transfer data to the display and
code that is easier to read when compared with a 4-bit mode connection. However,
given that data transfer time between the microcontroller and the display is not
usually an issue, 4-bit mode may be more convenient due to the reduced number of
connections.

6.2.3 Connect a Character LCD Display to the Smart Home System using the i2C Bus

In the previous sections, many GPIOs and cables were used to connect the character-based LCD
display to the NUCLEO board. It might be more convenient to employ a setup that uses fewer cables
to connect the character-based LCD display with the NUCLEO board. The proposed solution is shown
in Figure 6.16. It can be seen that a module based on the PCF8574 8-bit I/O expander for I2C bus is
used, which is described in [6]. This module provides 8 GPIO pins, which are controlled by means of
a two-wire I2C bus connection, as summarized in Figure 6.17. The aim of this setup is to reduce the
number of cables that are necessary to connect to the NUCLEO board to control the character-based
LCD display.

252

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.16 The smart home system is now connected to the character LCD display using the I2C bus.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

253

The I2C bus is used to implement a serial communication between the NUCLEO board and the
module based on the PCF8574. The PCF8574 LCD module receives, by means of the I2C bus, the
commands and data that the NUCLEO board delivers to the character-based LCD display and
places those bits in its own GPIOs. These are connected to the character LCD display, as shown in
Figure 6.17.

note: The jumper JP1 is used to connect or disconnect the anode of the LCD from
the 5 V supply provided in the VCC pin of the PCF8574. The functionality of the A0,
A1, and A2 pads is discussed below.

Figure 6.17 Diagram of the connections between the character LCD display and the NUCLEO board using the I2C bus.

A simplified block diagram of the PCF8574, together with its connections to the display, is shown
in Figure 6.18. The state of D7, D6, D5, D4, A, E, R/W, and RS is controlled using the I2C bus. For
example, if the binary value 0b10001001 is written into the PCF8574, then D7, A, and RS will be in
high state, while D6, D5, D4, E, and R/W will be in low state. The pins A0, A1, and A2 are used to set
the address of the PCF8574 module, as shown in Table 6.5. If those pins are left unconnected, as in
Figure 6.16, they are in high state because of pull-up resistors located in the module, and then the I2C
bus 8-bit write address 78 is configured.

254

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.18 Simplified block diagram of the PCF8574 together with its connections to the LCD display.

note: The concept of “I2C bus 8-bit addresses” is used because addresses are
defined in this way in [7]. However, the way in which addresses are defined in
the I2C bus is discussed in more detail in section 6.2.4, and it is explained that it
might be more appropriate to talk about 7-bit addresses, as they are defined in the
corresponding standard, as can be seen in [8].

Table 6.5 Address reference of the PCF8574 module. The addresses used in the proposed setup are highlighted.

inputs i2C Bus 8-bit
Write address

i2C Bus 8-bit
Read address

a2 a1 a0

Low Low Low 64 65

Low Low High 66 67

Low High Low 68 69

Low High High 70 71

High Low Low 72 73

High Low High 74 75

High High Low 76 77

High High High 78 79

The reader might notice in Figure 6.16 that the cables and connections are simpler than in Figure 6.2
and Figure 6.13 and that the resistor and the potentiometer have been removed from the breadboard.
The PCF8574 LCD module provides a potentiometer that can be used to adjust the contrast of the
character LCD display.

WaRninG: Other modules based on the PCF8574 are available on the market, as
shown in Figure 6.19. Those modules are not convenient for this application because
they do not include the potentiometer and resistor that are necessary to connect the
character LCD display and, therefore, require more elements.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

255

Figure 6.19 Examples of other PCF8574 modules that do not include the potentiometer and the resistors.

tiP: If the reader has two 20 × 4 character LCD displays, the character LCD display
connected as shown in Figure 6.13 can be kept, and a second character LCD display
may be connected as shown in Figure 6.16. Only one display will be active, depending
on the program code, but it will be easier to compare how they work.

To test if the character LCD display is working, the .bin file of the program “Subsection 6.2.3” should
be downloaded from the URL available in [3] and dragged onto the NUCLEO board. After power on,
the most pertinent information about the smart home system should be shown on the character LCD
display.

6.2.4 fundamentals of the inter-integrated Circuit (i2C) Communication Protocol

The I2C bus that is used in the proposed setup is described in [8]. This bus has some similarities and
differences to the UART communication that was introduced in Chapter 2. Firstly, on each device
there is only one pin that is used to exchange data with other devices, called SDA (Serial Data Line),
while in the UART serial port each device has a TxD pin to transmit data and an RxD pin to receive
data. Secondly, there is a pin called SCL (Serial Clock Line), which is used to establish a common
clock signal used to control the timing of the data interchange. In this way, the I2C bus establishes a
synchronous communication (because the clock signal is delivered), and it is not necessary to agree
the transmission rate in advance, as in the UART interface, which does not have a clock signal and,
therefore, is based on asynchronous communication.

A third point, which is very important to highlight, is that UART connection only allows a point-to-
point connection between two devices, while an I2C bus allows up to 127 devices to be connected
together using only the two connections, SDA and SCL. This idea is illustrated in Figure 6.20, where
two pull-up resistors are included because the I2C bus standard establishes that the SDA and SCL
outputs are open drain.

Figure 6.20 Example of a typical I2C bus connection between many devices.

256

A Beginner’s Guide to Designing Embedded System Applications

In order to implement the connection of multiple devices using only two wires, a method to
unequivocally identify each device must be implemented. In this way, the manager can send a message
to any device, and it can be guaranteed that the destination device will recognize that the message is
for it alone.

The address of each device is configured by means of a fixed base address plus an optional offset that
is modifiable by means of wired connections. In this way, the PCF8574 module can be configured with
any 8-bit address in the range of 64/65 to 78/79. The three connections shown in Figure 6.16 on the
PCF8574 module (A0, A1, and A2) are used for this purpose, as was shown in Table 6.5.

When a device is not transmitting, it does not establish either a low or high state in its SDA and
SCL pins. If no device is transmitting, the SDA and SCL lines are in high state, because of the pull-up
resistors (Rp1 and Rp2) that can be seen in Figure 6.20. Therefore, a manager that wants to transmit
data establishes a start bit condition on the bus by setting SDA to a low state when the signal in
SCL is high, as can be seen in Figure 6.21. The same figure also shows how the stop bit condition is
established.

Figure 6.21 Example of I2C bus start and stop conditions.

The first message that the transmitting device sends is the address of the device for which the
message is intended. This message is depicted in Figure 6.22. The transmitting device establishes, one
after the other, the seven bits of the address of the device for which the message is intended (A6 to
A0). This is followed by an R/W bit that indicates if the message is a read or a write operation (it is high
if it is a read operation and low if it is a write operation). The ACK (acknowledge) bit (shown in blue) is
established by the destination device to confirm that it has received the message.

Figure 6.22 Example of a typical I2C bus address message.

Figure 6.23 shows the typical sequence of an I2C communication. Firstly, the device that starts the
communication, called the manager device, establishes the start sequence, followed by the address
message corresponding to another I2C device, called the subordinate. Note that the SCL signal is
generated by the manager. In Figure 6.23, the first R/W bit indicates that a read operation is to be
made. The subordinate acknowledges in the ninth clock pulse (shown in blue). Then, the manager

Chapter 6 | LCD Displays and Communication between Integrated Circuits

257

indicates which register of the subordinate it wants to read using D7 to D0. Note that this is followed
by another start bit without any prior stop bit, after which the manager repeats the address of
the subordinate, using the R/W bit to indicate that a read operation is being made. After that, the
subordinate writes the 8 bits (indicated in blue) corresponding to the register data following the SCL
pulses that are established by the manager. Finally, the manager generates the ACK bit (indicated in
brown) and the stop bit.

Figure 6.23 Example of a typical I2C bus communication.

note: In a read operation, if the subordinate is not ready to send the data it is
allowed to hold the SCL line low. The manager should wait until the SCL line goes high
before continuing.

note: The I2C bus allows more than one manager on the bus, but only one manager
can use the bus at any one time. For this purpose there is an established arbitration
mechanism that is not covered in this book. For further details, the reader is referred
to [8].

The examples below will show how to implement I2C communications in order to control the
character display using the PCF8574. Given that only write operations will be used, the sequence will
be simpler than the one shown in Figure 6.23, and the subordinate will never hold the SCL line low.

Figure 6.24 shows the sequence to write the port pins value of the PCF8574 LCD module. The first
four bits of the address, 1000, are fixed and cannot be changed. The next three bits, 111, correspond
to A2, A1, and A0, as explained above. The last bit, 0, indicates that it is a write operation. In this way,
the 8-bit address value 0b10001110 is obtained, which corresponds to 78 (in decimal notation).
Lastly, it can be seen in Figure 6.24 that the port pin values are written (P7–P0). In this way, the
display pins D7–D4, A, E, R/W, and RS are established.

Figure 6.24 Example of a writing operation to the PCF8574.

258

A Beginner’s Guide to Designing Embedded System Applications

note: 8-bit addresses are obtained considering as a whole the bits A6 to A0 (7 bits)
and the R/W bit. It will be seen in the example that considering 8-bit addresses (as was
shown in Table 6.5) simplifies the code. However, in most I2C literature, addresses
are defined using only bits A6 to A0 (without considering the R/W bit) and, therefore,
addresses have 7 bits. In this way, up to 127 different addresses can be used (27 − 1).

example 6.3: Control the Character LCD Display by means of the i2C Bus

Objective

Introduce the usage of the I2C bus.

Summary of the Expected Behavior

The expected behavior is exactly the same as in the previous example (Example 6.2), although the
connection with the character LCD display has been changed from GPIOs to the I2C bus.

Test the Proposed Solution on the Board

Import the project “Example 6.3” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. Follow the same steps as indicated in the section “Test the Proposed
Solution on the Board” of Example 6.1. The present temperature, gas detector, and alarm state should
be shown on the display.

Discussion of the Proposed Solution

The proposed solution is based on changes introduced in the display module. This time, the functions
are modified in order to allow the selection of the communication type with the display, the available
options being 8-bit GPIO, 4-bit GPIO, or I2C bus by means of the PCF8574 LCD module. All the other
characteristics remain the same, as will be shown in the code below. In this way, the concept of a
Hardware Abstraction Layer is introduced.

Implementation of the Proposed Solution

The new implementation of the function userInterfaceDisplayInit() is shown in Code 6.19. It can be
seen that the only change is on line 3, where the first parameter is used to indicate how to establish
communication with the display. All the other functions and parameters remain the same as in
Code 6.3, although the communication with the display has changed. This is possible thanks to the
hardware abstraction approach used in the design of the functions of the display module.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

259

1
2
3
4
5
6
7
8
9
10
11
12
13

static void userInterfaceDisplayInit()
{
 displayInit(DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER);

 displayCharPositionWrite (0,0);
 displayStringWrite("Temperature:");

 displayCharPositionWrite (0,1);
 displayStringWrite("Gas:");

 displayCharPositionWrite (0,2);
 displayStringWrite("Alarm:");
}

Code 6.19 New implementation of the function userInterfaceDisplayInit().

The implementation of the function userInterfaceDisplayUpdate() is shown in Code 6.20. The reader
should note that the code remains exactly the same as in Code 6.4, although the interface with the
display has changed. Again, this is possible thanks to the hardware abstraction approach followed
in the design of the functions of the display module. In this way, the maintainability of the code is
improved, as well as the possibility of using this same code in other projects, even if other interfaces
are used in order to communicate with the display.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

static void userInterfaceDisplayUpdate()
{
 static int accumulatedDisplayTime = 0;
 char temperatureString[3] = "";

 if(accumulatedDisplayTime >=
 DISPLAY_REFRESH_TIME_MS) {

 accumulatedDisplayTime = 0;

 sprintf(temperatureString, "%.0f", temperatureSensorReadCelsius());
 displayCharPositionWrite (12,0);
 displayStringWrite(temperatureString);
 displayCharPositionWrite (14,0);
 displayStringWrite("'C");

 displayCharPositionWrite (4,1);

 if (gasDetectorStateRead()) {
 displayStringWrite("Detected ");
 } else {
 displayStringWrite("Not Detected");
 }

 displayCharPositionWrite (6,2);

 if (sirenStateRead()) {
 displayStringWrite("ON ");
 } else {
 displayStringWrite("OFF");
 }

 } else {
 accumulatedDisplayTime =
 accumulatedDisplayTime + SYSTEM_TIME_INCREMENT_MS;
 }
}

Code 6.20 Implementation of the function userInterfaceDisplayUpdate().

260

A Beginner’s Guide to Designing Embedded System Applications

In Code 6.21, the new #defines that are used in display.cpp are shown. In line 1, DISPLAY_PIN_A_
PCF8574 is defined as 3. In lines 3 and 4, the pins PB_9 and PB_8 used for the I2C connection are
defined as I2C1_SDA and I2C1_SCL, respectively. In line 6, PCF8574_I2C_BUS_8BIT_WRITE_
ADDRESS is defined as 78.

1
2
3
4
5
6

#define DISPLAY_PIN_A_PCF8574 3

#define I2C1_SDA PB_9
#define I2C1_SCL PB_8

#define PCF8574_I2C_BUS_8BIT_WRITE_ADDRESS 78

Code 6.21 Declaration of new private #defines in display.cpp.

Code 6.22 shows the declaration of the new public global object that is used for the I2C bus
communication, as it is declared in display.cpp.

1 I2C i2cPcf8574(I2C1_SDA, I2C1_SCL);

Code 6.22 Declaration of the public global object used to implement the I2C bus communication.

A new private data type, shown in Code 6.23, is declared in display.cpp in order to implement the
control of the LCD pins using the PCF8574 LCD module.

1
2
3
4
5
6
7
8
9
10
11
12

typedef struct{
 int address;
 char data;
 bool displayPinRs;
 bool displayPinRw;
 bool displayPinEn;
 bool displayPinA;
 bool displayPinD4;
 bool displayPinD5;
 bool displayPinD6;
 bool displayPinD7;
} pcf8574_t;

Code 6.23 New private data type used to implement the control of the LCD pins using the PCF8574 LCD module.

A private variable of type pcf8574_t is declared in display.cpp, as shown in Code 6.24.

1 static pcf8574_t pcf8574;

Code 6.24 Declaration of a private variable of type pcf8574_t.

The implementation of displayInit() is shown in Code 6.25 and Code 6.26. In line 3 of Code 6.25,
display.connection is assigned and in line 5 it is evaluated to establish if it is equal to
DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER. If so, pcf8574.address and pcf8574.data are

Chapter 6 | LCD Displays and Communication between Integrated Circuits

261

assigned (lines 6 and 7), i2cPcf8574 frequency is configured as 100,000 Hz (line 8), and the display
anode is set to high (line 9).

The remaining lines of Code 6.25 and Code 6.26 are as in the previous version of displayInit(), except
line 42 of Code 6.25, which is new. The reader might notice that the case of DISPLAY_CONNECTION_
I2C_PCF8574_IO_EXPANDER is treated in the same way as DISPLAY_CONNECTION_GPIO_4BITS.
This is due to the fact that they involve the same data transfer, despite data being transferred from
the NUCLEO board to the character LCD display using the I2C bus in one setup, and GPIOs in the
other setup.

For the same reason, displayDataBusWrite() (Code 6.27) is the same as in the previous implementation,
except line 17, where the case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER has been
added.

In Code 6.28, the new implementation of displayPinWrite() is shown. Line 32 starts the case for
DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER. Firstly (line 33), it is assessed if value is true.
If so, the corresponding field of the pcf8574 is set to ON between lines 35 and 43. Otherwise, the
corresponding pin is set to OFF between lines 48 and 56.

In line 59, pcf8574.data is assigned with 0b00000000. Then, one after the other, the pins fields
of pcf8574 are evaluated. If they are ON, then the corresponding bit of pcf8574.data is turned
on. For example, in line 60 it is assessed if pcf8574.displayPinRs is true. If so, pcf8574.data is set to
0b00000001 by means of the OR bitwise operation pcf8574.data |= 0b00000001.

Finally, in line 65 the corresponding value is transferred using i2cPcf8574.write(pcf8574.address,
&pcf8574.data, 1). The first parameter is the address, the second parameter is the data to be
transferred (which must be preceded by the reference operator (&)), and the third parameter (1) is
used to indicate that only one byte of data is to be transferred.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void displayInit(displayConnection_t connection)
{
 display.connection = connection;

 if(display.connection == DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER) {
 pcf8574.address = PCF8574_I2C_BUS_8BIT_WRITE_ADDRESS;
 pcf8574.data = 0b00000000;
 i2cPcf8574.frequency(100000);
 displayPinWrite(DISPLAY_PIN_A_PCF8574, ON);
 }

 initial8BitCommunicationIsCompleted = false;

 delay(50);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(5);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);

262

A Beginner’s Guide to Designing Embedded System Applications

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;

 case DISPLAY_CONNECTION_GPIO_4BITS:
 case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS);
 delay(1);

 initial8BitCommunicationIsCompleted = true;

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;
 }

Code 6.25 New implementation of the function displayInit() (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_CLEAR_DISPLAY);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_ENTRY_MODE_SET |
 DISPLAY_IR_ENTRY_MODE_SET_INCREMENT |
 DISPLAY_IR_ENTRY_MODE_SET_NO_SHIFT);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_ON |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);
}

Code 6.26 New implementation of the function displayInit() (Part 2/2).

Chapter 6 | LCD Displays and Communication between Integrated Circuits

263

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

static void displayDataBusWrite(uint8_t dataBus)
{
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b10000000);
 displayPinWrite(DISPLAY_PIN_D6, dataBus & 0b01000000);
 displayPinWrite(DISPLAY_PIN_D5, dataBus & 0b00100000);
 displayPinWrite(DISPLAY_PIN_D4, dataBus & 0b00010000);
 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 displayPinWrite(DISPLAY_PIN_D3, dataBus & 0b00001000);
 displayPinWrite(DISPLAY_PIN_D2, dataBus & 0b00000100);
 displayPinWrite(DISPLAY_PIN_D1, dataBus & 0b00000010);
 displayPinWrite(DISPLAY_PIN_D0, dataBus & 0b00000001);
 break;

 case DISPLAY_CONNECTION_GPIO_4BITS:
 case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER:
 if (initial8BitCommunicationIsCompleted == true) {
 displayPinWrite(DISPLAY_PIN_EN, ON);
 delay(1);
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 delay(1);
 displayPinWrite(DISPLAY_PIN_D7, dataBus & 0b00001000);
 displayPinWrite(DISPLAY_PIN_D6, dataBus & 0b00000100);
 displayPinWrite(DISPLAY_PIN_D5, dataBus & 0b00000010);
 displayPinWrite(DISPLAY_PIN_D4, dataBus & 0b00000001);
 }
 break;

 }
 displayPinWrite(DISPLAY_PIN_EN, ON);
 delay(1);
 displayPinWrite(DISPLAY_PIN_EN, OFF);
 delay(1);
}

Code 6.27 New implementation of the function displayDataBusWrite().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

static void displayPinWrite(uint8_t pinName, int value)
{
 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 switch(pinName) {
 case DISPLAY_PIN_D0: displayD0 = value; break;
 case DISPLAY_PIN_D1: displayD1 = value; break;
 case DISPLAY_PIN_D2: displayD2 = value; break;
 case DISPLAY_PIN_D3: displayD3 = value; break;
 case DISPLAY_PIN_D4: displayD4 = value; break;
 case DISPLAY_PIN_D5: displayD5 = value; break;
 case DISPLAY_PIN_D6: displayD6 = value; break;
 case DISPLAY_PIN_D7: displayD7 = value; break;
 case DISPLAY_PIN_RS: displayRS = value; break;
 case DISPLAY_PIN_EN: displayEN = value; break;
 case DISPLAY_PIN_RW: break;
 default: break;
 }
 break;
 case DISPLAY_CONNECTION_GPIO_4BITS:
 switch(pinName) {
 case DISPLAY_PIN_D4: displayD4 = value; break;
 case DISPLAY_PIN_D5: displayD5 = value; break;
 case DISPLAY_PIN_D6: displayD6 = value; break;

264

A Beginner’s Guide to Designing Embedded System Applications

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

 case DISPLAY_PIN_D7: displayD7 = value; break;
 case DISPLAY_PIN_RS: displayRS = value; break;
 case DISPLAY_PIN_EN: displayEN = value; break;
 case DISPLAY_PIN_RW: break;
 default: break;
 }
 break;
 case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER:
 if (value) {
 switch(pinName) {
 case DISPLAY_PIN_D4: pcf8574.displayPinD4 = ON; break;
 case DISPLAY_PIN_D5: pcf8574.displayPinD5 = ON; break;
 case DISPLAY_PIN_D6: pcf8574.displayPinD6 = ON; break;
 case DISPLAY_PIN_D7: pcf8574.displayPinD7 = ON; break;
 case DISPLAY_PIN_RS: pcf8574.displayPinRs = ON; break;
 case DISPLAY_PIN_EN: pcf8574.displayPinEn = ON; break;
 case DISPLAY_PIN_RW: pcf8574.displayPinRw = ON; break;
 case DISPLAY_PIN_A_PCF8574: pcf8574.displayPinA = ON; break;
 default: break;
 }
 }
 else {
 switch(pinName) {
 case DISPLAY_PIN_D4: pcf8574.displayPinD4 = OFF; break;
 case DISPLAY_PIN_D5: pcf8574.displayPinD5 = OFF; break;
 case DISPLAY_PIN_D6: pcf8574.displayPinD6 = OFF; break;
 case DISPLAY_PIN_D7: pcf8574.displayPinD7 = OFF; break;
 case DISPLAY_PIN_RS: pcf8574.displayPinRs = OFF; break;
 case DISPLAY_PIN_EN: pcf8574.displayPinEn = OFF; break;
 case DISPLAY_PIN_RW: pcf8574.displayPinRw = OFF; break;
 case DISPLAY_PIN_A_PCF8574: pcf8574.displayPinA = OFF; break;
 default: break;
 }
 }
 pcf8574.data = 0b00000000;
 if (pcf8574.displayPinRs) pcf8574.data |= 0b00000001;
 if (pcf8574.displayPinRw) pcf8574.data |= 0b00000010;
 if (pcf8574.displayPinEn) pcf8574.data |= 0b00000100;
 if (pcf8574.displayPinA) pcf8574.data |= 0b00001000;
 if (pcf8574.displayPinD4) pcf8574.data |= 0b00010000;
 if (pcf8574.displayPinD5) pcf8574.data |= 0b00100000;
 if (pcf8574.displayPinD6) pcf8574.data |= 0b01000000;
 if (pcf8574.displayPinD7) pcf8574.data |= 0b10000000;
 i2c_pcf8574.write(pcf8574.address, &pcf8574.data, 1);
 break;
 }
}

Code 6.28 New implementation of the function displayPinWrite().

Proposed Exercise

1. How can a second display be connected using the same I2C bus?

Answer to the Exercise

1. A second PCF8574 module should be connected using the signals SDA and SCL of the same bus,
and a different address should be configured for this PCF8574 module, changing the configuration
of A2, A1, and A0 (as shown in Figure 6.16). Then, when using this module, that address must be
used. Note that using this approach, up to eight character-based LCD displays can be connected to
the same I2C bus.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

265

6.2.5 Connect a Graphical LCD Display to the Smart Home System using the SPi Bus

In the previous sections, a character-based LCD display was connected to the NUCLEO board using
GPIOs and the I2C bus. In this section, a 128 × 64 pixel graphical LCD display is connected using the
SPI bus, as shown in Figure 6.25. The connections that must be made are summarized in Figure 6.26.

 Figure 6.25 The smart home system is now connected to the graphical LCD display using the SPI bus.

266

A Beginner’s Guide to Designing Embedded System Applications

Figure 6.26 Diagram of the connections between the graphical LCD display and the NUCLEO board using the SPI bus.

tiP: The display (or displays) that were previously connected as shown in Figure 6.13
and Figure 6.16 can be kept, and the graphical LCD display connected as shown in
Figure 6.25. Only one display will be active at a time, depending on the program code,
but it will be easier to compare how they work.

The 4-bit voltage-level converter, which is connected as shown in Figure 6.25, is necessary because
the NUCLEO board provides 3.3 V outputs, while the graphical LCD display expects to receive 5 V
signals on its E, R/W, and RS pins. The 4-bit voltage-level converter is specially designed to solve this
problem.

note: In this case, a voltage divider, as used to connect the MQ-2 Gas Sensor with
the NUCLEO board, cannot be used to solve the problem, because the voltage does
not need to be attenuated, but augmented.

note: The graphical LCD display can be configured to receive 3.3 V signals, but this
requires soldering some SMD (surface-mount device) components, which is beyond
the scope of this book.

To test if the graphical LCD display is working, the .bin file of the program “Subsection 6.2.5” should be
downloaded from the URL available in [3] and dragged onto the NUCLEO board. After power on, the
most pertinent information of the smart home system should be shown on the graphical LCD display.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

267

6.2.6 Basics Principles of Graphical LCD Displays

The graphical LCD display module that is used [9] is based on the ST7920 LCD controller [10]. This
controller provides all the functionality provided by the character-based LCD display that was used
in the previous examples, plus additional functionality, which is possible thanks to the 128 × 64 pixel
arrangement of the graphical LCD display. Every individual pixel is addressable; hence, the display
offers graphic capabilities (in this case, monochrome).

The graphical LCD display can be configured in character mode and in graphic mode. If character
mode is selected, the LCD display behaves as a 16 × 4 display that follows the DDRAM map shown
in Figure 6.27, where each address stores two characters and each character has 8 × 16 dots. For
example, address 0 stores one 8 × 16 dot character that is printed in the position indicated as 0L (left)
and another 8 × 16 dot character that is printed in the position indicated as 0R (right). This is because
the ST7920 LCD controller is optimized for Chinese characters, which have a square shape (e.g., or

) and, therefore, occupy two display positions for a single character (e.g., 0L and 0R). Note that
16 × 4 by 8 × 16 results in 128 × 64 pixels.

16
L

1717
LL

16
R

18
L

19
L

20
L

21
L

22
L

23
L

17
R

18
R

19
R

20
R

21
R

22
R

23
R

8
L

9
L

8
R

10
L

11
L

12
L

13
L

14
L

15
L

9
R

10
R

11
R

12
R

13
R

14
R

15
R

24
L

25
L

24
R

26
L

27
L

28
L

29
L

30
L

31
L

25
R

26
R

27
R

28
R

29
R

30
R

31
R

0
L

1
L

0
R

2
L

3
L

4
L

5
L

6
L

7
L

1
R

2
R

3
R

4
R

5
R

6
R

7
R

Figure 6.27 Addresses corresponding to each of the positions of a graphical LCD display in character mode.

It is possible to write a single Latin character (e.g., “a” or “b”) in the left half of a position (for example,
0L, 1L, etc.). For that purpose, the corresponding DDRAM address must be set (for example, 0, 1, etc.)
and then the character transferred. However, it is not possible to write a Latin character only on the
right half of a position (for example, 0R, 1R, etc.). To write a character in the right half of a position, first
a character must be written in the left half of the position and then the desired character must be
written in the right half. For example, to write “Gas:” at the beginning of the second row, the address
16 must be written into the DDRAM and then, one after the other, the characters “G”, “a”, “s”, “:” are
transferred. To write “Not detected” just next to “Gas:”, address 18 must be set and the characters “N”,
“o”, “t”, “ ”, “D”, “e”, “t”, “e”, “c”, “t”, “e”, “d” transferred.

268

A Beginner’s Guide to Designing Embedded System Applications

note: In the ST7920 datasheet, “high” and “low” are used in place of “left” and “right”,
respectively.

note: In previous examples, the coordinate (4,1) was used to write “Not detected” in
the DDRAM address 68. This address was calculated as 4 added to the first character
address of line 2 (64). For the reasons explained above, in order to write “Not
detected” in the same display position, the coordinate (4,1) is used in the examples
below, and the corresponding address (18) is calculated as the first character address
of line 2 (16) increased by the x coordinate (4) divided by 2. In this way, 18 is obtained
as “16 + 4/2”.

The instructions to initialize the graphical LCD display and to transfer the characters are summarized
in Table 6.6. They are almost the same as the instructions that were used in previous sections to
control the character LCD display. The differences are highlighted in blue. It can be seen that a bit is
not used to set the number of lines (N). There is a bit used to set the instruction set (RE); this bit must
be set to 0 during the initialization in order to select the basic instruction set. The bit G is used to
activate graphic mode.

Table 6.6 Summary of the graphical LCD display instructions that are used in this chapter.

instruction Code Description execution
time

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Clear
display

0 0 0 0 0 0 0 0 0 1 Clears entire display and sets
DDRAM address 0 in address
counter.

1.52 ms

Entry
mode set

0 0 0 0 0 0 0 1 I/D S Sets cursor move direction and
specifies display shift.

1.52 ms

Display
control

0 0 0 0 0 0 1 D C B Sets entire display (D) on/off, cursor
 on/off (C), and blinking of cursor
(B).

37 µs

Function
set

0 0 0 0 1 DL * RE G * Sets interface data length (DL),
instruction set (Re), and graphic
display (G).

37 µs

Set DDRAM
address

0 0 1 A6 A5 A4 A3 A2 A1 A0 Sets DDRAM address. 37 µs

Write data
to DDRAM

1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data into DDRAM. 37 µs

I/D = 1: Increment, I/D = 0: Decrement
S = 1: Accompany display shift,
S = 0: Don’t accompany display shift,
D = 1: Display on, D = 0: Display off
C = 1: Cursor on, C = 0: Cursor off
B = 1: Cursor blink on, B = 0: Cursor blink off

DL = 1: 8 bits, DL = 0: 4 bits
Re = 1: extended, Re = 0: Basic (instruction set)
G = 1: Graphics on, G = 0: Graphics off
* = don’t care
A6 ... A0 = Address
D7 … D0 = Data

Chapter 6 | LCD Displays and Communication between Integrated Circuits

269

The PSB pin (Parallel/Serial Bus configuration) of the graphical LCD display is used to select its
interface. If PSB is connected to 5 V, then 8/4-bit parallel bus mode is selected, and the data transfer
is made exactly as in the character LCD display (Figure 6.11 and Figure 6.13). If PSB is connected to
GND (as in Figure 6.25), then a serial communication interface based on the SPI (Serial Peripheral
Interface) bus is selected.

In the serial interface mode, the RS, R/W, and E pins play a different role than the ones discussed in
the previous sections. This is summarized in Table 6.7.

Table 6.7 Connections of the graphical LCD display used in this book when the serial bus option is selected.

Pin label Pin functionality
in serial mode

Description

RS CS Chip select (high: chip enable, low: chip disable)

R/W SID Serial data input

E SCLK Serial clock

The data transfer is made following the timing diagram shown in Figure 6.28. CS must be high during
the data transfer. The SCLK signal is used to implement the clock of the transmission (in a similar way
as the SCL signal of the I2C bus). The SID signal is used to transfer the data to the LCD display. First,
a synchronizing bit string (0b11111) is sent, followed by the state of RW and the state of RS. Then, a
0 state is sent. Next, D7 to D4 are sent, followed by four zeros. Lastly, D3 to D0 are sent, followed by
four zeros.

Figure 6.28 Transfer timing sequence of the graphical LCD display when the serial mode is configured.

As has been mentioned, the G bit is used to activate graphic mode. RE and G cannot be altered in the
same instruction, so RE is changed first and G later. The examples below show how this is done.

Once the display is in graphic mode, the structure of the data transfer completely changes, and
instead of DDRAM, the Graphic Display RAM (GDRAM) is used. The way in which data loaded into
the GDRAM is shown in the display is very particular and is closely related to the way in which data is
organized in Figure 6.27.

Data organization in Figure 6.27 suggests that it can be thought of as a 32 × 2 character display,
where each character has 8 × 16 bits, and whose two rows are “cut” at the middle and reorganized as
a 16 × 4 display. This is actually the case, because the ST7920 has 32 common signal driver pins and
64 segment signal driver pins. To drive a 64 × 128 dot matrix LCD panel, the ST7920 controls two
ST7921 chips, as shown in Figure 6.29. Each ST7921 is capable of driving 96 segments. In this way, a

270

A Beginner’s Guide to Designing Embedded System Applications

ST7920 is used to control a 32 × 256 dot matrix LCD. In the graphical LCD display module used in this
chapter, the dots of this matrix are arranged in two 32 × 128 dot layouts, one over the other, as shown
in Figure 6.30.

Figure 6.29 Simplified block diagram of an ST7920 and two ST7921 used to drive a 32 × 256 dot matrix LCD panel.

Figure 6.30 Simplified block diagram of an ST7920 and two ST7921 used to drive a 64 × 128 dot matrix LCD panel.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

271

For this reason, the correspondence between the GDRAM addresses and the display pixels is as
shown in Figure 6.31. Each GDRAM address stores 16 bits and is identified by a horizontal and a
vertical address. To load the content of a given GDRAM address, the transfer procedure is as follows:

1. Set vertical address (Y) for GDRAM

2. Set horizontal address (X) for GDRAM

3. Write the bits b15 to b8 to GDRAM (first byte)

4. Write the bits b7 to b0 to GDRAM (second byte)

The “Set DDRAM address” instruction code shown in Table 6.6 is used to set the vertical and
horizontal address, and the “Write data to DDRAM” instruction code shown in Table 6.6 is used to
write the GDRAM bits.

Figure 6.31 Diagram of the correspondence between the GDRAM addresses and the display pixels.

272

A Beginner’s Guide to Designing Embedded System Applications

note: The ST7920 includes other functionality that is not discussed here for space
reasons and because meaningful programs can be made using the functionality that
has been presented in this section, as is shown in the examples below.

note: The HD44780 used in previous sections has 16 common signal driver pins
and 40 segment signal driver pins, as shown in [2]. Also in [2], it is shown how the
connections are made inside character LCD modules in order to control LCD displays
having different layouts using a single HD44780.

6.2.7 fundamentals of the Serial Peripheral interface (SPi) Communication Protocol

The transfer timing sequence shown in Figure 6.28 is a special (reduced) implementation of the SPI
bus [11]. The SPI bus is implemented by means of four signals, as shown in Table 6.8. It can be seen
that the graphical LCD display has completely different pin designations than the signals shown in
Table 6.8. The CS, SID, and SCLK signals in Table 6.7 correspond to the SS, MOSI, and SCLK signals,
respectively.

Table 6.8 Signals of the SPI bus.

Signal name function

SS (Subordinate Select) The manager sets this to low to select only one subordinate at a time.

SCLK (Clock) The manager drives this signal, which is common to all the subordinates.

MOSI (Manager Output Subordinate Input) The manager sends data to one subordinate at a time using this signal.

MISO (Manager Input Subordinate Output) The manager receives data from one subordinate at a time using this signal.

It can also be seen that the graphical LCD display does not have a signal equivalent to the MISO
signal (i.e., the graphical LCD is not able to output data to the NUCLEO board when the serial bus
configuration option is used). The SPI signals that are provided by the NUCLEO board are summarized
in Table 6.9.

 Table 6.9 Summary of the NUCLEO board pins that are used to implement the SPI bus communication.

 nUCLeo board SPi bus signal

PD_14 CS

PA_7 MOSI

PA_5 SCK

In Figure 6.32, a typical SPI connection between a manager and several subordinates can be seen.
There is only one SCLK signal, only one MOSI signal, and only one MISO signal, but as many SS signals
as subordinates. In this way, the manager controls which subordinate is active on the bus. It should be
noted that there can be only one manager in an SPI bus network.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

273

Figure 6.32 Example of a typical SPI bus connection between many devices.

note: If a single subordinate device is used, the SS pin may be fixed to logic low, as
shown in Figure 6.25.

Finally, it should be noted that, unlike the I2C bus, the SPI bus does not have a start bit, a stop bit, or
an ACK bit. Moreover, there is no definition for how many bits there are in a message, although 8-bit
messages are the most common. There is also no unique option for the clock polarity and clock phase
with respect to the data; thus, there are four possible situations, each of which is known as an SPI
mode, as shown in Figure 6.33. The corresponding SPI mode should be configured, as will be shown in
the examples below.

Figure 6.33 Diagram of the four possible SPI modes, depending on the clock polarity and clock phase.

note: In Figure 6.33, only the MOSI signal and the SCLK signal are shown. However,
once SPI mode is configured, the MISO signal must respect the same clock polarity
and phase as the MOSI signal.

274

A Beginner’s Guide to Designing Embedded System Applications

example 6.4: Control the Graphical LCD Display by means of the SPi Bus

Objective

Introduce the use of the SPI bus.

Summary of the Expected Behavior

The expected behavior is exactly the same as in Examples 6.1, 6.2, and 6.3, although a graphical LCD
display is now being used and that connection with the display is implemented using the SPI bus.

Test the Proposed Solution on the Board

Import the project “Example 6.4” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. Follow the same steps as indicated in the section “Test the Proposed
Solution on the Board” of Example 6.1. The present temperature, gas detector, and alarm state should
be shown on the display.

Discussion of the Proposed Solution

The functions of the display module are modified in order to allow communication with a graphical
LCD display by means of the SPI bus. All the other characteristics of the functions remain the same, as
will be shown. In this way, the concept of a Hardware Abstraction Layer is applied one more time.

note: The graphical features of the graphical LCD display are not used in this
example. Those features are introduced in Example 6.5.

Implementation of the Proposed Solution

The new implementation of the function userInterfaceDisplayInit() is shown in Code 6.29. It can be seen
that the function displayInit() on line 3 has been changed in order to include the display type and the
type of connection. It can also be seen that all the other functions and parameters from lines 10 to 17
remain the same as in Code 6.19, although the communication with the display has changed, as well as
the type of display being used.

1
2
3
4
5
6
7
8
9
10
11
12
13

static void userInterfaceDisplayInit()
{
 displayInit(DISPLAY_TYPE_GLCD_ST7920, DISPLAY_CONNECTION_SPI);

 displayCharPositionWrite (0,0);
 displayStringWrite("Temperature:");

 displayCharPositionWrite (0,1);
 displayStringWrite("Gas:");

 displayCharPositionWrite (0,2);
 displayStringWrite("Alarm:");
}

Code 6.29 New implementation of the function userInterfaceDisplayInit().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

275

The public data types to implement the parameters used in line 3 of Code 6.29 are declared in
display.h, as shown in Code 6.30. The data type displayType_t has two possible values, DISPLAY_TYPE_
LCD_ HD44780 and DISPLAY_TYPE_GLCD_ST7920. The data type displayConnection_t (lines 6 to 11)
was used in previous examples. In this example, the value DISPLAY_CONNECTION_SPI is included.
Using these data types, the struct display_t is declared (lines 13 to 16), having two fields, connection
and type.

The new private #defines that are declared in display.cpp are shown in Code 6.31. The corresponding
values were discussed in section 6.2.6. SPI1_MISO is defined because it is required by the SPI object,
but it is left unconnected. ST7920_SPI_SYNCHRONIZING_BIT_STRING is defined as 0b11111000
and will be used to implement the first five bits, shown in Figure 6.28. By means of the definitions
shown in lines 13 to 17, the state of the RS and RW bits shown in Figure 6.28 will be implemented.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

typedef enum {
 DISPLAY_TYPE_LCD_HD44780,
 DISPLAY_TYPE_GLCD_ST7920,
} displayType_t;

typedef enum {
 DISPLAY_CONNECTION_GPIO_4BITS,
 DISPLAY_CONNECTION_GPIO_8BITS,
 DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER,
 DISPLAY_CONNECTION_SPI
} displayConnection_t;

typedef struct {
 displayConnection_t connection;
 displayType_t type;
} display_t;

Code 6.30 Public data types defined in display.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#define SPI1_MOSI PA_7
#define SPI1_MISO PA_6
#define SPI1_SCK PA_5
#define SPI1_CS PD_14

#define DISPLAY_ST7920_LINE1_FIRST_CHARACTER_ADDRESS 0
#define DISPLAY_ST7920_LINE2_FIRST_CHARACTER_ADDRESS 16
#define DISPLAY_ST7920_LINE3_FIRST_CHARACTER_ADDRESS 8
#define DISPLAY_ST7920_LINE4_FIRST_CHARACTER_ADDRESS 24

#define ST7920_SPI_SYNCHRONIZING_BIT_STRING 0b11111000

#define ST7920_SPI_RS_INSTRUCTION 0b000000000
#define ST7920_SPI_RS_DATA 0b000000010

#define ST7920_SPI_RW_WRITE 0b000000000
#define ST7920_SPI_RW_READ 0b000000100

Code 6.31 New private defines that are declared in display.cpp.

276

A Beginner’s Guide to Designing Embedded System Applications

Two new public objects are declared, as shown in Code 6.32. DigitalOut object spiSt7920ChipSelect is
used to generate the CS signal, according to Figure 6.28. The SPI object allows the implementation of
the SCLK and SID signals, as shown in the same figure.

1
2

DigitalOut spiSt7920ChipSelect(SPI1_CS);
SPI spiSt7920(SPI1_MOSI, SPI1_MISO, SPI1_SCK);

Code 6.32 New public objects that are declared in display.cpp.

note: The SPI object could also be defined as SPI spiSt7920(SPI1_MOSI, SPI1_MISO,
SPI1_SCK, SPI1_CS), and the DigitalOut object spiSt7920ChipSelect(SPI1_CS) would
not be necessary. However, when using that definition of the SPI object, only one SPI
device can be connected to the SPI bus, while defining Chip Select pin as a DigitalOut
object means that many devices can be connected to the same SPI bus.

The implementation of the function userInterfaceDisplayUpdate() used in this example is exactly the
same as in Examples 6.1, 6.2, and 6.3. This fact is quite remarkable, considering that in this example
a graphical LCD display is being used and that the communication with the display is implemented
by means of an SPI bus connection. In this way, it can be appreciated how powerful a Hardware
Abstraction Layer (HAL) can be in terms of code reusability and maintainability. For this reason, the
HAL must be carefully designed.

The HAL implemented in this chapter is shown in Figure 6.34. It can be seen that the display module
allows the use of different types of connections without changing the program code. In this way, a
graphical display in character mode connected using the SPI bus can be controlled using the same
functions (i.e., displayCharPositionWrite() and displayStringWrite()) as the character display connected
using either 4-bit GPIO, 8-bit GPIO, or I2C bus.

Figure 6.34 Diagram of the Hardware Abstraction Layer that is implemented in the display module.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

277

In this context, for the sake of completeness, the program code should be written in such a way
that it becomes clear what every function will do according to the selected type of display and
connection. For this reason, the lines shown in Code 6.33 are included at the end of displayPinWrite()
and displayDataBusWrite() to make clear that no action will be made by those functions if they are
called when display.connection is set to DISPLAY_CONNECTION_SPI. This is because when the SPI bus
connection is used, the only way to write information in the display is using the scheme introduced in
Figure 6.28 (i.e., it is not possible to write into a single pin or to write only to the data bus).

1
2

 case DISPLAY_CONNECTION_SPI:
 break;

Code 6.33 Lines added to displayPinWrite() and displayDataBusWrite().

The new implementation of the function displayInit() is shown in Code 6.34 and Code 6.35. In line 3
of Code 6.34, the value of the parameter type is set to display.type, and on line 4, the value of the
parameter connection is assigned to display.connection. The new lines in Code 6.34 are lines 13 to 16
and line 39. In line 14, spiSt7920 is configured with 8 bits per transfer and mode 3, as discussed in
Figure 6.33. In line 15, the SPI object is configured to 1,000,000 Hz (1 MHz). Line 39 indicates that
the SPI initialization implies the same instructions as the 8-bit parallel mode. Code 6.35 is exactly the
same as in previous examples.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void displayInit(displayType_t type, displayConnection_t connection)
{
 display.type = type;
 display.connection = connection;

if(display.connection == DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER) {
 pcf8574.address = PCF8574_I2C_BUS_8BIT_WRITE_ADDRESS;
 pcf8574.data = 0b00000000;
 i2cPcf8574.frequency(100000);
 displayPinWrite(DISPLAY_PIN_A_PCF8574, ON);
 }

if(display.connection == DISPLAY_CONNECTION_SPI) {
 spiSt7920.format(8, 3);
 spiSt7920.frequency(1000000);
 }

initial8BitCommunicationIsCompleted = false;

 delay(50);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(5);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,

278

A Beginner’s Guide to Designing Embedded System Applications

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS);
 delay(1);

 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 case DISPLAY_CONNECTION_SPI:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;

 case DISPLAY_CONNECTION_GPIO_4BITS:
 case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS);
 delay(1);

 initial8BitCommunicationIsCompleted = true;

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_4BITS |
 DISPLAY_IR_FUNCTION_SET_2LINES |
 DISPLAY_IR_FUNCTION_SET_5x8DOTS);
 delay(1);
 break;
 }

Code 6.34 New implementation of the function displayInit() (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_CLEAR_DISPLAY);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_ENTRY_MODE_SET |
 DISPLAY_IR_ENTRY_MODE_SET_INCREMENT |
 DISPLAY_IR_ENTRY_MODE_SET_NO_SHIFT);
 delay(1);

 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_DISPLAY_CONTROL |
 DISPLAY_IR_DISPLAY_CONTROL_DISPLAY_ON |
 DISPLAY_IR_DISPLAY_CONTROL_CURSOR_OFF |
 DISPLAY_IR_DISPLAY_CONTROL_BLINK_OFF);
 delay(1);
}

Code 6.35 New implementation of the function displayInit() (Part 2/2).

Chapter 6 | LCD Displays and Communication between Integrated Circuits

279

In Code 6.36, the new implementation of displayCodeWrite() is shown. The new code is between
lines 15 and 30, where the case of DISPLAY_CONNECTION_SPI is addressed. On line 16, spi.lock() is
used to acquire exclusive access to the SPI bus. On line 17, spiSt7920ChipSelect is set to ON. Line 18
assesses if the code corresponds to an instruction. If so, lines 19 to 21 are used to write the first byte
to the SPI bus, following the format that was introduced in Figure 6.28. Otherwise, lines 23 to 25 are
executed, to transfer the first byte with the RS bit set to 1 because ST7920_SPI_RS_DATA is defined as
0b000000010.

Line 26 is used to send the second byte using “dataBus & 0b11110000”. In this way, only the D7 to D4
bits of dataBus are transferred, followed by four zeros. Line 27 is used to send the third byte by means
of “(dataBus<<4) & 0b11110000”. The <<4 bitwise operation is used to shift the bits of dataBus four
positions to the left. In this way, the D3 to D0 bits are placed in the first part of the byte, as shown
in the third byte of Figure 6.28. Line 28 is used to set spiSt7920ChipSelect to OFF. Finally, on line 29,
spiSt7920.unlock() is used to release exclusive access to this SPI bus.

In Code 6.37 and Code 6.38, the implementation of displayCharPositionWrite() is shown. In line 3, an
if statement is used to evaluate if display.type is DISPLAY_TYPE_LCD_HD44780. If so, the switch
statement of line 4 is executed, which has the same code as in previous examples. Line 9 of Code 6.38
evaluates if display.type is DISPLAY_TYPE_GLCD_ST7920; in that case, the switch statement of line 10
is executed. It is important to note that charPositionX/2 is used in lines 15, 23, 31, and 39. This is due to
the reasons explained regarding Figure 6.27.

note: In this example, the implementation of displayStringWrite() is not shown, since
this function was not modified in this example. The modifications introduced in
displayPinWrite() and displayDataBusWrite() were already discussed in Code 6.33.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

static void displayCodeWrite(bool type, uint8_t dataBus)
{
 switch(display.connection) {
 case DISPLAY_CONNECTION_GPIO_8BITS:
 case DISPLAY_CONNECTION_GPIO_4BITS:
 case DISPLAY_CONNECTION_I2C_PCF8574_IO_EXPANDER:
 if (type == DISPLAY_RS_INSTRUCTION)
 displayPinWrite(DISPLAY_PIN_RS, DISPLAY_RS_INSTRUCTION);
 else
 displayPinWrite(DISPLAY_PIN_RS, DISPLAY_RS_DATA);
 displayPinWrite(DISPLAY_PIN_RW, DISPLAY_RW_WRITE);
 displayDataBusWrite(dataBus);
 break;

 case DISPLAY_CONNECTION_SPI:
 spiSt7920.lock();
 spiSt7920ChipSelect = ON;
 if (type == DISPLAY_RS_INSTRUCTION)
 spiSt7920.write(ST7920_SPI_SYNCHRONIZING_BIT_STRING |
 ST7920_SPI_RW_WRITE |
 ST7920_SPI_RS_INSTRUCTION);
 else
 spiSt7920.write(ST7920_SPI_SYNCHRONIZING_BIT_STRING |
 ST7920_SPI_RW_WRITE |

280

A Beginner’s Guide to Designing Embedded System Applications

25
26
27
28
29
30
31
32

 ST7920_SPI_RS_DATA);
 spiSt7920.write(dataBus & 0b11110000);
 spiSt7920.write((dataBus<<4) & 0b11110000);
 spiSt7920ChipSelect = OFF;
 spiSt7920.unlock();
 break;
 }
}

Code 6.36 New implementation of the function displayCodeWrite().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

void displayCharPositionWrite(uint8_t charPositionX, uint8_t charPositionY)
{
 if(display.type == DISPLAY_TYPE_LCD_HD44780) {
 switch(charPositionY) {
 case 0:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE1_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

 case 1:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE2_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

 case 2:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE3_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;

Code 6.37 New implementation of the function displayCharPositionWrite() (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 case 3:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_20x4_LINE4_FIRST_CHARACTER_ADDRESS +
 charPositionX));
 delay(1);
 break;
 }
 } else if(display.type == DISPLAY_TYPE_GLCD_ST7920) {
 switch(charPositionY) {
 case 0:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_ST7920_LINE1_FIRST_CHARACTER_ADDRESS +
 charPositionX/2));
 delay(1);
 break;

Chapter 6 | LCD Displays and Communication between Integrated Circuits

281

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

 case 1:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_ST7920_LINE2_FIRST_CHARACTER_ADDRESS +
 charPositionX/2));
 delay(1);
 break;

 case 2:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_ST7920_LINE3_FIRST_CHARACTER_ADDRESS +
 charPositionX/2));
 delay(1);
 break;

 case 3:
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_DDRAM_ADDR |
 (DISPLAY_ST7920_LINE4_FIRST_CHARACTER_ADDRESS +
 charPositionX/2));
 delay(1);
 break;
 }
 }
}

Code 6.38 New implementation of the function displayCharPositionWrite() (Part 2/2).

Proposed Exercise

1. How should displayInit() be called if a character LCD display is used with a 4-bit mode connection?

Answer to the Exercise

1. The function call should be made as follows:

 displayInit (DISPLAY_TYPE_LCD_HD44780,DISPLAY_CONNECTION_GPIO_4BITS);

example 6.5: Use of the Graphic Capabilities of the Graphical LCD Display

Objective

Introduce the use of the graphic mode of the graphical LCD display.

Summary of the Expected Behavior

The expected behavior is similar to the previous examples, the difference being that when the alarm
is activated the display is changed to graphic mode, and an animation of a fire burning, together
with a “FIRE ALARM ACTIVATED!” legend, is shown. When the alarm is deactivated, the display is
configured again to character mode and its behavior returns to the behavior of the previous examples.

282

A Beginner’s Guide to Designing Embedded System Applications

Test the Proposed Solution on the Board

Import the project “Example 6.5” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. Follow the same steps as indicated in the section “Test the Proposed
Solution on the Board” of Example 6.1. The present temperature, gas detector, and alarm states
should be shown on the display. When the alarm is activated, an animation composed of the four
images shown in Figure 6.35 should be displayed.

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

Bitmap 1

Bitmap 3

Bitmap 2

Bitmap 4

Figure 6.35 Frames of the animation that are shown when the alarm is activated.

Discussion of the Proposed Solution

In this example, the functions displayModeWrite() and displayBitmapWrite() are included. The former
allows selecting between character mode and graphic mode, while the latter is used to send a bitmap
to the graphical LCD display.

Implementation of the Proposed Solution

In Table 6.10, the sections where lines were added to the file user_interface.cpp are summarized.
It can be seen that the file GLCD_fire_alarm.h has been included. This file has the bitmaps shown in
Figure 6.35. There are also two new #defines, which are used to control the refresh time of the display:
DISPLAY_REFRESH_TIME_REPORT_MS, which replaces the previous #define (removed), as shown in
Table 6.11, and DISPLAY_REFRESH_TIME_ALARM_MS, which is used when the animation is shown.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

283

Table 6.10 also shows the declaration of a new data type, displayState_t, which is used to control the
display, as will be shown below. Three private global variables are declared, as shown in Table 6.10.
Finally, four private functions are declared, which will be explained below.

Table 6.10 Sections in which lines were added to user_interface.cpp.

Section or function Lines that were added

Libraries #include "GLCD_fire_alarm.h"

Definitions #define DISPLAY_REFRESH_TIME_REPORT_MS 1000

#define DISPLAY_REFRESH_TIME_ALARM_MS 300

Declaration of private
data types

typedef enum{

 DISPLAY_ALARM_STATE,

 DISPLAY_REPORT_STATE

} displayState_t;

Declaration and
initialization of private
global variables

static displayState_t displayState = DISPLAY_REPORT_STATE;

static int displayAlarmGraphicSequence = 0;

static int displayRefreshTimeMs = DISPLAY_REFRESH_TIME_REPORT_MS;

Declarations (prototypes)
of private functions

static void userInterfaceDisplayReportStateInit();

static void userInterfaceDisplayReportStateUpdate();

static void userInterfaceDisplayAlarmStateInit();

static void userInterfaceDisplayAlarmStateUpdate();

Table 6.11 Sections in which lines were removed from user_interface.cpp.

Section or function Lines that were removed

Definitions #define DISPLAY_REFRESH_TIME_MS 1000

In Code 6.39, the new public data type displayMode_t is shown. It has two valid values, DISPLAY_
MODE_CHAR and DISPLAY_MODE_GRAPHIC. This data type is incorporated into the display_t, as
shown in Code 6.39.

1
2
3
4
5
6
7
8
9
10

typedef enum {
 DISPLAY_MODE_CHAR,
 DISPLAY_MODE_GRAPHIC
} displayMode_t;

typedef struct {
 displayConnection_t connection;
 displayType_t type;
 displayMode_t mode;
} display_t;

Code 6.39 New private data types declared in display.h.

In Code 6.40, the new #defines that are introduced in display.cpp are shown. DISPLAY_IR_SET_
GDRAM_ADDR is used to establish the GDRAM address. The other #defines are used to implement
the instructions shown in blue in Table 6.6.

284

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6

#define DISPLAY_IR_SET_GDRAM_ADDR 0b10000000

#define DISPLAY_IR_FUNCTION_SET_EXTENDED_INSTRUCION_SET 0b00000100
#define DISPLAY_IR_FUNCTION_SET_BASIC_INSTRUCION_SET 0b00000000
#define DISPLAY_IR_FUNCTION_SET_GRAPHIC_DISPLAY_ON 0b00000010
#define DISPLAY_IR_FUNCTION_SET_GRAPHIC_DISPLAY_OFF 0b00000000

Code 6.40 Declaration of new private #defines in display.cpp.

In Code 6.41, the new implementation of the function userInterfaceDisplayUpdate() is shown. It is now
divided into two different states. In the case of DISPLAY_REPORT_STATE, the behavior is similar
to the previous examples, except that the Alarm ON state is not shown. In order to implement this
functionality, the new function userInterfaceDisplayReportStateUpdate() is used.

When the siren is active, userInterfaceDisplayAlarmStateInit() is called (line 15), which changes the
state of the variable displayState to DISPLAY_ALARM_STATE and makes the display change to graphic
mode.

When the siren is not activated, the function userInterfaceDisplayReportStateInit() is called (line 23).
As discussed below, this function changes the state of the variable displayState to DISPLAY_REPORT_
STATE and also makes the display change to character mode.

Finally, note that displayRefreshTimeMs is configured in userInterfaceDisplayAlarmStateInit() and
userInterfaceDisplayReportStateInit(), because different refresh time values are used depending on the
state of the display (DISPLAY_ALARM_STATE or DISPLAY_REPORT_STATE).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

static void userInterfaceDisplayUpdate()
{
 static int accumulatedDisplayTime = 0;

 if(accumulatedDisplayTime >=
 displayRefreshTimeMs) {

 accumulatedDisplayTime = 0;

 switch (displayState) {
 case DISPLAY_REPORT_STATE:
 userInterfaceDisplayReportStateUpdate();

 if (sirenStateRead()) {
 userInterfaceDisplayAlarmStateInit();
 }
 break;

 case DISPLAY_ALARM_STATE:
 userInterfaceDisplayAlarmStateUpdate();

 if (!sirenStateRead()) {
 userInterfaceDisplayReportStateInit();
 }
 break;

Chapter 6 | LCD Displays and Communication between Integrated Circuits

285

26
27
28
29
30
31
32
33
34
35
36

 default:
 userInterfaceDisplayReportStateInit();
 break;
 }

 } else {
 accumulatedDisplayTime =
 accumulatedDisplayTime + SYSTEM_TIME_INCREMENT_MS;
 }
}

 Code 6.41 New implementation of the function userInterfaceDisplayUpdate().

The function userInterfaceDisplayInit(), shown in Code 6.42, is simpler than in the previous examples,
as some parts of the initialization are made in userInterfaceDisplayReportStateInit(). Note that in the
previous examples the strings “Temperature:”, “Gas:”, and “Alarm:” were written once at the beginning
and not modified again. In this example, those strings should be output whenever the display returns
to the DISPLAY_REPORT_STATE.

In this example, the implementation of displayInit() is not shown, as there is only one new line, which is
used to set the new field mode of the variable display to DISPLAY_MODE_CHAR. The display is always
initialized in character mode, and displayModeWrite() should be used to change to graphic mode.

1
2
3
4
5

static void userInterfaceDisplayInit()
{
 displayInit(DISPLAY_TYPE_GLCD_ST7920, DISPLAY_CONNECTION_SPI);
 userInterfaceDisplayReportStateInit();
}

Code 6.42 New implementation of the function userInterfaceDisplayInit().

In Code 6.43, the new function userInterfaceDisplayReportStateInit() is shown. It has some statements
that were previously in the function userInterfaceDisplayInit(). This function also configures the
display state, the refresh time, and the display to char mode, which is established by means of
displayModeWrite() on line 6. It can be seen that there is also a new function, displayClear(), which is
used to clear everything that might be written on the display.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

static void userInterfaceDisplayReportStateInit()
{
 displayState = DISPLAY_REPORT_STATE;
 displayRefreshTimeMs = DISPLAY_REFRESH_TIME_REPORT_MS;

 displayModeWrite(DISPLAY_MODE_CHAR);

 displayClear();

 displayCharPositionWrite (0,0);
 displayStringWrite("Temperature:");

 displayCharPositionWrite (0,1);
 displayStringWrite("Gas:");

 displayCharPositionWrite (0,2);
 displayStringWrite("Alarm:");
}

 Code 6.43 Implementation of the function userInterfaceDisplayReportStateInit().

286

A Beginner’s Guide to Designing Embedded System Applications

The public function displayClear() is implemented in display.cpp, as shown in Code 6.44. In line 3,
displayCodeWrite() is used to send the “Display Clear” instruction to the display. In line 5, a
2-millisecond delay is implemented.

1
2
3
4
5
6

void displayClear(void)
{
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_CLEAR_DISPLAY);
 delay(2);
}

 Code 6.44 Implementation of the function displayClear().

In Code 6.45, userInterfaceDisplayReportStateUpdate() is shown. It mostly includes code that previously
was in userInterfaceDisplayUpdate().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

static void userInterfaceDisplayReportStateUpdate()
{
 char temperatureString[3] = "";

 sprintf(temperatureString, "%.0f", temperatureSensorReadCelsius());
 displayCharPositionWrite (12,0);
 displayStringWrite(temperatureString);
 displayCharPositionWrite (14,0);
 displayStringWrite("'C");

 displayCharPositionWrite (4,1);

 if (gasDetectorStateRead()) {
 displayStringWrite("Detected ");
 } else {
 displayStringWrite("Not Detected");
 }
 displayCharPositionWrite (6,2);
 displayStringWrite("OFF");
}

Code 6.45 Implementation of the function userInterfaceDisplayReportStateUpdate().

The implementation of userInterfaceDisplayAlarmStateInit() is shown in Code 6.46. This function
initializes the display by means of configuring the state of the display to DISPLAY_ALARM_STATE,
changing the refresh time, clearing the display, and changing to graphic mode. The variable
displayAlarmGraphicSequence, which is related to the animation that is displayed, is also initialized.

1
2
3
4
5
6
7
8
9
10
11

static void userInterfaceDisplayAlarmStateInit()
{
 displayState = DISPLAY_ALARM_STATE;
 displayRefreshTimeMs = DISPLAY_REFRESH_TIME_ALARM_MS;

 displayClear();

 displayModeWrite(DISPLAY_MODE_GRAPHIC);

 displayAlarmGraphicSequence = 0;
}

Code 6.46 Implementation of the function userInterfaceDisplayAlarmStateInit().

Chapter 6 | LCD Displays and Communication between Integrated Circuits

287

The images that comprise the fire burning animation are declared in a new filename, GLCD_fire_
alarm.h, which is now included in the display module. The most relevant lines of this file are shown
in Code 6.47 and Code 6.48. Code 6.47 shows the declaration of the array GLCD_ClearScreen. It has
1024 elements in correspondence with the 8 columns, each having two bytes, and 64 rows that
were introduced in Figure 6.31 (i.e., 1024 = 8 × 2 × 64). All its elements are declared as zero using
hexadecimal notation (0x00). For the sake of brevity, only some of the elements are shown.

In Code 6.48, the declaration of GLCD_fire_alarm is shown. It has four parts, each having 1024
elements, as is indicated in line 1. For the sake of brevity, only some of the elements are shown with
the aim of illustrating that each of the four images that compose the fire burning animation is defined
using a different set of bytes.

1
2
3
4
5
6

uint8_t GLCD_ClearScreen[1024] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

Code 6.47 Summary of the content of GLCD_fire_alarm.h (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

uint8_t GLCD_fire_alarm[4][1024] = {
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x01, 0xF1, 0xF1, 0xE1, 0xF0, 0x00, 0x41, 0x00, 0x41, 0xE1, 0x10, 0x00, 0x00,
...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x01, 0x00, 0x41, 0x11, 0x00, 0x00, 0xA1, 0x00, 0xA1, 0x11, 0x10, 0x00, 0xC0,
...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x00, 0x04, 0x7E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
...
0x00, 0x00, 0x1F, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
};

Code 6.48 Summary of the content of GLCD_fire_alarm.h (Part 2/2).

288

A Beginner’s Guide to Designing Embedded System Applications

The function userInterfaceDisplayAlarmStateUpdate(), shown in Code 6.49, writes each of the four
images that comprise the fire burning animation to the LCD shown in Figure 6.35. It can be seen that
the function displayBitmapWrite() is used to write each of the images, which are defined in the
GLCD_fire_alarm.h file.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

static void userInterfaceDisplayAlarmStateUpdate()
{
 switch(displayAlarmGraphicSequence){
 case 0:
 displayBitmapWrite(GLCD_fire_alarm[0]);
 displayAlarmGraphicSequence++;
 break;
 case 1:
 displayBitmapWrite(GLCD_fire_alarm[1]);
 displayAlarmGraphicSequence++;
 break;
 case 2:
 displayBitmapWrite(GLCD_fire_alarm[2]);
 displayAlarmGraphicSequence++;
 break;
 case 3:
 displayBitmapWrite(GLCD_fire_alarm[3]);
 displayAlarmGraphicSequence = 0;
 break;
 default:
 displayBitmapWrite(GLCD_ClearScreen);
 displayAlarmGraphicSequence = 1;
 break;
 }
}

 Code 6.49 Implementation of the function userInterfaceDisplayAlarmStateUpdate().

In Code 6.50, the implementation of the function displayBitmapWrite() of the display module is shown.
The for loop on line 4 is used to increase the y coordinate of the image. If y is less than 32 (line 5), the
top half of the screen is drawn using the for loop in lines 6 to 17. In extended instruction mode, vertical
and horizontal coordinates must be specified before sending data. The vertical coordinate of the
screen is specified first (line 7), then the horizontal coordinate of the screen is specified (line 10). On
lines 13 and 15, the upper and lower bytes are sent to the coordinate (as shown in Figure 6.31). If y is
not less than 32, then the operation is very similar, but the addresses are changed as shown in lines 20
and 23 of Code 6.50, following the ideas that were introduced in Figure 6.31.

1
2
3
4
5
6
7
8
9
10
11
12
13

void displayBitmapWrite(uint8_t* bitmap)
{
 uint8_t x, y;
 for(y=0; y<64; y++) {
 if (y < 32) {
 for(x = 0; x < 8; x++) {
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_GDRAM_ADDR |
 y);
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_GDRAM_ADDR |
 x);
 displayCodeWrite(DISPLAY_RS_DATA,

Chapter 6 | LCD Displays and Communication between Integrated Circuits

289

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 bitmap[16*y + 2*x]);
 displayCodeWrite(DISPLAY_RS_DATA,
 bitmap[16*y + 2*x+1]);
 }
 } else {
 for(x = 0; x < 8; x++) {
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_GDRAM_ADDR |
 (y-32));
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_SET_GDRAM_ADDR |
 (x+8));
 displayCodeWrite(DISPLAY_RS_DATA,
 bitmap[16*y + 2*x]);
 displayCodeWrite(DISPLAY_RS_DATA,
 bitmap[16*y + 2*x+1]);
 }
 }
 }
}

Code 6.50 Implementation of the function displayBitmapWrite().

note: The function displayBitmapWrite() involves sending hundreds of bytes to the
graphical display, which interferes with the time management of the strobe light and
the siren. In this way, when gas and over temperature are detected, the time off and
on of the strobe light and the siren is not always 100 ms as expected. This problem will
be addressed in the next chapters as new concepts are introduced.

In Code 6.51, the implementation of displayModeWrite() is shown. On line 3, the mode parameter is
compared to DISPLAY_MODE_GRAPHIC. If they are equal, the display is configured to graphic mode
by means of the statements between lines 5 and 15. Otherwise, if mode is equal to DISPLAY_MODE_
CHAR, then the display is configured to character mode by means of the statements in lines 17 to 22.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void displayModeWrite(displayMode_t mode)
{
 if (mode == DISPLAY_MODE_GRAPHIC)
 {
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_EXTENDED_INSTRUCION_SET);
 delay(1);
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_EXTENDED_INSTRUCION_SET |
 DISPLAY_IR_FUNCTION_SET_GRAPHIC_DISPLAY_ON);
 delay(1);
 } else if (mode == DISPLAY_MODE_CHAR) {
 displayCodeWrite(DISPLAY_RS_INSTRUCTION,
 DISPLAY_IR_FUNCTION_SET |
 DISPLAY_IR_FUNCTION_SET_8BITS |
 DISPLAY_IR_FUNCTION_SET_BASIC_INSTRUCION_SET |
 DISPLAY_IR_FUNCTION_SET_GRAPHIC_DISPLAY_OFF);
 delay(1);
 }
}

 Code 6.51 Implementation of the function displayModeWrite().

290

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. How can a blank screen be added at the end of the animation shown when the alarm is activated?

Answer to the Exercise

1. The function userInterfaceDisplayAlarmStateUpdate() should be modified as shown in Code 6.52.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

static void userInterfaceDisplayAlarmStateUpdate()
{
 switch(displayAlarmGraphicSequence){
 case 0:
 displayBitmapWrite(GLCD_fire_alarm[0]);
 displayAlarmGraphicSequence++;
 break;
 case 1:
 displayBitmapWrite(GLCD_fire_alarm[1]);
 displayAlarmGraphicSequence++;
 break;
 case 2:
 displayBitmapWrite(GLCD_fire_alarm[2]);
 displayAlarmGraphicSequence++;
 break;
 case 3:
 displayBitmapWrite(GLCD_fire_alarm[3]);
 displayAlarmGraphicSequence++;
 break;
 case 4:
 displayCommandWrite(GLCD_ClearScreen);
 delay(2);
 displayAlarmGraphicSequence = 0;
 break;
 default:
 displayBitmapWrite(GLCD_ClearScreen);
 displayAlarmGraphicSequence = 1;
 break;
 }
}

 Code 6.52 Implementation of the function userInterfaceDisplayAlarmStateUpdate().

6.3 Under the Hood

6.3.1 Comparison between UaRt, SPi, and i2C

A comparison between the UART (which was introduced in chapter 2) and the SPI and I2C buses
that were introduced in this chapter is shown in Table 6.12. It should be noted that all these
communication interfaces require a wired connection between the devices. In Chapters 10 and 11,
wireless communications will be introduced.

Chapter 6 | LCD Displays and Communication between Integrated Circuits

291

Table 6.12 Comparison between UART, SPI, and I2C.

UaRt SPi i2C

Connectivity characteristics Point-to-point connection
(GND, TxD, and RxD
connections)

Difficult to connect many
devices
(GND, SCLK, MOSI, MISO, SS)

Easy to chain many devices
(GND, SCL, and SDA)

Maximum devices 2 Not defined (usually less
than 10)

127

Maximum distance Highest
(up to 50 feet / 15 meters)

Lowest
(up to 10 feet / 3 meters)

Medium
(up to 33 feet / 10 meters)

Maximum data rate Lowest
(up to 460 kbps)

Highest
(up to 20 Mbps)

Medium
(up to 3.4 Mbps)

Number of managers None One One or more

Parity bit Available No No

Acknowledge bit No No Yes

Advantages Simplicity Fastest of all these alternatives Only two wires are required

Disadvantages Can only connect two devices Requires multiple SS wires Slower when compared to SPI

note: The values shown in Table 6.12 might not be available in some devices and/or
might not be attainable in real-life implementations.

WaRninG: There is usually a trade-off between distance and data rate. For example,
the maximum length of an I2C link is about 1 meter at 100 kbps and about 10 meters
at 10 kbps.

Proposed Exercises

1. What bus would seem to be the most appropriate for a wired connection of 20 sensors to three
microcontrollers?

2. A 1 kbps data rate sensor is placed 12 meters away from the microcontroller. Which bus best suits
this situation?

3. Which bus seems most appropriate to connect a 10 GB SD memory card to a microcontroller?

Answers to the Exercises

1. According to Table 7.3, the most appropriate bus seems to be I2C. The data rate of the sensors
should be checked.

2. Given that there is only one sensor connected at a low data rate and considering the large distance,
UART is most appropriate.

292

A Beginner’s Guide to Designing Embedded System Applications

3. In this case, the data rate is critical, while the distance is very short, so SPI is the most appropriate,
as will be seen in Chapter 9.

6.4 Case Study

6.4.1 LCD Usage in Mbed-Based Projects

In this chapter, a character-based LCD display and a graphical LCD display were connected to the
NUCLEO board using 4-bit and 8-bit modes, the I2C bus, and the SPI bus. In Figure 6.36, some
examples of other systems based on Mbed that make use of LCD displays are shown.

Figure 6.36 Examples of other systems based on Mbed that make use of LCD displays.

The system on the left of Figure 6.36 is a solar charge controller that makes use of a character-based
LCD display [12]. It is interesting to note that it is provided with a matrix keypad, and its information
can be accessed by means of a smartphone application. In Chapter 10, the smart home system will be
configured with a BLE connection and a smartphone app.

The system on the right of Figure 6.36 is a game console with a graphical LCD display [13]. The
game console is the first example in this book where the power supply is a set of batteries. Power
consumption becomes a critical issue in this type of system.

Proposed Exercises

1. What is the resolution of the graphical LCD display that is used in the game console? How does this
resolution compare to the resolution of the graphical LCD used in the smart home system?

Chapter 6 | LCD Displays and Communication between Integrated Circuits

293

2. What batteries are used by the game console? How long will these batteries last if the current
consumption is about 70 mA and the batteries are rated as 600 mAh?

Answers to the Exercises

1. In one of the images available in [13] it can be seen that the resolution of the LCD graphic display
of the game console is 220 × 176. This resolution is greater than the resolution of the LCD graphic
display of the smart home system (128 × 64).

2. The game console uses Li-Po batteries, according to one of the images available in [13]. In that
image, it is also indicated that the battery life is about eight to ten hours. Considering a current
consumption of 70 mA, a battery rated as 600 mAh will last for about 8 hours (600 mAh/70 mA).

 References
[1] “16x2 LCD Module_ Pinout, Diagrams, Description & Datasheet” Accessed July 9, 2021.

https://components101.com/displays/16x2-lcd-pinout-datasheet

[2] “HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver)”. Accessed July 9,
2021.
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

[3] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[4] “NUCLEO-F429ZI | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/platforms/ST-Nucleo-F429ZI/

[5] “ASCII | Wikipedia”. Accessed July 9, 2021.
https://en.wikipedia.org/wiki/ASCII

[6] “I2C Serial Interface Adapter Module for LCD”. Accessed July 9, 2021.
https://components101.com/modules/i2c-serial-interface-adapter-module

[7] “PCF8574 Remote 8-Bit I/O Expander for I2C Bus”. Accessed July 9, 2021.
https://www.ti.com/lit/ds/symlink/pcf8574.pdf

[8] “Addressing - I2C Bus”. Accessed July 9, 2021.
https://www.i2c-bus.org/addressing/

[9] “ST7290 GLCD Pinout, Features, Interfacing & Datasheet”. Accessed July 9, 2021.
https://components101.com/displays/st7290-graphical-lcd

[10] “ST7920 Chinese Fonts built in LCD controller/driver”. Accessed July 9, 2021.
https://pdf1.alldatasheet.es/datasheet-pdf/view/326219/SITRONIX/ST7920.html

http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/displays/16x2-lcd-pinout-datasheet
https://components101.com/displays/16x2-lcd-pinout-datasheet
http://paperpile.com/b/bGTbn5/XKJz
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/platforms/ST-Nucleo-F429ZI/
https://os.mbed.com/platforms/ST-Nucleo-F429ZI/
http://paperpile.com/b/bGTbn5/XKJz
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/modules/i2c-serial-interface-adapter-module
https://components101.com/modules/i2c-serial-interface-adapter-module
http://paperpile.com/b/bGTbn5/XKJz
https://www.ti.com/lit/ds/symlink/pcf8574.pdf
https://www.ti.com/lit/ds/symlink/pcf8574.pdf
http://paperpile.com/b/bGTbn5/XKJz
https://www.i2c-bus.org/addressing/
https://www.i2c-bus.org/addressing/
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/displays/st7290-graphical-lcd
https://components101.com/displays/st7290-graphical-lcd
http://paperpile.com/b/bGTbn5/XKJz
https://pdf1.alldatasheet.es/datasheet-pdf/view/326219/SITRONIX/ST7920.html
https://pdf1.alldatasheet.es/datasheet-pdf/view/326219/SITRONIX/ST7920.html

294

A Beginner’s Guide to Designing Embedded System Applications

[11] “KeyStone Architecture | Serial Peripheral Interface (SPI)”. Accessed July 9, 2021.
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf

[12] “Solar Charge Controller | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/solar-charge-controller/

[13] “Game Console | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/game-console/

http://paperpile.com/b/bGTbn5/XKJz
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/solar-charge-controller/
https://os.mbed.com/built-with-mbed/solar-charge-controller/
http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/game-console/
https://os.mbed.com/built-with-mbed/game-console/

DC Motor Driving using Relays
and Interrupts

Chapter 7

296

A Beginner’s Guide to Designing Embedded System Applications

7.1 Roadmap

7.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Summarize the fundamentals of relay modules and use them to control a DC motor.

 n Develop programs to get and manage interrupts with the NUCLEO board.

 n Summarize how LEDs are connected and used in electronic circuits.

 n Describe how to connect a PIR sensor to the NUCLEO board using a digital input.

 n Design and generate modifications of existing code to include new functionality.

7.1.2 Review of Previous Chapters

In previous chapters, a broad set of modules were connected to the smart home system. In order to
deal with all those modules, different functions were called based on a polling cycle: at predefined
intervals the states of the different elements of the system were checked. In this chapter, a different
technique based on hardware interrupts is introduced in order to avoid the overhead of cyclically
checking for a given condition. It is shown how to combine the polling cycle technique with the
technique based on hardware interrupts.

7.1.3 Contents of This Chapter

In this chapter, a direct current (DC) motor will be connected to the smart home system by means
of a relay module. The motion of the DC motor will be controlled with a set of buttons. In order to
introduce the concept of a hardware interrupt, these buttons will not be polled at periodic intervals as
in previous chapters. Instead, an interrupt service routine will be used to handle the button detection.
As part of the implementation, it will be explained how to connect a pair of LEDs to indicate the
rotation direction of the DC motor.

To explore the use of interrupts in further detail, a PIR-based motion sensor will be used. The output
signal of this sensor will be tracked using interrupts.

Finally, some modifications of the existing code will be made in order to include a new alarm source
in the smart home system: the detection of an intruder by means of the PIR sensor. A new alarm
message will be shown on the display, and a different configuration for the strobe time of the light and
the siren will be defined.

Chapter 7 | DC Motor Driving using Relays and Interrupts

297

7.2 Motion Detection and DC Motor Control using Relays and
Interrupts

7.2.1 Connect a DC Motor and a PIR Sensor to the Smart Home System

In this chapter, a PIR sensor, a motor, four buttons, and two LEDs are connected to the smart home
system in order to implement the behavior shown in Figure 7.1. The PIR sensor is used to detect
intruders. In that event, the alarm is activated. The motor is used to move a gate, which is activated by
means of two buttons on the Gate control panel labeled “Open” and “Close”, as shown in Figure 7.1.
The LEDs (green and red) are used to indicate if the gate is opening or closing.

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

A321

B654

C987

D#0*

Incorrect Code

System Blocked

Alarm control panel

°F
°C/

House
Inside
view

Gate Closing

Open Close

Gate Opening

Figure 7.1 The smart home system is now connected to an LCD display.

The other two buttons that are connected in this chapter are used to simulate the limit switches that
are activated when the gate is completely opened or closed (Figure 7.2). In this way, the motor is
stopped when the gate reaches its travel limits.

a. Gate pen.o b. Gate neither open nor closed. c. Gate closed.

Motor

Figure 7.2 Diagram of the limit switches that are considered in this chapter.

298

A Beginner’s Guide to Designing Embedded System Applications

(R
e
la

y
IN

2
)

d

(R
e
la

y
G

N
D

)
d(R

e
la

y
V

C
C

)
d

(R
e
la

y
IN

1
)

d

N
U
C
L
E
O

-F
429Z

I

32F429ZIT6U

A
R
M

7B776 VQ
PHL 7B 721

3

D
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

eee333

93
701
GH218
CHN

ST890C
GK717

++

++

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

GN
D

3V
3

GN
D

V5

3V
3

5V
3V

3
5V

MB-102

PE 10_

CN9

CN8

CN7CN10

GND

3.3V

Potentiometer

P
E

1
2

_

P
F

 9_

P
E

3_

P
F

2
_

L
35

M

5V

GND

A1

Temperature
sensor

LM 35

5V

Buzzer

3.3V

5V
GND

GND

HV1HV2HV

LV

HV3

LV3 LV3 LV1

HV4

LV4 LV4 LV2

GND

GND

GN
D

VC
C

VORSR/
W

EDBDBDBDBDBDBDBDB

01234567

NC PS
B

RS
T

VO
UT

BL
A

BL
K

120

A0

P
F

 7_

P
F

 8_

P
G

 1_

PG 0_

(D
ir
1
L
S

)

(D
ir
1
)

(D
ir

L
S

)
2

(D
ir

)
2

(G
a
s)

(Buzzer)

10KΩ

GND 5V

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0PIR
sensor

5V G
N

D

To igure 7F .4

(tput)PIR Ou

MQ-2
Gas sensor

-2MQ

DO

GND

5V

PE 10_

N
U
C
L
E
O

CN9

Figure 7.3 The smart home system is now connected to a PIR sensor and a set of four buttons.

Chapter 7 | DC Motor Driving using Relays and Interrupts

299

In this chapter, a 5 V DC motor, similar to the motor shown in [1], and a HC-SR501 PIR sensor,
described in [2], are connected to the smart home system, as shown in Figure 7.3 and Figure 7.4. The
aim is to introduce the use of interrupts.

Figure 7.4 shows that a second MB102 is incorporated in the setup in order to supply the motor with
an independent power supply. One of the main reasons for using relay modules in embedded systems
is to turn on and off a load (such as an AC or DC motor, or a lamp) by means of a signal that is applied at
the input of the relay module by a microcontroller that does not share the same power supply as the
load. In this way, microcontrollers are kept safe from high voltages that might be necessary to power
the load and are also isolated from electrical noise that could be generated when the load is activated.

WaRnIng: The GND pin of the second MB102 (indicated as “GNDmotor” in
Figure 7.4) is not connected to the GND of the smart home system. In this way, the
power supply of the motor is properly isolated.

C
U

S

S
R

D
-0

5
V

D
C

-S
L

-C

C
Q
C

R
SO
N
G
LE

C
U

S

S
R

D
-0

5
V

D
C

-S
L

-C

C
Q
C

R
SO
N
G
LE

2
 R

ela
y
 M

o
d
u

le

K2K1

JD-VCC VCC GND GND IN1 IN2 VCC

R3R2

D2D2
Q2Q1

IN2IN1
R4R1

++

B1810
817C

G

B1810
817C

G

1982A 12381H2

++

++

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

GN
D
3V
3

GN
D

V5

3V
3
5V

3V
3
5V

MB-102

M1

D3

D1

D4

D2

C
O

M
1

C
O

M
21

N
C

2
N

C

1
N

O

2
N

O

5Vmotor

Both
to 5V

Second protoboard and MB-102 module

GNDmotor

DC motor

1N
58

19

1N
5819

1N
58

19

1N
5819

M2

(
)

IN
2

d
vc

fv
fv

(
D

)
G

N
d (

)
V

C
C

d(
)

IN
1

d
v

P
E

3_

P
F

2
_

5VG
N

D

From F 3igure 7.

Figure 7.4 The smart home system is now connected to a 5 V DC motor using a relay module.

Figure 7.5 shows a conceptual diagram of the circuit that is used to activate the DC motor, LED1, and
LED2. The circuit is based on two relays, RL1 and RL2. When IN1 is set to GND, the COM1 terminal
of RL1 is connected to NO1 (Normally Open 1). This connects 5Vmotor to the M1 connector of the
DC motor. When IN1 is left unconnected, the COM1 terminal of RL1 is connected to NC1 (Normally
Closed 1). This connects GNDmotor to the M1 connector of the DC motor. The same behavior is

300

A Beginner’s Guide to Designing Embedded System Applications

obtained with RL2 when applying GND to IN2 and when IN2 is left unconnected, respectively. In this
way, the DC motor can be activated and its rotation direction controlled, as shown in Table 7.1.

nOTE: The diagram shown in Figure 7.5 is presented only to illustrate the operation
of the circuit. In the actual circuit, the inputs IN1 and IN2 are not directly connected
to the relay; circuitry is used in between. The details of the actual circuit are discussed
in the Under the Hood section of this chapter.

Figure 7.5 Conceptual diagram of the circuit that is used to activate the DC motor, LED1, and LED2.

Table 7.1 Summary of the signals applied to the motor depending on IN1 and IN2, and the resulting behavior.

In1 M1 In2 M2 Behavior

GND 5Vmotor GND 5Vmotor The motor does not turn (M2 − M1 = 0 V)

Unconnected GNDmotor GND 5Vmotor The motor turns in one direction (M2 − M1 = +5 V)

GND 5Vmotor Unconnected GNDmotor The motor turns in the other direction (M2 − M1 = −5 V)

Unconnected GNDmotor Unconnected GNDmotor The motor does not turn (M2 − M1 = 0 V)

The reader might note that by means of IN1 and IN2, the voltage of M1 and M2 is controlled. The aim
of the relay is to isolate the input from the output. In this way, just a few micro-amperes are drained by
IN1 and IN2, while about 100 milliamperes are provided to the DC motor by means of the connections
to GNDmotor and 5Vmotor through the relay.

Chapter 7 | DC Motor Driving using Relays and Interrupts

301

The diodes D1–D4 are to absorb inductive spikes from the motor inductance. In this way, positive
spikes will be conducted to 5Vmotor and negative spikes to GNDmotor. The 1N5819 diode can be
used for D1–D4.

This circuit can be used to control powerful DC motors that work with higher voltages and currents
by replacing the 5Vmotor voltage supply with an appropriate power supply. Even alternating current
(AC) motors can be controlled by means of relay-based circuits, although this topic is beyond the
scope of this book.

The connections between the NUCLEO board and the relay module are summarized in Table 7.2,
while the connections between the relay module and the breadboard are summarized in Table 7.3.

WaRnIng: In some relay modules, the connections VCC and GND are labeled DC+
and DC-, respectively.

Table 7.2 Summary of the connections between the NUCLEO board and the relay module.

 nUCLEO board Relay module

PF_2 IN1

 PE_3 IN2

Table 7.3 Summary of other connections that should be made to the relay module.

Relay module Element

VCC 5V

GND GND

NO1 5Vmotor

COM1 M1

NC2 GNDmotor

NO2 5Vmotor

COM2 M2

NC2 GNDmotor

In Figure 7.5, it can be seen that there are two LEDs, LED1 and LED2, connected in opposite
directions (i.e., LED1 points from M1 to M2, while LED2 points from M2 to M1). These LEDs are to
indicate the motor’s turning direction. An LED turns on only if the voltage at its anode is higher than
the voltage at its cathode. In Figure 7.5, a detailed drawing of an LED is shown, which helps to identify
its anode and cathode. Given the connections shown in Figure 7.5, LED1 will turn on when the voltage
in M1 is greater than the voltage in M2 (VM1 > VM2), while LED2 will turn when VM2 > VM1. The resistors
R1 and R2 are used to limit the current across the LED. Figure 7.5 shows how to identify a typical 330
Ω resistor that has a tolerance of 5% of its value.

302

A Beginner’s Guide to Designing Embedded System Applications

WaRnIng: Be sure to use 330 Ω resistors and to connect LED1 and LED2 as
indicated in Figure 7.5. Otherwise, the LEDs may be damaged and/or not turn on as
expected. The tolerance of the resistor and its maximum power dissipation are not
relevant. Nor is it relevant whether it is a carbon or metal film resistor.

The passive infrared sensor (PIR sensor) works on the basis that all objects emit heat energy in the form
of radiation at infrared wavelengths. This radiation is not visible to the human eye but can be detected
by electronic devices. A PIR sensor detects changes in the amount of infrared radiation impinging
upon it, which varies depending on the temperature and surface characteristics of the objects in front
of the sensor.

The term passive refers to the fact that PIR devices do not radiate energy for detection purposes but
work by detecting infrared radiation (radiant heat) emitted by or reflected from objects. PIR sensors are
commonly used in security alarms and automatic lighting applications.

Figure 7.6 Diagram of the field of view and the effective range of the HC-SR501 PIR sensor.

For instance, when a person passes in front of a garden, the temperature at that point in the sensor’s
field of view will rise from the grass temperature to the body temperature. The sensor converts the
change in the incoming infrared radiation into a change in its output voltage. The emitted radiation
not only depends on the object’s temperature but also on its surface characteristics, which can also be
used to detect objects.

The most common PIR sensors have an effective range of approximately 10 meters (30 feet) and a
field of view of approximately 180°. PIR sensors with a longer effective range and wider fields of view
are available, as well as PIRs with very narrow coverage. The HC-SR501 PIR sensor that is used in this
chapter has an effective range that is adjustable to between three and seven meters, and a field of
view of 110°, as shown in Figure 7.6.

Chapter 7 | DC Motor Driving using Relays and Interrupts

303

In Figure 7.7, the adjustments and the connection pins of the HC-SR501 PIR sensor are shown. The
sensitivity adjust potentiometer can be used to set the effective range between three and seven
meters. The time delay adjust allows configuration of the output signal duration (pulse duration) in the
range of three seconds to five minutes. The jumper allows a setting of whether triggering signals are
ignored when the output is active (single trigger) or are considered (repeat trigger). Note that the repeat
trigger mode must be selected, as shown in Figure 7.7. Some HC-SR501 PIR sensors have this selection
made from the factory using bond pads.

Figure 7.7 Adjustments and connector of the HC-SR501 PIR sensor.

The connection between the NUCLEO board and the HC-SR501 PIR sensor is shown in Table 7.4, while
the connections between the HC-SR501 PIR sensor and the breadboard are summarized in Table 7.5.

Table 7.4 Summary of the connections between the NUCLEO board and the HC-SR501 PIR sensor.

HC-SR501 PIR sensor nUCLEO board

Output PG_0

Table 7.5 Summary of connections to the breadboard that should be made on the HC-SR501 PIR sensor.

HC-SR501 PIR sensor Breadboard

GND GND

+Power 5 V

WaRnIng: It will take up to a minute for the HC-SR501 PIR sensor to stabilize after
power-on. Additionally, after the output signal turns inactive, there will be a three-
second delay before it can be triggered again.

To test if the HC-SR501 PIR sensor and the motor are working properly, the .bin file of the program
“Subsection 7.2.1” should be downloaded from the URL available in [3] and loaded onto the NUCLEO
board. When the HC-SR501 PIR sensor detects a movement, its output signal will become active and
remain active for a time tDelay given by the time delay adjust (as shown in Figure 7.7). The motor will

304

A Beginner’s Guide to Designing Embedded System Applications

turn in one direction, and one of the LEDs will turn on while the output signal of the HC-SR501 PIR
sensor is active. Once the motor stops, if the sensor is activated again, the motor will turn in the other
direction and the other LED will turn on. This behavior continues indefinitely.

WaRnIng: Ignore all the other elements of the setup during the proposed test
(Alarm LED, display, etc.).

nOTE: Given that the repeat trigger option is selected (as indicated in Figure 7.7)
during tDelay, the sensor can be triggered again by a movement being detected. If that
happens, the output signal will be kept active and the counting of tDelay will start again
from that point.

TIP: This test program can be used to adjust the HC-SR501 Time Delay Adjust. It is
convenient to select the Single Trigger option, as indicated in Figure 7.7, and wave a
hand over the HC-SR501 PIR sensor. The motor will turn for a time of tDelay. Using a
screwdriver, the Time Delay Adjust can be set to make tDelay last for an appropriate
time, for example five seconds.

In Table 7.6, the buttons that are connected in Figure 7.3 are summarized. In many applications, such as
3D printers, limit switches are used to detect the end of travel of an object. In Figure 7.8, a typical limit
switch is shown. In this chapter, tactile switches are used to represent limit switches.

Table 7.6 Summary of the buttons that are connected in Figure 7.3.

Button name nUCLEO board

Dir1 (Direction 1) PF_9

Dir1LS (Direction 1 Limit Switch) PG_1

Dir2 (Direction 2) PF_8

Dir2LS (Direction 2 Limit Switch) PF_7

Figure 7.8 A typical limit switch. Note the connectors on the bottom: common, normally open and normally closed.

Chapter 7 | DC Motor Driving using Relays and Interrupts

305

WaRnIng: In order to show that internal pull-up resistors can also be used to
connect the buttons (instead of pull-down resistors, as in previous chapters), buttons
are connected in a different way than in Chapter 1. Follow the connection diagram
shown in Figure 7.3, otherwise the buttons will not work as expected.

nOTE: Dir1LS and Dir2LS are conceived as limit switches used to deactivate the motor
when a gate or tool moved by the motor reaches the end of its travel. For this reason,
once Dir1LS is activated, the motor will not be allowed to move again in Direction 1
until it has first moved in Direction 2.

To test the buttons, press button Dir1. The motor should turn in one direction, and one of the LEDs
should turn on. Then press button Dir1LS. The motor should stop, and the LED should turn off. Next,
press button Dir2. The motor should turn in the other direction, and the other LED should turn on.
Finally, press button Dir2LS. The motor should stop, and the LED should turn off.

7.2.2 Fundamentals of Interrupt Service Routines

Embedded systems can be configured in order to promptly execute a piece of code when a given
condition takes place. This behavior is called an interrupt, because the normal flow of the program is
altered (i.e., interrupted). For example, an electronically controlled lathe must prioritize a halt button
related to the safety of the operator over any other functionality. If the halt button is pressed, the
electronic controller must alter its normal execution flow in order to execute a given interrupt service
routine (ISR), as shown in Figure 7.9.

Figure 7.9 Conceptual diagram of the normal flow of a program altered by an interrupt service routine.

An interrupt can be caused by an electrical condition. For example, an interrupt is triggered when
a signal connected to a microcontroller pin becomes 3.3 V. In this way, a microcontroller may have
dozens of interrupt sources that might even be activated simultaneously. For this reason, it must be
decided how to proceed when each of the events that can trigger an interrupt occurs. Table 7.7 shows
a simplified representation of this concept. It can be seen that some interrupt sources might be active,
while others are inactive, and that every active interrupt has an assigned priority and code to be
executed when it is triggered.

306

A Beginner’s Guide to Designing Embedded System Applications

Table 7.7 Example of an interrupt service table.

Interrupt assigned pin active/Inactive Priority ISR function

 External hardware interrupt (INT0) D13 Active 1 ISRInt0()

 External hardware interrupt (INT1) D17 Active 2 ISRInt1()

UART0 received byte interrupt – Inactive – ISRUart0()

UART1 received byte interrupt – Inactive – –

Timer0 elapsed time interrupt – Active 3 ISRTimer0()

In Table 7.7, it can be seen that interrupts can be triggered by UARTs and timers. If an interrupt from a
UART is activated when a new byte (i.e., a character) is received by the UART, a given function will be
executed (i.e., ISRUart0()). This behavior can be used to avoid polling the UART at regular times, as in
the examples in previous chapters.

One ISR can be interrupted by another ISR, as shown in Figure 7.10. It should be noted that the
priority number is used to determine which interrupt must be attended to first. In the example, ISR1
has a higher priority than ISR2. ISR1 is not interrupted by the occurrence of ISR2 (left of Figure 7.10),
while ISR2 is interrupted by the occurrence of ISR1 (right of Figure 7.10).

Figure 7.10 Conceptual diagram of the normal flow of a program altered by two interrupt service routines.

nOTE: Given that one ISR can be interrupted by another ISR, and given that the
normal flow of the program will be altered when an ISR is called, the complexity and
operation time of the ISRs must be kept as small as possible.

Besides hardware interrupts, there are other types of interrupts, such as software interrupt
instructions or software exceptions. For example, if a division by zero is executed, then a software
interrupt can take place. If this occurs, the programmer may provide a piece of code to be executed
to attempt to overcome the issue. This specific piece of code, also called an ISR, may be responsible
for notifying the user that a division by zero is not allowed or may just set a given Boolean variable in
order to later, when possible, notify the user that a division by zero is not allowed.

Chapter 7 | DC Motor Driving using Relays and Interrupts

307

In the examples below, interrupts will be used to detect when buttons Dir1, Dir2, Dir1LS, and Dir2LS
are pressed, as well as to detect when the PIR motion detector is activated.

nOTE: The situations described in this chapter (for example, intruder detection or
motor activation) might also be implemented without using interrupts. Interrupts are
chosen here with the aim of introducing the topic.

Example 7.1: Control a DC Motor using Interrupts

Objective

Introduce the use of a direct current motor.

Summary of the Expected Behavior

By means of buttons Dir1 and Dir2, the rotation direction of the motor is controlled. Two LEDs are
used to indicate the direction in which the motor is turning.

Test the Proposed Solution on the Board

Import the project “Example 7.1” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. Press “m” on the PC keyboard. A message indicating “The motor is stopped”
should be displayed on the PC. Press button Dir1. The motor should turn in one direction, and one
of the LEDs should turn on. Press “m” again on the PC keyboard. A message indicating “The motor is
turning in direction 1” should be displayed on the PC. Press button Dir2. The motor should turn in the
other direction, and the other LED should turn on. Press “m” again on the PC keyboard. A message
indicating “The motor is turning in direction 2” should be displayed on the PC.

Discussion of the Proposed Solution

The proposed solution is based on a new software module named motor and some new lines in the
user_interface module. The motor is controlled by means of a new set of ISRs, which are triggered by
the buttons Dir1 and Dir2.

Implementation of the Proposed Solution

The initialization of the motor module is done at the beginning of the program by calling the function
motorControlInit() from smartHomeSystemInit(), as can be seen on line 6 of Code 7.1. The function
motorControlUpdate() is included in smartHomeSystemUpdate() (line 15). In order to implement these
calls, the library motor is included in smart_home_system.cpp, as can be seen in Table 7.8.

308

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void smartHomeSystemInit()
{
 userInterfaceInit();
 fireAlarmInit();
 pcSerialComInit();
 motorControlInit();
}

void smartHomeSystemUpdate()
{
 userInterfaceUpdate();
 fireAlarmUpdate();
 pcSerialComUpdate();
 eventLogUpdate();
 motorControlUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 7.1 New implementation of the functions smartHomeSystemInit() and smartHomeSystemUpdate().

Table 7.8 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "motor.h"

The implementation of motor.cpp is shown in Code 7.2 and Code 7.3. The libraries that are included
are shown from line 3 to line 6 of Code 7.2. On line 10, the motor update time is defined. On lines 14
and 15, the global objects that will control the motor are created and assigned to available pins. It is
necessary to declare these objects as DigitalInOut to allow the pin to be configured as unconnected.
This is achieved by using the .mode(OpenDrain) configuration. On lines 19 and 20, two variables of the
data type motorDirection_t (defined in motor.h) are declared.

nOTE: For the sake of brevity, only the file sections that have some content are shown
in the Code. The full versions of the files are available in [3].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

//=====[Libraries]===

#include “mbed.h”
#include “arm_book_lib.h”

#include “motor.h”

//=====[Declaration of private defines]==

#define MOTOR_UPDATE_TIME 9

//=====[Declaration and initialization of public global objects]===============

DigitalInOut motorM1Pin(PF_2);
DigitalInOut motorM2Pin(PE_3);

//=====[Declaration and initialization of public global variables]=============

Chapter 7 | DC Motor Driving using Relays and Interrupts

309

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

motorDirection_t motorDirection;
motorDirection_t motorState;

//=====[Implementations of public functions]===================================

void motorControlInit()
{
 motorM1Pin.mode(OpenDrain);
 motorM2Pin.mode(OpenDrain);

 motorM1Pin.input();
 motorM2Pin.input();

 motorDirection = STOPPED;
 motorState = STOPPED;
}

motorDirection_t motorDirectionRead()
{
 return motorDirection;
}

void motorDirectionWrite(motorDirection_t direction)
{
 motorDirection = direction;
}

Code 7.2 Implementation of motor.cpp file (Part 1/2).

On lines 24 to 34, the implementation of the function motorControlInit() is shown. On lines 26 and
27, the pins connected to the motor are configured as open drain and on lines 29 and 30 as input.
In this way, both pins are in a high impedance state (which can be considered as unconnected),
so the relays that control the motor are not energized. On lines 32 and 33, motorDirection and
motorState are initialized as STOPPED. From lines 36 to 44, the implementations of the functions
motorDirectionRead(), which returns the value of the variable motorDirection, and motorDirectionWrite,
which assigns the received parameter (Direction) to motorDirection, are shown.

In Code 7.3, the implementation of the function motorControlUpdate() is shown. This function is
responsible for the operation of the motor depending on the value of the variable motorState. The
finite-state machine that controls the motor is executed every 100 ms, taking into account the value
of MOTOR_UPDATE_TIME and the fact that motorControlUpdate() is called every 10 ms. If the value of
motorState is DIRECTION_1 (the motor is turning in DIRECTION_1) and the value of motorDirection is
DIRECTION_2 or STOPPED (lines 13 and 14), then the motor is stopped by putting both motor pins in
high impedance (lines 15 and 16). The same behavior is implemented for the other direction (lines 21
to 28).

In the STOPPED state (lines 30 to 45), the direction of the motor is defined depending on the value of
motorDirection. The pin that corresponds to the received direction is configured as output (lines 34 and
41), and LOW is assigned to it in order to activate the motor (lines 35 and 42), while the other pin is
configured in high impedance (lines 33 and 40). In this way, only the relay that corresponds to the pin
of the selected direction will be energized. In all cases, the variable motorState is updated (lines 17, 26,
36, and 43).

310

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

void motorControlUpdate()
{
 static int motorUpdateCounter = 0;

 motorUpdateCounter++;

 if (motorUpdateCounter > MOTOR_UPDATE_TIME) {

 motorUpdateCounter = 0;

 switch (motorState) {
 case DIRECTION_1:
 if (motorDirection == DIRECTION_2 ||
 motorDirection == STOPPED) {
 motorM1Pin.input();
 motorM2Pin.input();
 motorState = STOPPED;
 }
 break;

 case DIRECTION_2:
 if (motorDirection == DIRECTION_1 ||
 motorDirection == STOPPED) {
 motorM1Pin.input();
 motorM2Pin.input();
 motorState = STOPPED;
 }
 break;

 case STOPPED:
 default:
 if (motorDirection == DIRECTION_1) {
 motorM2Pin.input();
 motorM1Pin.output();
 motorM1Pin = LOW;
 motorState = DIRECTION_1;
 }

 if (motorDirection == DIRECTION_2) {
 motorM1Pin.input();
 motorM2Pin.output();
 motorM2Pin = LOW;
 motorState = DIRECTION_2;
 }
 break;
 }
 }
}

Code 7.3 Implementation of motor.cpp file (Part 2/2).

In Code 7.4, the implementation of motor.h is shown. It can be seen that the data type motorDirection_t
is defined on lines 8 to 12, and the prototypes of the public functions implemented in Code 7.3 are
declared on lines 16 to 21.

Chapter 7 | DC Motor Driving using Relays and Interrupts

311

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

//=====[#include guards - begin]===

#ifndef _MOTOR_H_
#define _MOTOR_H_

//=====[Declaration of public data types]======================================

typedef enum {
 DIRECTION_1,
 DIRECTION_2,
 STOPPED
} motorDirection_t;

//=====[Declarations (prototypes) of public functions]=========================

void motorControlInit();
void motorDirectionWrite(motorDirection_t direction);

motorDirection_t motorDirectionRead();

void motorControlUpdate();

//=====[#include guards - end]===

#endif // _MOTOR_H_

Code 7.4 Implementation of motor.h file.

In Table 7.9, the sections in which lines were added to user_interface.cpp are shown. It can be seen that
motor.h has been included, and the public global objects of type InterruptIn motorDirection1Button and
motorDirection2Button were assigned to the pins PF_9 and PF_8, respectively. The private functions
motorDirection1ButtonCallback() and motorDirection2ButtonCallback() are declared.

Table 7.9 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "motor.h"

Declaration and initialization of public global objects InterruptIn motorDirection1Button(PF_9);

InterruptIn motorDirection2Button(PF_8);

Declarations (prototypes) of private functions static void motorDirection1ButtonCallback();

static void motorDirection2ButtonCallback();

In Code 7.5, the new implementation of the function userInterfaceInit() of the module user_interface is
shown. On lines 3 and 4, the two buttons that will control the direction of the motors are configured
with an internal pull-up resistor. On lines 6 and 7, the interrupt is configured for these two buttons.

Whenever a transition from high to low state (falling edge) is detected in those pins, a
callback function is called. These functions are referred to as the handlers for the interrupts
related to motorDirection1Button.fall and motorDirection2Button.fall. For pin PF_9, the
callback function is motorDirection1ButtonCallback(), and for pin PF_8 the callback function is
motorDirection2ButtonCallback(). Note that the callback functions are preceded by the reference
operator (&). Lines 9 to 12 remain unchanged from the previous version of this function.

312

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13

void userInterfaceInit()
{
 motorDirection1Button.mode(PullUp);
 motorDirection2Button.mode(PullUp);

 motorDirection1Button.fall(&motorDirection1ButtonCallback);
 motorDirection2Button.fall(&motorDirection2ButtonCallback);

 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
 matrixKeypadInit(SYSTEM_TIME_INCREMENT_MS);
 userInterfaceDisplayInit();
}

Code 7.5 New implementation of the function userInterfaceInit().

In Code 7.6, the implementation of the callbacks motorDirection1ButtonCallback() and
motorDirection2ButtonCallback() is shown. Each of these functions calls motorDirectionWrite() (shown in
Code 7.3) with the parameter DIRECTION_1 (line 3) or DIRECTION_2 (line 8).

1
2
3
4
5
6
7
8
9

static void motorDirection1ButtonCallback()
{
 motorDirectionWrite(DIRECTION_1);
}

static void motorDirection2ButtonCallback()
{
 motorDirectionWrite(DIRECTION_2);
}

Code 7.6 Implementation of the functions motorDirection1ButtonCallback() and motorDirection2ButtonCallback().

To implement the new command “m”, the lines shown in Table 7.10 were added to
pcSerialComCommandUpdate() and availableCommands() in pc_serial_com.cpp. In Table 7.11, the sections
in which lines were added to pc_serial_com.cpp are shown. It can be seen that a new private function,
commandShowCurrentMotorState(), is declared.

Table 7.10 Functions in which lines were added in pc_serial_com.cpp.

Functions Lines that were added

static void pcSerialComCommandUpdate(char
receivedChar)

case 'm': case 'M': commandShowCurrentMotorState();

break;

static void availableCommands() pcSerialComStringWrite("Press 'm' or 'M' to show the

motor status\r\n");

Table 7.11 Sections in which lines were added in pc_serial_com.cpp.

Section Lines that were added

Libraries #include "motor.h"

Declarations (prototypes) of private functions static void commandShowCurrentMotorState();

Chapter 7 | DC Motor Driving using Relays and Interrupts

313

When “m” is pressed on the PC keyboard, the function commandShowCurrentMotorState() shown in
Code 7.7 is called. On line 3, the function motorDirectionRead() (shown in Code 7.2) is called. One of
three different messages is sent to the PC console (lines 5 to 9) depending on the returned value.

1
2
3
4
5
6
7
8
9
10
11

static void commandShowCurrentMotorState()
{
 switch (motorDirectionRead()) {
 case STOPPED:
 pcSerialComStringWrite("The motor is stopped\r\n"); break;
 case DIRECTION_1:
 pcSerialComStringWrite("The motor is turning in direction 1\r\n"); break;
 case DIRECTION_2:
 pcSerialComStringWrite("The motor is turning in direction 2\r\n"); break;
 }
}

Code 7.7 Implementation of the function commandShowCurrentMotorState().

Proposed Exercise

1. How can the program be modified in order to include a new button that stops the motor, regardless
of which direction it is turning?

Answer to the Exercise

1. A new button should be included, and code should be implemented following the same procedure
as the direction buttons, with the difference that the callback function should use the function
motorDirectionWrite with STOPPED as the parameter.

Example 7.2: Use a DC Motor to Open and Close a gate

Objective

Expand the functionality of the external interrupts and modify the code to include a gate.

Summary of the Expected Behavior

By means of the buttons Dir1 and Dir2, the motor rotation direction is controlled. The buttons Dir1LS
and Dir2LS are used to indicate that a gate has reached a Limit Switch. In that situation, the motor
should stop.

nOTE: In the implementation proposed in this example, the actual gate is not
included; this gate might be the gate of a house or any other gate that the user might
choose.

Test the Proposed Solution on the Board

Import the project “Example 7.2” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. Press button Dir1. The motor should turn in a given direction, and one of the

314

A Beginner’s Guide to Designing Embedded System Applications

LEDs should turn on. Press “g” on the PC keyboard. A message indicating “The gate is opening” should
be displayed on the PC. Press the button Dir1LS. The motor should stop, and LED1 should turn off.
Press “g” again on the PC keyboard. A message indicating “The gate is open” should be displayed on
the PC.

Press button Dir2. The motor should turn in the other direction, and the other LED should turn on.
Press “g” again on the PC keyboard. A message indicating “The gate is closing” should be displayed on
the PC. Press button Dir2LS. The motor should stop, and LED2 should turn off. Press “g” again on the
PC keyboard. A message indicating “The gate is closed” should be displayed on the PC.

Discussion of the Proposed Solution

The proposed solution is based on a new module, named gate. The motor and the gate are controlled
by means of a new set of ISRs, which are triggered by the buttons Dir1LS and Dir2LS.

Implementation of the Proposed Solution

The initialization of the gate module is done at the beginning of the program by means of a call to
the function gateInit() from smartHomeSystemInit(), as can be seen on line 7 of Code 7.8. In order to
implement this call, the library gate is included in smart_home_system.cpp, as can be seen in Table 7.12.

1
2
3
4
5
6
7
8

void smartHomeSystemInit()
{
 userInterfaceInit();
 fireAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
}

Code 7.8 New implementation of the function smartHomeSystemInit().

Table 7.12 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "gate.h"

Since, in this example, the motor is associated with a gate, some modifications in the code are needed
in the module user_interface. The user will open or close a gate instead of turning a motor in direction
1 or 2. To account for this change, the variables and functions related to the motor are renamed as
shown in Table 7.13 and Table 7.14 and in the new implementation of userInterfaceInit() shown in
Code 7.9 (lines 3 to 7).

Table 7.13 Public global objects that were renamed in user_interface.cpp.

Object name in Example 7.1 Object name in Example 7.2

InterruptIn motorDirection1Button(PF_9); InterruptIn gateOpenButton(PF_9);

InterruptIn motorDirection2Button(PF_8); InterruptIn gateCloseButton(PF_8);

Chapter 7 | DC Motor Driving using Relays and Interrupts

315

Table 7.14 Private functions that were renamed in user_interface.cpp.

Function name in Example 7.1 Function name in Example 7.2

static void motorDirection1ButtonCallback(); static void gateOpenButtonCallback();

static void motorDirection2ButtonCallback(); static void gateCloseButtonCallback();

1
2
3
4
5
6
7
8
9
10
11
12
13

void userInterfaceInit()
{
 gateOpenButton.mode(PullUp);
 gateCloseButton.mode(PullUp);

 gateOpenButton.fall(&gateOpenButtonCallback);
 gateCloseButton.fall(&gateCloseButtonCallback);

 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
 matrixKeypadInit(SYSTEM_TIME_INCREMENT_MS);
 userInterfaceDisplayInit();
}

Code 7.9 New implementation of the function userInterfaceInit().

Code 7.6 from Example 7.1 is modified as shown in Code 7.10. In this example, the rotation direction
of the motor represents the opening or closing of the gate, so the functions gateOpen() and gateClose()
from the Gate module are used. In order to use these functions, gate.h is included as shown in
Table 7.15.

1
2
3
4
5
6
7
8
9

static void gateOpenButtonCallback()
{
 gateOpen();
}

static void gateCloseButtonCallback()
{
 gateClose();
}

Code 7.10 Changes in the name and implementation of functions of user_interface.cpp file.

Table 7.15 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "gate.h"

The implementation of gate.cpp is shown in Code 7.11 and Code 7.12. The libraries that are included
are shown from lines 3 to 7 of Code 7.11. The external interrupts are assigned to pins PG_1 and PF_7
and declared on lines 11 and 12, respectively. On lines 16 and 17, two private global variables are
created that will store the state of each limit switch when they are pressed. The interrupt handlers of
each of the external interrupts are declared on lines 23 and 24.

316

A Beginner’s Guide to Designing Embedded System Applications

The function gateInit() is shown on lines 28 to 39 of Code 7.11. The pins that simulate the limit
switches of the gate are configured with internal pull-up resistors on lines 30 and 31, and the
callbacks are defined on lines 33 and 34. Finally, on lines 36 to 38, the variables that store the status of
the limit switches and the gate are initialized, setting the gate to closed.

nOTE: If the gate is not closed during the initialization, the system will synchronize
with the limit switches as soon as the gate open limit switch or the gate close limit
switch is activated.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "gate.h"
#include "motor.h"

//=====[Declaration and initialization of public global objects]===============

InterruptIn gateOpenLimitSwitch(PG_1);
InterruptIn gateCloseLimitSwitch(PF_7);

//=====[Declaration and initialization of private global variables]============

static bool gateOpenLimitSwitchState;
static bool gateCloseLimitSwitchState;

static gateStatus_t gateStatus;

//=====[Declarations (prototypes) of private functions]========================

static void gateOpenLimitSwitchCallback();
static void gateCloseLimitSwitchCallback();

//=====[Implementations of public functions]===================================

void gateInit()
{
 gateOpenLimitSwitch.mode(PullUp);
 gateCloseLimitSwitch.mode(PullUp);

 gateOpenLimitSwitch.fall(&gateOpenLimitSwitchCallback);
 gateCloseLimitSwitch.fall(&gateCloseLimitSwitchCallback);

 gateOpenLimitSwitchState = OFF;
 gateCloseLimitSwitchState = ON;
 gateStatus = GATE_CLOSED;
}

Code 7.11 Implementation of gate.cpp file (Part 1/2).

In Code 7.12, the implementations of the functions gateOpen() and gateClose() are shown from lines 1
to 17. If the state of the limit switch is OFF (lines 3 and 12), the motor is set to the requested direction
(lines 4 and 13), the status of the gate is updated (lines 5 and 14), and the opposite limit switch is set to
OFF (lines 6 and 15). Lines 19 to 22 show the implementation of the function gateStatusRead(), which
returns the value of the variable gateStatus.

Chapter 7 | DC Motor Driving using Relays and Interrupts

317

The implementation of the private functions that handle the interrupts is shown from lines 26 to 42.
These handlers have similarities with the implementations of the functions gateOpen() and gateClose().
If the motor is turning in the direction that corresponds to the callback (lines 28 and 37), then the
motor is stopped (lines 29 and 38), the status of the gate is updated (lines 30 and 39), and the limit
switch is set to ON (lines 31 and 40).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

void gateOpen()
{
 if (!gateOpenLimitSwitchState) {
 motorDirectionWrite(DIRECTION_1);
 gateStatus = GATE_OPENING;
 gateCloseLimitSwitchState = OFF;
 }
}

void gateClose()
{
 if (!gateCloseLimitSwitchState) {
 motorDirectionWrite(DIRECTION_2);
 gateStatus = GATE_CLOSING;
 gateOpenLimitSwitchState = OFF;
 }
}

gateStatus_t gateStatusRead()
{
 return gateStatus;
}

//=====[Implementations of private functions]==================================

static void gateOpenLimitSwitchCallback()
{
 if (motorDirectionRead() == DIRECTION_1) {
 motorDirectionWrite(STOPPED);
 gateStatus = GATE_OPEN;
 gateOpenLimitSwitchState = ON;
 }
}

static void gateCloseLimitSwitchCallback()
{
 if (motorDirectionRead() == DIRECTION_2) {
 motorDirectionWrite(STOPPED);
 gateStatus = GATE_CLOSED;
 gateCloseLimitSwitchState = ON;
 }
}

Code 7.12 Implementation of gate.cpp file (Part 2/2).

In Code 7.13, the implementation of gate.h is shown. It can be seen that the data type gateStatus_t
is defined on lines 8 to 13, and the prototypes of the public functions defined in Code 7.11 and
Code 7.12 are declared on lines 17 to 22.

318

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[#include guards - begin]===

#ifndef _GATE_H_
#define _GATE_H_

//=====[Declaration of public data types]======================================

typedef enum {
 GATE_CLOSED,
 GATE_OPEN,
 GATE_OPENING,
 GATE_CLOSING,
} gateStatus_t;

//=====[Declarations (prototypes) of public functions]=========================

void gateInit();

void gateOpen();
void gateClose();

gateStatus_t gateStatusRead();

//=====[#include guards - end]===

#endif // _GATE_H_

Code 7.13 Implementation of gate.h file.

To implement the new command “g”, the lines shown in Table 7.16 are added to pcSerialComCommand
Update() and availableCommands() in pc_serial_com.cpp. In Table 7.17, the sections in which
lines are added to pc_serial_com.cpp are shown. It can be seen that a new private function,
commandShowCurrentMotorState(), is declared.

Table 7.16 Functions in which lines were added in pc_serial_com.cpp.

Function Lines that were added

static void pcSerialComCommandUpdate(char
receivedChar)

case 'g': case 'G': commandShowCurrentGateState();

break;

static void availableCommands() pcSerialComStringWrite("Press 'g' or ‘G’ to show the

gate status\r\n");

Table 7.17 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Libraries #include "gate.h"

Declarations (prototypes) of private functions static void commandShowCurrentGateState();

When “g” is pressed on the PC keyboard, the function commandShowCurrentGateState() shown in
Code 7.14 is called. On line 3, the function gateStatusRead() (shown in Code 7.12) is called and, depending
on the returned value, one of four different messages is sent to the PC console (lines 4 to 7).

Chapter 7 | DC Motor Driving using Relays and Interrupts

319

1
2
3
4
5
6
7
8
9

static void commandShowCurrentGateState()
{
 switch (gateStatusRead()) {
 case GATE_CLOSED: pcSerialComStringWrite("The gate is closed\r\n"); break;
 case GATE_OPEN: pcSerialComStringWrite("The gate is open\r\n"); break;
 case GATE_OPENING: pcSerialComStringWrite("The gate is opening\r\n"); break;
 case GATE_CLOSING: pcSerialComStringWrite("The gate is closing\r\n"); break;
 }
}

Code 7.14 Implementation of the function commandShowCurrentGateState().

Proposed Exercise

1. What should be changed in the code to detect the buttons if they are now connected to 3.3 V
instead of GND?

Answer to the Exercise

1. In Code 7.11, lines 30 and 31 should be modified to use the pullDown parameter, and lines 33 and 34
should use the rise interrupt type.

Example 7.3: Use of a PIR Sensor to Detect Intruders

Objective

Introduce the reading of a PIR sensor using interrupts.

Summary of the Expected Behavior

Intruders are detected by the PIR sensor, and the corresponding event is registered in the event log.

Test the Proposed Solution on the Board

Import the project “Example 7.3” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. Wave a hand over the PIR sensor. A message indicating “MOTION_ON”
should be displayed on the serial terminal. Then, after a time defined by tDelay, a message indicating
“MOTION_OFF” should be displayed on the serial terminal. Press “h” on the PC keyboard or “B” on the
matrix keypad. The system will stop tracking the PIR sensor. Press “i” on the PC keyboard or “A” on the
matrix keypad. The system will restart its tracking of the PIR sensor.

nOTE: If key “h” or “B” is pressed just when the PIR sensor has detected a movement,
the message “The motion sensor has been deactivated” followed by “MOTION_ON”
can be seen on the serial terminal. After this last activation, the PIR sensor will not be
activated again until key “i” or “A” is pressed. If key “h” or “B” is pressed many times,
“The motion sensor has been deactivated” will be printed many times. If “i” or “A” is
pressed many times, “The motion sensor has been activated” will be printed many
times.

320

A Beginner’s Guide to Designing Embedded System Applications

Discussion of the Proposed Solution

The proposed solution is based on a new module named motion_sensor. This module makes use of an
interrupt to detect the pulse that the PIR sensor generates when it detects movement. An interrupt is
triggered by a rising edge of the PIR sensor output signal. To detect the end of the pulse, an interrupt
that is triggered when the signal transitions from high to low state (falling edge) is enabled. Figure 7.11
illustrates the initialization of the motion_sensor module (i.e., motionSensorInit()), the pulse generated
when motion is detected, the content of the interrupt callback triggered (i.e., motionDetected()), and
the content of the callback triggered when the pulse ceases (i.e., motionCeased()).

Figure 7.11 Pulse generated by PIR sensor when motion is detected and the corresponding initialization and callbacks.

In the initialization, the callback of the rising edge interrupt of pirOutputSignal (i.e., PG_0) is configured
to motionDetected(), the callback of its falling edge interrupt is not configured, the Boolean variable
pirState is assigned the OFF state, and motionSensorActivated is assigned true. When motion is
detected by the PIR sensor, a rising edge pulse is generated on pirOutputSignal, which triggers the
rising edge interrupt. This interrupt calls its callback function, motionDetected(), which assigns ON to
pirState, disables the rising edge interrupt (i.e., NULL is assigned), activates the pirOutputSignal falling
edge interrupt, and configures its callback to motionCeased(). Lastly, when motion ceases, a falling edge
pulse is generated on pirOutputSignal, which triggers the falling edge interrupt. This interrupt calls its
callback function, motionCeased(), which assigns OFF to pirState, disables the falling edge interrupt
(i.e., NULL is assigned), and, if motionSensorActivated is true, then activates the pirOutputSignal rising
edge interrupt and configures its callback to motionDetected().

In the implementation introduced in this example, it is possible to deactivate the motion sensor
detection at any time by pressing keys “h” or “B”, even when the PIR sensor is detecting motion. In
that situation, as was seen in the “Test the Proposed Solution on the Board” section, the message
“The motion sensor has been deactivated” will be shown on the serial terminal, and the PIR sensor
will not be activated again until keys “i” or “A” are pressed. Note that if the motion sensor detection is
deactivated when the PIR sensor is detecting motion, then the falling edge interrupt will be disabled
when motionCeased() is called as a consequence of the falling edge on pirOutputSignal. This is discussed
below as the corresponding program code is shown.

Chapter 7 | DC Motor Driving using Relays and Interrupts

321

Implementation of the Proposed Solution

Code 7.15 shows the new implementation of the function smartHomeSystemInit(). It can be seen that
the function motionSensorInit() is called on line 8 to initialize the motion_sensor module.

1
2
3
4
5
6
7
8
9

void smartHomeSystemInit()
{
 userInterfaceInit();
 fireAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 motionSensorInit();
}

Code 7.15 Details of the new implementation of the function smartHomeSystemInit().

In Table 7.18, the sections in which lines were added to smart_home_system.cpp are shown. It can be
seen that motion_sensor.h has been included.

Table 7.18 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "motion_sensor.h"

To implement the new commands “i” and “h”, the lines shown in Table 7.19 were added to
pcSerialComCommandUpdate() and availableCommands() in pc_serial_com.cpp. In Table 7.19, the
sections in which lines were added to pc_serial_com.cpp are shown. It can be seen that two new private
functions are declared: commandMotionSensorActivate() and commandMotionSensorDeactivate().

Table 7.19 Functions in which lines were added in pc_serial_com.cpp

Function Lines that were added

static void pcSerialComCommandUpdate(char
receivedChar)

case 'i': case 'I': commandMotionSensorActivate();

 break;

case 'h': case 'H': commandMotionSensorDeactivate();

 break;

static void availableCommands() pcSerialComStringWrite("Press 'i' or 'I' to

 activate the motion sensor\r\n");

pcSerialComStringWrite("Press 'h' or 'H' to

 deactivate the motion sensor\r\n");

Table 7.20 Sections in which lines were added in pc_serial_com.cpp.

Section Lines that were added

Libraries #include "motion_sensor.h"

Declarations (prototypes) of private functions static void commandMotionSensorActivate();

static void commandMotionSensorDeactivate();

322

A Beginner’s Guide to Designing Embedded System Applications

In Code 7.16, the implementations of commandMotionSensorActivate() and commandMotionSensor
Deactivate() are shown. These functions call motionSensorActivate() and motionSensorDeactivate(),
respectively.

1
2
3
4
5
6
7
8
9

static void commandMotionSensorActivate()
{
 motionSensorActivate();
}

static void commandMotionSensorDeactivate()
{
 motionSensorDeactivate();
}

Code 7.16 Implementation of commandMotionSensorActivate() and commandMotionSensorDeactivate().

The implementation of motion_sensor.cpp is shown in Code 7.17 and Code 7.18. The libraries that are
included are shown from lines 3 to 7. On line 11, a public global object of type InterruptIn named
pirOutputSignal is declared and assigned to the pin PG_0. This pin will be used to detect the pulse
generated by the PIR sensor when it identifies movement, as was explained using Figure 7.11. This
pulse will be processed by the private functions motionDetected() and motionCeased(), declared on lines
20 and 21, respectively. It will modify the state of the global private variable named pirState, which
is declared on line 15. Finally, another global private variable named motionSensorActivated, which is
declared on line 16, will define whether the tracking of the motion sensor is active.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "motion_sensor.h"
#include "pc_serial_com.h"

//=====[Declaration and initialization of public global objects]===============

InterruptIn pirOutputSignal(PG_0);

//=====[Declaration and initialization of private global variables]============

static bool pirState;
static bool motionSensorActivated;

//=====[Declarations (prototypes) of private functions]========================

static void motionDetected();
static void motionCeased();

Code 7.17 Details of the implementation of motion_sensor.cpp (Part 1/2).

The implementation of public and private functions of the motion_sensor module is shown in
Code 7.18. From lines 3 to 8, the function motionSensorInit() is implemented. On line 5, the callback
function of pirOutputSignal interrupt is configured with the function motionDetected() when there is a
rising edge on PG_0 (i.e., when there is a rising edge on PG_0 the function motionDetected() is called).

Chapter 7 | DC Motor Driving using Relays and Interrupts

323

On line 6, pirState is initialized to OFF because it is assumed that at the beginning the PIR sensor is
inactive. On line 7, motionSensorActivated is initialized to true in order to activate the motion sensor.
Therefore, the tracking of this sensor will be active, since the smart home system is initialized. From
lines 10 to 13, the public function motionSensorRead() is implemented. This function returns the value
of pirState.

On line 15, motionSensorActivate() is implemented. First, it assigns true to motionSensorActivated. Then,
if pirState is OFF (line 18), it configures an interrupt associated with a rising edge on pirOutputSignal
with motionDetected() as its callback. Note that if pirState is ON, this rising edge interrupt will be
configured by the callback associated with the falling edge interrupt, as discussed above (Figure 7.11).
Finally, this function sends the string “The motion sensor has been activated” to the serial terminal
(line 21).

On line 24, motionSensorDeactivate() is implemented. First, it assigns false to motionSensorActivated.
Then, if pirState is OFF (line 27), it disables the interrupt associated with a rising edge on
pirOutputSignal (line 28). Note that if pirState is ON, this rising edge interrupt will be configured by
the callback associated with the rising edge interrupt, as discussed above (Figure 7.11). Lastly, this
function sends the string “The motion sensor has been deactivated” to the serial terminal (line 30).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

//=====[Implementations of public functions]===================================

void motionSensorInit()
{
 pirOutputSignal.rise(&motionDetected);
 pirState = OFF;
 motionSensorActivated = true;
}

bool motionSensorRead()
{
 return pirState;
}

void motionSensorActivate()
{
 motionSensorActivated = true;
 if (!pirState) {
 pirOutputSignal.rise(&motionDetected);
 }
 pcSerialComStringWrite("The motion sensor has been activated\r\n");
}

void motionSensorDeactivate()
{
 motionSensorActivated = false;
 if (!pirState) {
 pirOutputSignal.rise(NULL);
 }
 pcSerialComStringWrite("The motion sensor has been deactivated\r\n");
}

324

A Beginner’s Guide to Designing Embedded System Applications

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

//=====[Implementations of private functions]==================================

static void motionDetected()
{
 pirState = ON;
 pirOutputSignal.rise(NULL);
 pirOutputSignal.fall(&motionCeased);
}

static void motionCeased()
{
 pirState = OFF;
 pirOutputSignal.fall(NULL);
 if (motionSensorActivated) {
 pirOutputSignal.rise(&motionDetected);
 }
}

Code 7.18 Details of the implementation of motion_sensor.cpp (Part 2/2).

As was mentioned earlier, when a rising edge is detected on pirOutputSignal (pin PG_0), the function
motionDetected() is called (recall the interrupt that is configured on lines 5 and 19). This function sets
pirState to ON (line 37) to keep track of the state of the PIR sensor, deactivates the rising edge interrupt
(line 38), and configures a falling edge interrupt that triggers the function motionCeased() (line 39).

The function motionCeased(), from lines 42 to 49, first sets pirState to OFF on line 44. Then, on
line 45, the falling edge interrupt is deactivated. On line 46, if motionSensorActivated is true, then
pirOutputSignal.rise(&motionDetected) on line 47 is used to configure an interrupt to be triggered by
a rising edge on PG_0 and to assign motionDetected() as its handler. In this way, it is established what
to do when pirOutputSignal becomes active again. Note that if motionSensorActivated is false, then the
rising interrupt is not enabled. Thus, the falling and the rising edge interrupts will be disabled and,
therefore, the motion sensor is deactivated. To activate the motion sensor, “i” can be pressed on the
PC keyboard. This causes motionSensorActivate() to be called, as was explained above.

In Code 7.19, the implementation of motion_sensor.h is shown. The prototypes of the public functions
are declared from lines 8 to 11. The implementation of these functions was shown in Code 7.18.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

//=====[#include guards - begin]===

#ifndef _MOTION_SENSOR_H_
#define _MOTION_SENSOR_H_

//=====[Declarations (prototypes) of public functions]=========================

void motionSensorInit();
bool motionSensorRead();
void motionSensorActivate();
void motionSensorDeactivate();

//=====[#include guards - end]===

#endif // _MOTION_SENSOR_H_

Code 7.19 Details of the implementation of motion_sensor.h.

Chapter 7 | DC Motor Driving using Relays and Interrupts

325

Code 7.20 shows the new implementation of the function eventLogUpdate(). It can be seen that lines 23
to 25 have been added in order to determine if the state of the PIR sensor has changed since the last
update. If a change has taken place, then the corresponding message is displayed on the serial terminal
(line 24), and the state of motionLastState is updated (line 26).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

void eventLogUpdate()
{
 bool currentState = sirenStateRead();
 eventLogElementStateUpdate(sirenLastState, currentState, "ALARM");
 sirenLastState = currentState;

 currentState = gasDetectorStateRead();
 eventLogElementStateUpdate(gasLastState, currentState, "GAS_DET");
 gasLastState = currentState;

 currentState = overTemperatureDetectorStateRead();
 eventLogElementStateUpdate(tempLastState, currentState, "OVER_TEMP");
 tempLastState = currentState;

 currentState = incorrectCodeStateRead();
 eventLogElementStateUpdate(ICLastState, currentState, "LED_IC");
 ICLastState = currentState;

 currentState = systemBlockedStateRead();
 eventLogElementStateUpdate(SBLastState ,currentState, "LED_SB");
 SBLastState = currentState;

 currentState = motionSensorRead();
 eventLogElementStateUpdate(motionLastState ,currentState, "MOTION");
 motionLastState = currentState;
}

Code 7.20 Details of the new implementation of the function eventLogUpdate().

In Table 7.21, the sections in which lines were added to event_log.cpp are shown. It can be seen that
motion_sensor.h has been included, and the private Boolean variable motionLastState has been declared
and initialized to OFF.

Table 7.21 Sections in which lines were added to event_log.cpp.

Section Lines that were added

Libraries #include "motion_sensor.h"

Declaration and initialization of private global
variables

static bool motionLastState = OFF;

The matrix keypad can be used in order to activate or deactivate the tracking of the PIR sensor. In
Table 7.22, the line added to user_interface.cpp to include the library motion_sensor.h is shown.

Table 7.22 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "motion_sensor.h"

In Code 7.21, the new implementation of userInterfaceMatrixKeypadUpdate() is shown. The new code
is from lines 27 to 34. If the system is not blocked (line 27), then if the “A” key is pressed (line 28),
motionSensorActivate() is called (line 29), and if the “B” key is pressed (line 30), motionSensorDeactivate()
is called (line 32).

326

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
26
27
28
29
30
31
32
33
34
35
36

static void userInterfaceMatrixKeypadUpdate()
{
 static int numberOfHashKeyReleased = 0;
 char keyReleased = matrixKeypadUpdate();

 if(keyReleased != '\0') {

 if(sirenStateRead() && !systemBlockedStateRead()) {
 if(!incorrectCodeStateRead()) {
 codeSequenceFromUserInterface[numberOfCodeChars] = keyReleased;
 numberOfCodeChars++;
 if (numberOfCodeChars >= CODE_NUMBER_OF_KEYS) {
 codeComplete = true;
 numberOfCodeChars = 0;
 }
 } else {
 if(keyReleased == '#') {
 numberOfHashKeyReleased++;
 if(numberOfHashKeyReleased >= 2) {
 numberOfHashKeyReleased = 0;
 numberOfCodeChars = 0;
 codeComplete = false;
 incorrectCodeState = OFF;
 }
 }
 }
 } else if (!systemBlockedStateRead()) {
 if(keyReleased == 'A') {
 motionSensorActivate();
 }
 if(keyReleased == 'B') {
 motionSensorDeactivate();
 }
 }
 }
}

Code 7.21 New implementation of userInterfaceMatrixKeypadUpdate().

Proposed Exercises

1. How can the code be changed in order to use more than one PIR sensor?

2. Why are the new module in this example and its public functions called motion_sensor instead of pir?

3. Why are the functions commandMotionSensorActivate() and commandMotionSensorDeactivate()
used in the module pc_serial_com instead of calling the public functions motionSensorActivate() and
motionSensorDeactivate() directly?

Answers to the Exercises

1. In motion_sensor.cpp, new InterruptIn objects must be declared and the corresponding functions to
handle each interrupt must be written.

2. Because in this way, any code calling the module can treat its functions as independent of the
implementation of the sensor. In this case a PIR sensor was used, but different technologies could
be used to provide the same functionality for the smart home system; in this scenario, the public
functions of the module would need to be rewritten, but their names would remain unchanged, as
would any calling functions.

Chapter 7 | DC Motor Driving using Relays and Interrupts

327

3. The functions commandMotionSensorActivate() and commandMotionSensorDeactivate() are used in
the module pc_serial_com to make the implementation similar to the implementation used in the
other commands.

Example 7.4: Use of the PIR Sensor as an Intruder Detection alarm

Objective

Trigger the alarm when an intruder is detected.

Summary of the Expected Behavior

The siren and the alarm are also triggered by the PIR sensor.

Test the Proposed Solution on the Board

Import the project “Example 7.4” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. Wave a hand over the PIR sensor. The siren and the strobe light will turn
on and off every 1000 milliseconds, and the display will show “Intruder Detected”. Deactivate the
alarm using the matrix keypad or the PC keyboard in the same way as in previous chapters. Press the
B1 User button (from now on it will be called “Fire alarm test button”). The siren and the strobe light
will turn on and off every 500 milliseconds, and the display will show “Fire Alarm Activated!”. Wave a
hand over the PIR sensor. The siren and the strobe light will turn on and off every 100 milliseconds.
The display will indicate “Fire Alarm Activated!” because during a fire the smoke is also registered as
movement by the PIR sensor.

nOTE: As discussed in the previous chapter, the on and off time of the siren and the
strobe light are not always 100 ms. In the next chapter, a technique will be introduced
to tackle this.

Discussion of the Proposed Solution

The proposed solution is based on the modification of several parts of the code and on new software
modules called alarm and intruder_alarm. The modifications are needed because in previous versions
of the code, the alarm was only related to the fire detection subsystem. The alarm module will be
responsible for checking if any of the alarm sources are active.

Implementation of the Proposed Solution

In Table 7.23, the sections in which lines were added to smart_home_system.cpp are shown. It can be
seen that alarm.h and intruder_alarm.h have been included.

328

A Beginner’s Guide to Designing Embedded System Applications

Table 7.23 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "alarm.h"

#include "intruder_alarm.h"

Code 7.22 shows the new implementation of the functions smartHomeSystemInit() and
smartHomeSystemUpdate(). It can be seen that the new functions alarmInit() and intruderAlarmInit() are
called on lines 8 and 10, respectively, and motionSensorInit() has been removed, since this function is
called by intruderAlarmInit(). The functions intruderAlarmUpdate() and alarmUpdate() are included in
smartHomeSystemUpdate() (lines 18 and 19).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

//=====[Implementations of public functions]===================================

void smartHomeSystemInit()
{
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
}

void smartHomeSystemUpdate()
{
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 7.22 New implementation of the function smartHomeSystemInit and smartHomeSystemUpdate.

The new module alarm is presented in Code 7.23, Code 7.24, Code 7.25, and Code 7.26. This module
contains functionality that was previously carried out by the fire_alarm module. In Code 7.23, in lines
3 to 12, the libraries used in this module are included. The variable alarmState on line 22 and the
private function alarmDeactivate() on line 26 are declared.

The strobe time of the siren and the strobe light, which was previously defined in the fire_alarm
module, is defined in this module after the modifications to the code. Additionally, the different
strobe times have new meanings. If only the intruder alarm is activated, the strobe time has a value
of 1000 milliseconds. If only the fire alarm is activated, then the strobe time has a value of 500
milliseconds. Finally, if both the intruder alarm and the fire alarm are activated, the strobe time has
a value of 100 milliseconds. These differences can be seen in the declaration of private #defines on
lines 16 to 18 and the implementations of the private function alarmStrobeTime() (lines 12 to 27 in
Code 7.25).

Chapter 7 | DC Motor Driving using Relays and Interrupts

329

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "alarm.h"
#include "siren.h"
#include "strobe_light.h"
#include "code.h"
#include "matrix_keypad.h"
#include "fire_alarm.h"
#include "intruder_alarm.h"

//=====[Declaration of private defines]==

#define STROBE_TIME_INTRUDER_ALARM 1000
#define STROBE_TIME_FIRE_ALARM 500
#define STROBE_TIME_FIRE_AND_INTRUDER_ALARM 100

//=====[Declaration and initialization of private global variables]============

static bool alarmState;

//=====[Declarations (prototypes) of private functions]========================

static void alarmDeactivate();

Code 7.23 Details of the implementation of alarm.cpp (Part 1/3).

The implementation of public and private functions is shown in Code 7.24. The function
alarmInit() (lines 3 to 7) is used to initialize the variable alarmState and the siren and strobe
light using its public functions. The deactivation of the alarm, which was previously included in
fireAlarmDeactivationUpdate(), has moved to the function alarmUpdate() (lines 10 to 30).

If a correct code is entered, then the function alarmDeactivate() is called (line 15). The function
alarmUpdate() also updates the strobe time of the siren and the strobe light by means of the functions
sirenUpdate() (line 19) and strobeLightUpdate() (line 20). Depending on the state of the alarm sources –
gas, over temperature and intruder detection (lines 20 to 23) – alarmState (line 26), sirenState (line 27),
and strobeLightState (line 28) are updated. Finally, the public function alarmStateRead() (lines 32 to 35)
returns the value of alarmState.

The private function alarmDeactivate() (lines 3 to 10 of Code 7.25) implements the functionality that
was previously located in fireAlarmDeactivate(), taking into account the new alarm source.

In Code 7.26, the implementation of alarm.h is shown. It can be seen that the prototypes of the public
functions are declared from lines 8 to 10.

330

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//=====[Implementations of public functions]===================================

void alarmInit()
{
 alarmState = OFF;
 sirenInit();
 strobeLightInit();
}

void alarmUpdate()
{
 if (alarmState) {

 if (codeMatchFrom(CODE_KEYPAD) ||
 codeMatchFrom(CODE_PC_SERIAL)) {
 alarmDeactivate();
 }

 sirenUpdate(alarmStrobeTime());
 strobeLightUpdate(alarmStrobeTime());

 } else if (gasDetectedRead() ||
 overTemperatureDetectedRead() ||
 intruderDetectedRead()) {

 alarmState = ON;
 sirenStateWrite(ON);
 strobeLightStateWrite(ON);
 }
}

bool alarmStateRead()
{
 return alarmState;
}

Code 7.24 Details of the implementation of alarm.cpp (Part 2/3).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

//=====[Implementations of private functions]==================================

static void alarmDeactivate()
{
 alarmState = OFF;
 sirenStateWrite(OFF);
 strobeLightStateWrite(OFF);
 intruderAlarmDeactivate();
 fireAlarmDeactivate();
}

static int alarmStrobeTime()
{
 if ((gasDetectedRead() || overTemperatureDetectedRead()) &&
 intruderDetectedRead()) {
 return STROBE_TIME_FIRE_AND_INTRUDER_ALARM;

 } else if (gasDetectedRead() || overTemperatureDetectedRead()) {
 return STROBE_TIME_FIRE_ALARM;

 } else if (intruderDetectedRead()) {
 return STROBE_TIME_INTRUDER_ALARM;

 } else {
 return 0;
 }
}

Code 7.25 Details of the implementation of alarm.cpp (Part 3/3).

Chapter 7 | DC Motor Driving using Relays and Interrupts

331

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _ALARM_H_
#define _ALARM_H_

//=====[Declarations (prototypes) of public functions]=========================

void alarmInit();
void alarmUpdate();
bool alarmStateRead();

//=====[#include guards - end]===

#endif // _ALARM_H_

Code 7.26 Details of the implementation of alarm.h.

The new module intruder_alarm is shown in Code 7.27 and Code 7.28. The reader will note that this
module is similar to the new implementation of the module fire_alarm, which is presented in Code 7.29,
Code 7.30, and Code 7.31. The main differences between these two modules are that fire_alarm has
two sensors (gas and temperature), intruder_alarm has only one sensor (PIR sensor), and fire_alarm has
a test button, which after the modifications in the code is called fireAlarmTestButton.

In Code 7.27, the libraries used in the intruder_alarm module are included on lines 3 to 7. Two
private global variables are declared and initialized on lines 11 and 12: intruderDetected and
intruderDetectorState. In Code 7.27 and Code 7.30, the implementation of the public functions of
the modules fire_alarm and intruder_alarm is shown. These two modules are described together to
emphasize their similarities.

The functions that end with “Init” (lines 3 to 6 of Code 7.27 and lines 3 to 8 of Code 7.30) call the
functions that initialize the sensors associated with the alarm. The functions that end with “Read”
(lines 30 to 38 of Code 7.27 and lines 34 to 52 of Code 7.30) return the values of private variables.
The functions that end with “Update” (lines 21 to 28 of Code 7.27 and lines 10 to 32 of Code 7.30)
read the sensors and update the variables that end with “Detected” (used to activate the alarm) and
“DetectorState”. Finally, the functions that end with “Deactivate” (lines 40 to 43 of Code 7.27 and lines
54 to 58 of Code 7.30) assign OFF to the variables that end with “Detected” in order to turn off the
alarm.

In Code 7.29, the libraries used in the new implementation of the fire_alarm module are included on
lines 3 to 11. It is important to note that the libraries code.h and matrix_keypad.h are no longer needed
after the modifications in this module. In the declaration of private #defines, the constants related to
the strobe time of the siren are removed. Also, due to the module modifications, the private functions
are removed in this new implementation.

The file headers of intruder_alarm and fire_alarm are shown in Code 7.28 and Code 7.31. It can be seen
that the prototypes of the public functions are declared (lines 8 to 13 in Code 7.28 and lines 8 to 16 in
Code 7.31).

332

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "intruder_alarm.h"
#include "motion_sensor.h"

//=====[Declaration and initialization of private global variables]============

static bool intruderDetected = OFF;
static bool intruderDetectorState = OFF;

//=====[Implementations of public functions]===================================

void intruderAlarmInit()
{
 motionSensorInit();
}

void intruderAlarmUpdate()
{
 intruderDetectorState = motionSensorRead();

 if (intruderDetectorState) {
 intruderDetected = ON;
 }
}

bool intruderDetectorStateRead()
{
 return intruderDetectorState;
}

bool intruderDetectedRead()
{
 return intruderDetected;
}

void intruderAlarmDeactivate()
{
 intruderDetected = OFF;
}

Code 7.27 Details of the implementation of intruder_alarm.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//=====[#include guards - begin]===

#ifndef _INTRUDER_ALARM_H_
#define _INTRUDER_ALARM_H_

//=====[Libraries]===

void intruderAlarmInit();
void intruderAlarmUpdate();
void intruderAlarmDeactivate();

bool intruderDetectorStateRead();
bool intruderDetectedRead();

//=====[#include guards - end]===

#endif // _INTRUDER_ALARM_H_

Code 7.28 Details of the implementation of intruder_alarm.h.

Chapter 7 | DC Motor Driving using Relays and Interrupts

333

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "fire_alarm.h"

#include "user_interface.h"
#include "date_and_time.h"
#include "temperature_sensor.h"
#include "gas_sensor.h"

//=====[Declaration of private defines]==

#define TEMPERATURE_C_LIMIT_ALARM 50.0

//=====[Declaration and initialization of public global objects]===============

DigitalIn fireAlarmTestButton(BUTTON1);

//=====[Declaration and initialization of private global variables]============

static bool gasDetected = OFF;
static bool overTemperatureDetected = OFF;
static bool gasDetectorState = OFF;
static bool overTemperatureDetectorState = OFF;

Code 7.29 Details of the new implementation of fire_alarm.cpp (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//=====[Implementations of public functions]===================================

void fireAlarmInit()
{
 temperatureSensorInit();
 gasSensorInit();
 fireAlarmTestButton.mode(PullDown);
}

void fireAlarmUpdate()
{
 temperatureSensorUpdate();
 gasSensorUpdate();

 overTemperatureDetectorState = temperatureSensorReadCelsius() >
 TEMPERATURE_C_LIMIT_ALARM;

 if (overTemperatureDetectorState) {
 overTemperatureDetected = ON;
 }

 gasDetectorState = !gasSensorRead();

 if (gasDetectorState) {
 gasDetected = ON;
 }

 if(fireAlarmTestButton) {
 overTemperatureDetected = ON;
 gasDetected = ON;
 }
}

bool gasDetectorStateRead()
{
 return gasDetectorState;

334

A Beginner’s Guide to Designing Embedded System Applications

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

}

bool overTemperatureDetectorStateRead()
{
 return overTemperatureDetectorState;
}

bool gasDetectedRead()
{
 return gasDetected;
}

bool overTemperatureDetectedRead()
{
 return overTemperatureDetected;
}

void fireAlarmDeactivate()
{
 overTemperatureDetected = OFF;
 gasDetected = OFF;
}

Code 7.30 Details of the new implementation of fire_alarm.cpp (Part 2/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

//=====[#include guards - begin]===

#ifndef _FIRE_ALARM_H_
#define _FIRE_ALARM_H_

//=====[Declarations (prototypes) of public functions]=========================

void fireAlarmInit();
void fireAlarmUpdate();
void fireAlarmDeactivate();

bool gasDetectorStateRead();
bool gasDetectedRead();

bool overTemperatureDetectorStateRead();
bool overTemperatureDetectedRead();

//=====[#include guards - end]===

#endif // _FIRE_ALARM_H_

Code 7.31 Details of the new implementation of fire_alarm.h.

Because there are two alarm sources, the display should show two different messages. In Code 7.32,
the new implementation of the function userInterfaceDisplayAlarmStateUpdate() of the user_interface
module is modified to account for this change. If the alarm is related to the gas detector or the
temperature sensor (line 3), then the message is the same as in previous examples (lines 4 to 25).
If the alarm is related to the intruder detector (line 26), then a new message is displayed: “Intruder
Detected” (lines 27 to 40). If both alarm sources are active, the display will show the fire alarm
message.

Chapter 7 | DC Motor Driving using Relays and Interrupts

335

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

static void userInterfaceDisplayAlarmStateUpdate()
{
 if ((gasDetectedRead()) || (overTemperatureDetectedRead())) {
 switch(displayFireAlarmGraphicSequence) {
 case 0:
 displayBitmapWrite(GLCD_fire_alarm[0]);
 displayFireAlarmGraphicSequence++;
 break;
 case 1:
 displayBitmapWrite(GLCD_fire_alarm[1]);
 displayFireAlarmGraphicSequence++;
 break;
 case 2:
 displayBitmapWrite(GLCD_fire_alarm[2]);
 displayFireAlarmGraphicSequence++;
 break;
 case 3:
 displayBitmapWrite(GLCD_fire_alarm[3]);
 displayFireAlarmGraphicSequence = 0;
 break;
 default:
 displayBitmapWrite(GLCD_ClearScreen);
 displayFireAlarmGraphicSequence = 0;
 break;
 }
 } else if (intruderDetectedRead()) {
 switch(displayIntruderAlarmGraphicSequence) {
 case 0:
 displayBitmapWrite(GLCD_intruder_alarm);
 displayIntruderAlarmGraphicSequence++;
 break;
 case 1:
 default:
 displayBitmapWrite(GLCD_ClearScreen);
 displayIntruderAlarmGraphicSequence = 0;
 break;
 }
 }
}

Code 7.32 New implementation of the function userInterfaceDisplayAlarmStateUpdate().

In Table 7.24, the sections in which lines were added to user_interface.cpp are shown. It can be seen
that alarm.h and intruder_alarm.h have been included. A file GLCD_intruder_alarm.h, which contains the
message that the display will show when an intruder is detected, is also included. The file GLCD_clear_
screen.h contains the values for a blank screen that were previously included in GLCD_intruder_alarm.h.

The private global variable displayIntruderAlarmGraphicSequence is used to make the message
appear on the display, and the variable name of displayAlarmGraphicSequence has been replaced by
displayFireAlarmGraphicSequence, as shown in Table 7.25.

Table 7.24 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "alarm.h"

#include "intruder_alarm.h"

#include "GLCD_intruder_alarm.h"

#include "GLCD_clear_screen.h"

Declaration and initialization of private global variables static int displayIntruderAlarmGraphicSequence = 0;

336

A Beginner’s Guide to Designing Embedded System Applications

Table 7.25 Variables that were renamed in user_interface.cpp.

Variable name in Example 7.3 Variable name in Example 7.4

displayAlarmGraphicSequence displayFireAlarmGraphicSequence

Proposed Exercise

1. How can the code be changed to activate the intruder alarm only when the PIR sensor is active for
more than four seconds?

Answer to the Exercise

1. The function intruderAlarmUpdate() should be modified. In Code 7.33, the proposed implementation
is shown. Because intruderAlarmUpdate() is called every 10 milliseconds, when intruderDetectorCount
reaches a value of 400, the PIR sensor has been active for roughly 4 seconds.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

void intruderAlarmUpdate()
{
 static int intruderDetectorCount = 0;

 intruderDetectorState = motionSensorRead();

 if (intruderDetectorState) {
 intruderDetectorCount++;
 } else {
 intruderDetectorCount = 0;
 }

 if (intruderDetectorCount > 400) {
 intruderDetected = ON;
 }
}

Code 7.33 New implementation of intruderAlarmUpdate() that solves the proposed exercise.

7.3 Under the Hood

7.3.1 Basic Principles of a Relay Module

In this chapter, a relay module was used to control a DC motor. Figure 7.12 shows a diagram of a
typical circuit that is used in a relay module. As was mentioned in subsection 7.2.1, the aim of this
circuit is to isolate the input (i.e., IN1 and 5 V) from the output (i.e., COM1, NC1, and NO1). It is also
designed to use an output of the microcontroller to drive IN1. This implies that IN1 can take only
three possible states: GND, 3.3 V, or unconnected, and is expected to drain or sink a current as small
as possible from the microcontroller.

For these reasons, the optocoupler shown in Figure 7.12 is used, as well as the optional JDVCC power
supply connection. When GND is applied to IN1, there will be a current established from VCC that
will go through R1, the LED inside the optocoupler, and LED1. In this way, LED1 will turn on, and the
LED inside the optocoupler will activate the transistor. This transistor will allow current to flow from

Chapter 7 | DC Motor Driving using Relays and Interrupts

337

JVDCC to R2 through the base (B) of the T1 transistor. In this way, the T1 transistor is activated,
which allows a current to flow between its collector terminal (C) and its emitter terminal (E). This
current activates the coil of the relay, which causes its internal switch to connect COM1 and NO1.

Figure 7.12 Diagram of a typical circuit that is used in a relay module.

Once IN1 is left unconnected, the optocoupler is unenergized, which causes the T1 transistor to turn
off and the current through the coil of the RL1 relay to be cut off. This makes the internal switch of the
relay move back via a spring in order to connect COM1 and NC1. It causes a high reverse voltage over
the terminals of the coil. In order to prevent this voltage from damaging the circuit, the D1 diode is put
in place, which prevents sparks from occurring.

TIP: In typical low-power applications, a jumper can be connected between VCC and
JDVCC in order to avoid the need for an extra power supply. Note that in this case, the
purpose of the optocoupler (i.e., to isolate the 5 V supply and the IN1 input from the
stage composed by R2, T1, and D1) is voided. In any case, the relay RL1 isolates the
output of the relay module (NO1, NC1, and COM1) from the rest of the circuit.

Proposed Exercise

1. How can a relay module be used to control an AC motor?

Answer to the Exercise

1. The proposed circuit connection is shown in Figure 7.13.

WaRnIng: The circuit shown in Figure 7.13 can be used with 110 or 220 V AC, but
special care must be taken when working with voltages above 50 V.

338

A Beginner’s Guide to Designing Embedded System Applications

Figure 7.13 Diagram of a typical circuit that is used to turn on and off an AC motor using a relay module.

7.4 Case Study

7.4.1 Smart Street Lighting

In this chapter, a PIR sensor was connected to the NUCLEO board, and a DC motor was controlled
using a relay module. This allowed a gate to be closed when intruders were detected. A smart
street lighting system, built with Mbed and containing some similar features, can be found in [4]. In
Figure 7.14, a diagram of the whole system is shown.

Figure 7.14 A diagram of the Smart Street Lighting system.

Chapter 7 | DC Motor Driving using Relays and Interrupts

339

The smart street lighting system provides advanced dimming and on/off schedules that can be
configured to optimize energy consumption during off-peak hours. In addition, using a built-in light
sensor, the light is able to automatically switch off when daylight is detected. The system also provides
fault detection and operator alerting via text or email, which allows for timely maintenance.

It might be noticed that the principle of operation of the light level sensor that is placed on each lamp
of the smart street lighting system is very similar to the principle of operation of the PIR sensor that
was used in this chapter. The lamps can be controlled using relay modules, such as the one used in this
chapter, or solid-state relays, depending on the specific features of the lamp and the control system.
Moreover, the smart street lighting system uses a set of tools to monitor and control the state of the
lamps over the internet, having behavior and resources that are very similar to the tools used in this
chapter.

nOTE: In the next chapter, a light level sensor will be included in the smart home
system.

Proposed Exercise

1. How can an AC lamp be turned on and off using a relay module?

Answer to the Exercise

1. The proposed circuit connection is shown in Figure 7.15. It can be seen that it is very similar to the
circuit used in Figure 7.13. Different AC-powered devices can be controlled using a relay module.

WaRnIng: The circuit shown in Figure 7.15 can be used with 110 or 220 V AC, but
special care must be taken when working with voltages above 50 V.

Figure 7.15 Diagram of a typical circuit that is used to turn on and off an AC lamp using a relay module.

340

A Beginner’s Guide to Designing Embedded System Applications

 References
[1] “Toy/Hobby DC Motor Pinout Wiring, Specifications, Uses Guide and Datasheet”. Accessed July

9, 2021.
https://components101.com/motors/toy-dc-motor

[2] “HC-SR501 PIR Sensor Working, Pinout & Datasheet”. Accessed July 9, 2021.
https://components101.com/sensors/hc-sr501-pir-sensor

[3] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[4] “Smart Street Lighting | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/smart-street-lighting/

http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/motors/toy-dc-motor
http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/sensors/hc-sr501-pir-sensor
https://components101.com/sensors/hc-sr501-pir-sensor
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/smart-street-lighting/
https://os.mbed.com/built-with-mbed/smart-street-lighting/

Advanced Time Management,
Pulse-Width Modulation, Negative
Feedback Control, and Audio
Message Playback

Chapter 8

342

A Beginner’s Guide to Designing Embedded System Applications

8.1 Roadmap

8.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect RGB LEDs to the NUCLEO board using digital output pins.

 n Describe how to connect a light sensor to the NUCLEO board using an analog input pin.

 n Develop programs to control the brightness of the RGB LED using pulse-width modulation.

 n Summarize the fundamentals of timers that are integrated into a typical microcontroller.

 n Implement time management on embedded systems using microcontroller timers.

 n Generate an audio message using pulse-width modulation.

 n Develop a simple negative feedback control system.

8.1.2 Review of Previous Chapters

In Chapter 3, the delay() function was used to vary the blinking rate of LED LD1 to indicate which
element had triggered the fire alarm. In that chapter, the behavior was implemented first by means
of a continuous delay (100 ms, 500 ms, or 1000 ms depending on the source of the alarm) and then
by a delay built up from a set of 10 ms delays, in order to improve the responsiveness of the program.
In this chapter, a new way of managing time intervals will be introduced, which will improve the
responsiveness even more.

8.1.3 Contents of This Chapter

In this chapter, the use of integrated timers that are found in a typical microcontroller is explained.
By means of these timers, time management will be implemented in order to control the behavior
of the system. It will be shown that time control based on integrated timers provides a precise and
responsive behavior in embedded system implementations.

Pulse-width modulation (PWM) is also introduced, by means of which the brightness level of an RGB
LED can be controlled. An RGB (red, green, and blue) LED allows for the implementation of a wide
variety of colors by appropriately combining the brightness level of each of the red, green, and
blue elements of the RGB LED. It will be explained how to obtain an audio signal (an analog output
voltage level that can be heard using headphones) by means of a PWM signal and an appropriate
low pass filter.

Finally, the fundamentals of control theory are introduced through an example wherein light is sensed
using a LDR (light-dependent resistor or photoresistor), and the brightness of an RGB LED is adjusted
using PWM in order to achieve the brightness level, which is set using a potentiometer.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

343

8.2 Analog Signal Generation with the NUCLEO Board

8.2.1 Connect an RGB LED, a Light Sensor, and an Audio Plug to the Smart Home System

In this chapter, the smart home system is provided with a decorative RGB light, a light sensor, and
the capability to playback an audio message that says, “Welcome to the Smart Home System.” A
conceptual diagram of this setup is shown in Figure 8.1. The aim of this setup is to introduce the use of
timers and the fundamentals of control theory.

The audio message and the signal to control the RGB light are generated using the PWM technique, as
will be discussed in the examples below. The LDR sensor is used to measure the RGB light in order to
be able to adjust its intensity to a value that is set using the potentiometer, which is now incorporated
in the Gate control panel (Figure 8.1).

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

House
outside

view

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

Speaker

Decorative RGB
ight intensityl

Decorative
RGB light

Light
sensor

Intruder larma

321

654

+

-

Red Green Blue
Decorative RGB ightl color

Gate Closing

Open

Close

Gate Opening

Light Intensity

Figure 8.1 The smart home system is now connected to an LCD display.

344

A Beginner’s Guide to Designing Embedded System Applications

Figure 8.2 shows the connections of the RGB LED [1], LDR light sensor [2], RC (resistor-capacitor) low
pass filter [3], and the headphones that are connected to the smart home system in this chapter.

NOTE: In the implementation detailed in this chapter, the speaker is replaced by
headphones, while the potentiometer that was connected in previous chapters is
used to control the RGB intensity.

NOTE: The buzzer is now connected to the pin PC_9. In the following pages it will be
explained why this is the case.

MQ-2
Gas sensor

-2MQ

GND

5V

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

RGB LED

(R
e

la
y

IN
2

)
d

(R
e

la
y

G
N

D
)

d(R
e

la
y

V
C

C
)

d

(R
e

la
y

IN
1

)
d

N
U

C
L

E
O

-F
4
2
9
Z

I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

MB-102

CN9

CN8

CN7CN10

GND

3V3

Potentiometer

P
E

3_

P
F

2
_

5V

GND

A1

Temperature
sensor

LM 35

3V3

5V
GND

GND

HV1HV2HV

LV

HV3

LV3 LV3 LV1

HV4

LV4 LV4 LV2

GND

GND

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

A0
PG 0_ 10KΩ

GND 5V

2
5
V

2
u
F

 2
2
0

2
5
V

2
u
F

 2
2
0

2
5
V

2
u
F

 2
2
0PIR

sensor

5V G
N

D

To igure 7F .4

(tput)PIR Ou

Red
GND

Blue

Green

P
E

1

2
_

(G
a

s)

P
F

9

_

P
F

7

_

P
F

8

_

P
G

1_

(D
ir
1

L
S

)

(D
ir
1

)

P
E

6_

(A
u

d
io

)

(D
ir

L
S

)
2

(D
ir

)
2

P
B

4

_

P
D

1

2
_

P
A

0_

(R
e

d
)

(B
lu

e
)

(G
re

e
n

)

A1

A2

LDR

L
35

M

P
C

9

_

Buzzer

5V

DO

1
0
3

A

B

C

D

87

1

4

2

5

3

6

9

0 #

Buzzer is now
connected
to PC_9

67891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

67891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

3V3

5V
GND

GND

4

44

1
0
3

3
2
F
4
2
9
Z

e
4

CN8

A0

Figure 8.2 The smart home system now has an RGB LED, a light sensor, and a circuit for audio playback.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

345

Figure 8.3 shows a diagram of the RGB LED connections and how to identify each of the pins of the
RGB LED. The 150 Ω resistors are used to limit the current through each of the LEDs. The red, blue,
and green LEDs are all built inside the package of the RGB LED.

Figure 8.3 Diagram of the connection of the RGB LED.

Turning the different LEDs on and off obtains the set of colors shown in Figure 8.4. If the light intensity
of each LED is modulated, a palette of millions of colors can be obtained. This behavior can be achieved
by using the pulse-width modulation (PWM) technique, which is explained in subsection 8.2.2.

Figure 8.4 Diagram of the light colors that result dependent on the LEDs that are turned on.

To test if the RGB LED is working, the .bin file of the program “Subsection 8.2.1.a” should be
downloaded from the URL available in [4] and loaded onto the NUCLEO board. The program should
vary the color of the RGB LED through the palette shown in Figure 8.4 and all the intermediate colors
as the button B1 USER is pressed. At the same time, the intensity of each of the LEDs of the RGB LED
is printed on the serial terminal on a scale from 0 to 1.

NOTE: In Figure 8.5 it can be seen that PB_4, PA_0, and PD_12 are associated with
PWM3/1, PWM2/1, and PWM4/1, respectively, which means PWM timer 3/channel
1, PWM timer 2/channel 1, and PWM timer 4/channel 1. By connecting each LED to a
different PWM timer, it is possible to control their intensities independently, as will be
shown in the examples below.

346

A Beginner’s Guide to Designing Embedded System Applications

NUCLEO
-F429ZI

32F429ZIT6U

ARM
7B776 VQ

PHL 7B 721

3e4

12000

K620Y

1
2

0
0

0

K
6

2
0

Y

1
2

0
0

0

K
6

2
0

Y

DGKYD
KMS-1102NL

1706C

S
T
M
3
2

F
1
0
3
C
B
T
6

e
3 9
3

7
0
1

G
H
2
1
8

C
H
N

S
T
8
9
0
C

G
K
7
1
7

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

10

11

12

13

14

15

PH_0

PD_0

PD_1

PG_0

PH_1

PF_2

PA_7

PF_10

PF_5

PF_3

PC_3

PC_0

30

29

28

27

26

16

25

15

24

14

23

13

22

12

21

11

20

10

19

9

18

17

16

5V

VIN

3.3V

IOREF

GND

GND

GND

NC

NC

UART2_RX

CAN1_TD

CAN1_ DR

ADC1/7

ADC1/3

ADC1/10

ADC1/13

ADC3/9

ADC3/15

ADC3/8

ADC3/5

NRST

PC_8

PC_9

PC_10

PC_11

PC_12

PD_2

PG_2

PG_3

GND

PD_7

PD_6

PD_5

PD_4

PD_3

PE_2

PE_4

PE_3

PF_7

PG_1

UART2_RX

UART2_ XT

UART _ X7 T

UART2_RTS

UART2_CTS

UART3_TX

UART3_RX

UART5_TX

UART5_RX

PA_3

SPI1_MOSI

SPI3_SCK

SPI2_SCK

SPI4_SCK

SPI5_SCK

SPI4_CS

SPI3_MISO

SPI3_MOSI

SPI3_MOSI

SPI2_MOSI

PWM1/1N

PWM2/4

PWM11/1

PWM3/3

I2C3_SDA PWM3/4

A0

A1

A2

A3

A4

A5

ADC3/6PF_8 SPI5_MISO PWM /13 1

ADC3/7PF_9 SPI5_MOSI PWM /14 1

PE_6 SPI4_MOSI PWM /29

PE_5 SPI4_MISO PWM /9 1

UART _TX6

UART _ X6 R

UART _ X1 T

UART _RTS3

UART _CTS3

UART _ X4 T

UART _ X8 R

UART _CTS2

UART _3 CTS

UART _TX6

UART _ X6 R

UART _TX7

UART _ X7 R

UART _ X3 R

UART _ X3 T

SPI4_SCK

SPI2_MISO

SPI1_MISO

SPI1_SCK

SPI1_CS

SPI2_CS

SPI4_CS

SPI4_MISO

SPI6_MOSI

SPI4_SCK

SPI4_MOSI

SPI2_SCK

SPI2_SCK

SPI2_MOSI

SPI1_MOSI

SPI1_CS

I2C1_SCLCAN2_TD

CAN2_RD

I2C2_SDA

I2C2_SCL

CAN2_TD

CAN2_RD

PWM2/1

PWM4/1

PWM4/1

PWM1/3N

PWM1/2

PWM1/3

PWM1/1

PWM1/1N

PWM1/2N

PWM1/3N

PWM1/4

PWM2/3

PWM2/4

PWM3/1

PWM2/2

PWM3/2

PWM3/2

PWM2/1

PWM3/1

PWM1/3N

PWM1/1N

PWM4/2

PWM1/2N

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

12

13

14

15

16

17

PD_12

PE_2

PD_11

PA_0

PB_0

PE_0

PB_4

PD_13

PA_4

PB_2

PB_3

PC_7

PB_5

PF_4

PA_15

PC_2

PB_12

PB_1

PB_13

PB_6

PB_15

20

30

19

29

33

34

18

28

32

17

27

31

16

26

15

25

14

24

13

23

12

22

11

21

20

19

18

GND

GND

GND

AGND

AVDD PF_13

PE_9

PE_11

PF_14

PE_13

PF_15

PG_14

PG_9

AVDD

PE_8

PE_7

GND

PE_10

PE_12

PE_14

PE_15

PB_10

PB_11

PC_6

ADC1/4

ADC1/9

ADC1/12

ADC3/14

LED1

ADC1/0

ADC1/8

DAC1/1

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

SPI1_SCK

SPI1_MISO

SPI2_CS

SPI1_MOSI

CAN1_RDI2C1_SCL

I2C1_SDA CAN1_TD

PWM3/1

PWM2/1

PWM1/1N

PWM4/3

PWM4/3

PWM4/4

PWM4/4

PB_8

PB_9

PA_5

PA_6

PA_7

PD_14

PD_15

PF_12

GND

ADC1/5

ADC1/6

ADC1/7

DAC1/2

Figure 8.5 ST Zio connectors of the NUCLEO-F429ZI board.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

347

Figure 8.6 shows the connections of a circuit used to sense light intensity by means of an LDR. This
component varies its resistance depending on the amount of light sensed. In this way, the voltage at
the analog input A2 varies as the light intensity over the LDR varies.

Figure 8.6 Diagram of the connection of the LDR.

TIP: The LDR pins are identical, so the LDR can be connected either way around.

Figure 8.7 shows the RC circuit that is used to obtain the analog audio signal from a digital signal at
pin PE_6 by using PWM (associated to PWM9/2, as can be seen in Figure 8.5). The resistor R5 and the
capacitor C1 make up a low pass filter. Subsection 8.2.2 explains how this setup works.

GND

C1
10 nF

P _E 6

L R G

Audio Jack
J1

Audio plug (3.5 mm)

47 KΩ

R5

Violet: 7

Gold: 5%
tolerance

Ye 4llow:

Orange: x1000

Typical K47 Ω
resistor

103
First and second
digits of value: 10

Third digit multiplier:
x10

Value is in pF

3

Typical nF10
capacitor

Figure 8.7 Diagram of the connection of the low pass filter and the audio jack.

TIP: If the components shown in Figure 8.7 are not available, then the values of R5
and C1 can be modified without noticeably degrading the audio signal. For example, a
39 KΩ or 56 KΩ resistor can be used for R5, while a 4.7 nF or 22 nF capacitor can be
used for C1. The power dissipation of the resistors and the capacitor voltage rate are
not relevant because of the low current and low voltage of this application.

To test if the LDR and the low pass filter are working properly, the .bin file of the program “Subsection
8.2.1.b” should be downloaded from the URL available in [4] and loaded onto the NUCLEO board. Plug
headphones into the audio jack, and an audio message “Welcome to the smart home system” should
be heard just after the NUCLEO board powers up. To listen to the message again, reset the NUCLEO
board by means of the Reset B2 button.

348

A Beginner’s Guide to Designing Embedded System Applications

NOTE: The audio level is not very loud. To get a louder audio level, an audio amplifier
should be used.

TIP: Ignore all the other elements of the setup during the proposed test (Alarm LED,
display, etc.).

Also, as the knob of the potentiometer is turned, the set point of the brightness level is modified. The
set point is indicated by a message on the serial terminal where the reading of the potentiometer
is shown on a scale from 0 to 1 (it is indicated as “SP”, as shown in Figure 8.8). The program uses the
LDR to sense the light intensity. The reading of the LDR is shown on a scale from 0 to 1 (Figure 8.8).
When the light that impinges on the LDR is blocked, the reading shown on the serial terminal should
diminish.

NOTE: Example 8.5 will explain in detail the concept of set point and how the
brightness of the RGB LED can be controlled by means of the readings of the
potentiometer and the LDR, as in the conceptual diagram shown on Figure 8.1.

SP: 0.7369 | LDR: 0.7046
SP: 0.7374 | LDR: 0.7151
SP: 0.7361 | LDR: 0.7232
SP: 0.7352 | LDR: 0.7342
SP: 0.7369 | LDR: 0.7384

Figure 8.8 Information shown on the serial terminal when program “Subsection 8.2.1.b” is running.

It was mentioned in Example 6.5 that the function displayBitmapWrite() requires sending hundreds of
bytes of data to the graphical display, which may interfere with the time management of the strobe
light and the siren implemented by means of LD1 and the buzzer, respectively. Due to this, when gas
and over temperature are detected, the time the siren and the strobe light are on and off is not always
100 ms as expected. This problem is addressed in this chapter by means of using PWM to control the
siren and the strobe light.

In order to use the PWM technique to control the siren and the strobe light, it should be noted in
Figure 8.5 that PB_0 is connected to LED1 of the NUCLEO board (the one labeled as LD1 that is
used to mock the strobe light). It should also be noted that PB_0 is associated with PWM1/2N. This
means that the strobe light (LD1) can be controlled using channel 2 of PWM timer 1 (the N stands for
inverted, which means that the true state is implemented with 0 V).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

349

In Figure 8.5, it can be seen that the pin PE_10 that was used in previous chapters to activate the
buzzer (which simulates the siren) is also related to PWM1/2N. In this way, if PWM timer 1 is used to
control LD1 and the buzzer, then both will be driven by the same signal. In this particular case this is
a problem, because LD1 is turned off by placing a low state on this LED, while the buzzer is turned off
by placing a high state on the corresponding pin. In other words, it will not be possible to turn off both
LD1 and the buzzer at the same time using the PWM1/2N signal to control both elements. Therefore,
a different PWM timer should be used to control the siren, because the connection of LD1 cannot be
modified.

In Table 8.1, it can be seen that all of the PWM timers available in Figure 8.5 are already occupied. In
order to solve this problem, alternative peripheral instances must be used to assign a PWM timer to the
buzzer.

Table 8.1 Summary of the PWM timers that are already in use or occupied by other functionalities.

PWM timer Used by Pin PWM used

1 LD1 PB_0 PWM1/2N

2 RGB LED (G) PA_0 PWM2/1

3 RGB LED (R) PB_4 PWM3/1

4 RGB LED (B) PD_12 PWM4/1

5 Not available in Figure 8.5 – –

6 Not available in Figure 8.5 – –

7 Not available in Figure 8.5 – –

8 Not available in Figure 8.5 – –

9 Audio playback PE_6 PWM9/2

10 Not available in Figure 8.5 – –

11 Button Dir2LS PF_7 –

12 Not available in Figure 8.5 – –

13 Button Dir2 PF_8 –

14 Button Dir1 PF_9 –

Alternative peripheral instances are explained in [5]. The idea is that all pins are defined in the
PinNames.h file of each board. For example, the pins corresponding to the NUCLEO-F429ZI board can
be found in [6]. Code 8.1 shows the first part of this file. It can be seen that alternative possibilities
that use other hardware peripheral instances are mentioned. In particular, it is highlighted that these
alternative possibilities can be used as any other “normal” pin and that these pins are not displayed on
the board pinout image shown in Figure 8.5.

350

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

//==
// Notes
//
// - The pins mentioned Px_y_ALTz are alternative possibilities which use other
// HW peripheral instances. You can use them the same way as any other “normal”
// pin (i.e. PwmOut pwm(PA_7_ALT0);). These pins are not displayed on the board
// pinout image on mbed.org.
//
// - The pins which are connected to other components present on the board have
// the comment “Connected to xxx”. The pin function may not work properly in this
// case. These pins may not be displayed on the board pinout image on mbed.org.
// Please read the board reference manual and schematic for more information.
//
// - Warning: pins connected to the default STDIO_UART_TX and STDIO_UART_RX pins are
// commented
// See https://os.mbed.com/teams/ST/wiki/STDIO for more information.
//
//==

Code 8.1 Notes on the PinNames.h file of the NUCLEO-F429ZI board.

Code 8.2 and Code 8.3 show the section of PinNames.h regarding PWM pins. For example, on line 4
of Code 8.2, it can be seen that PA_0 is related to PWM2 and channel 1 (channel 1 is indicated by
the 1 that is the penultimate value of line 4), which is used to control the green LED of the RGB LED
(see Figure 8.3). This “normal” functionality of PA_0 is shown in Figure 8.5. In line 1 of Code 8.3, it
can be seen that PB_0 is related to PWM1 and channel 2, with inverted behavior (ultimate value 1 of
line 1). Inverted behavior means that a logic true is set by a 0 V value, as was explained above. This
functionality is also shown on Figure 8.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

//*** PWM ***

MSTD_CONSTEXPR_OBJ_11 PinMap PinMap_PWM[] = {
 {PA_0, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 1, 0)},
 {PA_1, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 2, 0)},
 {PA_2, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 3, 0)},
 {PA_2_ALT0, PWM_9, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM9, 1, 0)},
 {PA_3, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 4, 0)},
 {PA_3_ALT0, PWM_9, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM9, 2, 0)},
 {PA_5, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 1, 0)},
 {PA_5_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 1, 1)},
 {PA_6, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 1, 0)},
 {PA_6_ALT0, PWM_13, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM13, 1, 0)},
 {PA_7, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 1, 1)},
 {PA_7_ALT0, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 2, 0)},
 {PA_7_ALT1, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 1, 1)},
 {PA_7_ALT2, PWM_14, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM14, 1, 0)},
 {PA_8, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 1, 0)},
 {PA_9, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 2, 0)},
 {PA_10, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 3, 0)},
 {PA_11, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 4, 0)},
 {PA_15, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 1, 0)},

Code 8.2 Notes on the PinNames.h file of the NUCLEO-F429ZI board.

It can be seen that PWM functionality is available as alternative functionality in more pins indicated as
Px_y_ALTz, which are not shown in Figure 8.5. For example, PWM timer 8 is available in PA_5_ALT0 (line
11 of Code 8.2). However, PA_5 is already occupied by the SPI1_SCK functionality used by the graphical

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

351

LCD display and, therefore, PA_5 cannot be used without interfering with the display. PWM timer 8
is also available in PA_7_ALT1 (line 20 of Code 8.2), but PA_7 is used by SPI1_MOSI, also used by the
graphical LCD display. PWM timer 8 is also available in PB_0_ALT1, PB_1_ALT1, PB_14_ALT0, PB_15_
ALT0, PC_6_ALT0, PC_7_ALT0, PC_8_ALT0, and PC_9_ALT0 (Code 8.3). Some of these pins are not being
used, as, for example, PC_9. For this reason, the buzzer is connected to PC_9 (see Figure 8.2). In the
program code in the examples, a PWM object will be created and assigned to PC_9_ALT0. In this way,
this pin will be associated with PWM8/4 (PWM timer 8/channel 4), as can be seen in line 32 of Code 8.3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
43
44
45
46
47
48
49
50

 {PB_0, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 4, 1)},
 {PB_0_ALT0, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 3, 0)},
 {PB_0_ALT1, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 2, 1)},
 {PB_1, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 3, 1)},
 {PB_1_ALT0, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 4, 0)},
 {PB_1_ALT1, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 3, 1)},
 {PB_3, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 2, 0)},
 {PB_4, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 1, 0)},
 {PB_5, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 2, 0)},
 {PB_6, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 1, 0)},
 {PB_7, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 2, 0)},
 {PB_8, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 3, 0)},
 {PB_8_ALT0, PWM_10, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM10, 1, 0)},
 {PB_9, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 4, 0)},
 {PB_9_ALT0, PWM_11, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM11, 1, 0)},
 {PB_10, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 3, 0)},
 {PB_11, PWM_2, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM2, 4, 0)},
 {PB_13, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 1, 1)},
 {PB_14, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 2, 1)},
 {PB_14_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 2, 1)},
 {PB_14_ALT1, PWM_12, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM12, 1, 0)},
 {PB_15, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 3, 1)},
 {PB_15_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 3, 1)},
 {PB_15_ALT1, PWM_12, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM12, 2, 0)},
 {PC_6, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 1, 0)},
 {PC_6_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 1, 0)},
 {PC_7, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 2, 0)},
 {PC_7_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 2, 0)},
 {PC_8, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 3, 0)},
 {PC_8_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 3, 0)},
 {PC_9, PWM_3, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM3, 4, 0)},
 {PC_9_ALT0, PWM_8, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM8, 4, 0)},
 {PD_12, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 1, 0)},
 {PD_13, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 2, 0)},
 {PD_14, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 3, 0)},
 {PD_15, PWM_4, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF2_TIM4, 4, 0)},
 {PE_5, PWM_9, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM9, 1, 0)},
 {PE_6, PWM_9, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM9, 2, 0)},
 {PE_8, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 1, 1)},
 {PE_9, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 1, 0)},
 {PE_10, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 2, 1)},
 {PE_11, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 2, 0)},
 {PE_12, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 3, 1)},
 {PE_13, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 3, 0)},
 {PE_14, PWM_1, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF1_TIM1, 4, 0)},
 {PF_6, PWM_10, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM10, 1, 0)},
 {PF_7, PWM_11, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF3_TIM11, 1, 0)},
 {PF_8, PWM_13, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM13, 1, 0)},
 {PF_9, PWM_14, STM_PIN_DATA_EXT(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF9_TIM14, 1, 0)},
 {NC, NC, 0}
};

Code 8.3 Notes on the PinNames.h file of the NUCLEO-F429ZI board.

352

A Beginner’s Guide to Designing Embedded System Applications

TIP: To augment the strobe light functionality, an optional external high-brightness LED can be
connected by means of a transistor, as shown in Figure 8.9. This high-brightness LED cannot
be connected directly to a NUCLEO board pin, as the NUCLEO board pin cannot provide the
current that the LED needs to turn on at its maximum brightness. For this reason, transistor T1
is used, which acts as a controlled switch allowing the higher current to flow through the high-
brightness LED when the NUCLEO board pin is set to 3.3 V, and blocking the current through
the high-brightness LED when the NUCLEO board pin is set to 0 V.

Note that this circuit is activated with high state and deactivated with low state, the same logic
as the NUCLEO board LD1 LED, which is internally connected to the PB_0 pin. Therefore, if
the NUCLEO board pin of this circuit is connected to the PB_0 pin of the NUCLEO board, then
the high-brightness LED will turn on and off concurrently with the NUCLEO board LD1 LED
without needing to modify the code and with a much higher brightness.

The resistor RB is used to limit the current sourced from the NUCLEO board pin. The resistor
RC is used to limit the current flow through the high-brightness LED. The brightness of the
high-brightness LED can be augmented by reducing the value of RC. This should be done with
caution, however, because if the value used is too low, then the high-brightness LED or the
transistor T1 (or both) could be damaged.

The maximum current that the BC548C transistor can handle is 100 mA. If a high-brightness
LED that demands a higher current is used, then a transistor with a higher maximum current
should be used.

If a brighter light is needed for a specific application, the circuit introduced in Figure 7.12
can be used, with the proviso that the warning detailed in Chapter 7 is heeded. It is not
recommended to switch a relay more than once a second or its lifetime can be severely
reduced.

5V

GND

RB

1K

100 Ω

NUCLEO
board

pin
T1

B

C

E

C = Collector
B = Base
E = Emitter

BC548C

C

B
E

548CBC

a

c

High-brightness
LED

a c

a

c +

+

-
-

a
+

c
-

Top viewLeft view

LED details

a = anode (+)
c = cathode (-)

Black: 0

Gold: 5%
tolerance

Brown: 1

Red: x100
Black: 0

Gold: 5%
tolerance

Brown: 1

Brown: x10 RC

Figure 8.9 Connection of a high-brightness LED to a NUCLEO board pin (optional).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

353

8.2.2 Fundamentals of Timers, Pulse-Width Modulation, and Audio Message Playback

This subsection explains how to use the timers of a microcontroller to generate periodic events. Also,
based on these periodic events, it is explained how to use the pulse-width modulation (PWM) technique
to control the brightness of an LED and to generate audio signals.

Timers are the basis of time management in microcontrollers. The delay() function used in Chapter 3 is
based on the timers of the microcontroller. In that case, no other code was able to be executed when
delay() was taking place. This led to the code having low responsiveness, and it was concluded that in
order to overcome this issue, it was better to implement a long delay by means of many consecutive
short delays. This allowed some other tasks to be attended to in the gaps between these short delays.
However, this solution results in inaccurate durations of the delays and many calls to the delay
functions.

Implementing the delays with a timer linked to an interrupt service routine means that the processor
can do other things during the counting. This leads to more accurate and repeatable delays.

In Figure 8.10, a basic diagram of a timer is shown. On the left, it can be seen that the clock signal can
be internal or external, which is configured by writing into special locations of the microcontroller
internal memory known as registers that control the multiplexor selection. Then, there is a “Down
Counter” module that decrements its value each time there is a pulse of the selected clock. Once this
counter reaches zero, an interrupt can be triggered, depending on the control configuration. The timer
can also be configured to automatically load the “Initial value” and restart the count from there each
time it reaches zero.

Figure 8.10 Simplified diagram of a timer.

In this way, the periodic signal can be configured by changing the “Initial value” register. The current
value of the timer count can be read any time by means of reading the “Current value” register.

Microcontrollers’ timers can be used to generate periodic signals, known as tickers, as shown in
Figure 8.11. The period of the tickers can be adjusted by writing into special registers. There are also
registers that are used to enable or disable the tickers, as well as to enable or disable interrupts related
to the tickers’ signals. When writing programs in the C/C++ language, the compiler takes care of all the
details regarding the registers.

354

A Beginner’s Guide to Designing Embedded System Applications

Figure 8.11 Periodic signal generated by the built-in timer of a microcontroller.

Most timers inside microcontrollers are also equipped with special hardware that allows easy
implementation of PWM. To see what PWM is and how it can be used to dim the brightness of an LED,
download the .bin file of the program “Subsection 8.2.2” from [4] and load it onto the NUCLEO board.
The program will make LEDs LD1, LD2, and LD3 turn on and off according to the time intervals shown
in Table 8.2. When pressing button Dir1, connected to pin PF_9, it will be clear to see when the LEDs
are on and off. In the case of pressing button Dir2, connected to pin PF_8, it will still be appreciated
when they are on and off. However, in the case of pressing button Dir2LS, connected to pin PF_7, it will
not be appreciated when the LEDs are on or off. Instead, the LEDs will appear to shine just a little bit
(exactly 20% of full brightness, given that they are on 2 ms and off 8 ms; 2 ms / (2 ms + 8ms) = 0.2).

Table 8.2 On time and off time of the LEDs used in the program “Subsection 8.2.2”.

 Button On time Off time

Button Dir1 connected to pin PF_9 200 milliseconds 800 milliseconds

Button Dir2 connected to pin PF_8 20 milliseconds 80 milliseconds

Button Dir2LS connected to pin PF_7 2 milliseconds 8 milliseconds

Figure 8.12 shows how the brightness of an LED varies as the duty cycle of the signal varies.

In frame (d) of Figure 8.13, the waveform of the message “Welcome to the Smart Home System”
is shown. This message lasts for three seconds, and the amplitude of the analog signal is sampled
regularly (every 125 μs, or 8000 samples per second). Each sample is quantized to the nearest value
within a range of digital steps with 8-bit resolution. This is known as pulse-code modulation (PCM) and
is the standard form of digital audio in computers, compact discs, digital telephony, and other digital
audio applications.

In this way, an array of 24,000 values (samples) named welcomeMessageData is obtained. In the (a)
frame of Figure 8.13, four consecutive values of this array are shown: [n], [n+1], [n+2], and [n+3]. In
this example these values are 191, 127, 64, and 120, which corresponds to 75%, 50%, 25%, and 47%
of the maximum value obtainable using the 8 bits resolution (255).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

355

Figure 8.12 Example of the variation of LED brightness by the pulse width modulation technique.

Frame (c) of Figure 8.13 shows how the duty cycle of a PWM digital signal is modulated using the data
of welcomeMessageData, normalized to 255. The period of the signal is 25 μs, so every 5 periods (125
μs), its duty cycle is adjusted according to a new value read from the welcomeMessageData array.

Frame (b) of Figure 8.13 shows the analog output signal that is obtained when the signal shown in (b) is
filtered by the low pass filter introduced in Figure 8.7. It can be seen that in this way a 500 μs piece out
of the three seconds’ length audio signal is obtained.

By means of repeating this process for the whole set of values of the array welcomeMessageData, the
message “Welcome to the smart home system” is obtained.

NOTE: The value of VMax (in frame (c) of Figure 8.13) varies depending on several
factors.

356

A Beginner’s Guide to Designing Embedded System Applications

Figure 8.13 Detail on how the “Welcome to the smart home system” message is generated using PWM.

Example 8.1: Implementation of PWM to Control the Brightness of an RGB LED

Objective

Introduce an implementation of pulse-width modulation (PWM).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

357

Summary of the Expected Behavior

The brightness of the RGB LED should change as the knob of the potentiometer is rotated.

Test the Proposed Solution on the Board

Import the project “Example 8.1” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Rotate the knob of the potentiometer gradually and observe how the RGB
LED turns on in a white color, and its brightness changes as the knob of the potentiometer is rotated.

Discussion of the Proposed Solution

The proposed solution is based on three new modules: light_system, responsible for updating the duty
cycle of the PWM; bright_control, responsible for generating the PWM signal with a given duty cycle;
and light_level_control, responsible for the reading of the potentiometer. In this way, if the element that
controls the light level is changed (for instance, using a set of buttons instead of the potentiometer),
only the light_level_control module needs to be changed, and there is no need to update the light_system
module.

Implementation of the Proposed Solution

The initialization of the light_system module is done at the beginning of the program by means of a call
to the function lightSystemInit() from smartHomeSystemInit(), as can be seen on line 10 of Code 8.4.
The function lightSystemUpdate() is included in smartHomeSystemUpdate() (line 21) to periodically
update the duty cycle of the PWM signal. In order to implement these calls, the library light_system.h is
included in smart_home_system.cpp, as can be seen in Table 8.3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void smartHomeSystemInit()
{
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 lightSystemInit();
}

void smartHomeSystemUpdate()
{
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 lightSystemUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 8.4 New implementation of the functions smartHomeSystemInit and smartHomeSystemUpdate.

358

A Beginner’s Guide to Designing Embedded System Applications

Table 8.3 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "light_system.h"

The assignment of the sirenPin was modified for the reasons that were discussed on section 8.2.1. This
change is summarized on Table 8.4.

Table 8.4 Lines that were modified in siren.cpp.

Section Previous line New line

Declaration and initialization of public
global objects

DigitalOut sirenPin(PE_10); DigitalOut sirenPin(PC_9);

The new module light_system is shown in Code 8.5 and Code 8.6. The libraries that are included
are shown from lines 3 to 7 of Code 8.5. On line 11, a private global variable name dutyCycle is
declared and initialized. From lines 15 to 18, the implementation of the function lightSystemInit() is
shown. This calls the function that initializes the module bright_control (line 17). Finally, the function
lightSystemUpdate(), which reads the value of the potentiometer (line 22) and updates the duty cycle
for each of the three LEDs (lines 24 to 26), is shown.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

//=====[Libraries]===

#include "arm_book_lib.h"

#include "light_system.h"
#include "bright_control.h"
#include "light_level_control.h"

//=====[Declaration and initialization of private global variables]============

static float dutyCycle = 0.5;

//=====[Implementations of public functions]===================================

void lightSystemInit()
{
 brightControlInit();
}

void lightSystemUpdate()
{
 dutyCycle = lightLevelControlRead();

 setDutyCycle(RGB_LED_RED, dutyCycle);
 setDutyCycle(RGB_LED_GREEN, dutyCycle);
 setDutyCycle(RGB_LED_BLUE, dutyCycle);
}

Code 8.5 Details of the implementation of light_system.cpp.

In Code 8.6, the implementation of light_system.h is shown. It can be seen that the data type
lightSystem_t and the prototypes of the public functions are declared on lines 8 to 12 and 16 to 17,
respectively.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

359

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//=====[#include guards - begin]===

#ifndef _LIGHT_SYSTEM_H_
#define _LIGHT_SYSTEM_H_

//=====[Declaration of public data types]======================================

typedef enum {
 RGB_LED_RED,
 RGB_LED_GREEN,
 RGB_LED_BLUE,
} lightSystem_t;

//=====[Declarations (prototypes) of public functions]=========================

void lightSystemInit();
void lightSystemUpdate();

//=====[#include guards - end]===

#endif // _LIGHT_SYSTEM_H_

Code 8.6 Details of the implementation of light_system.h.

The implementation of the new module light_level_control is presented in Code 8.7. The libraries
that are included are shown from lines 3 to 6. On line 10, the public global object potentiometer,
related to the potentiometer connected to the analog input 2 (A0), is declared. The reader may
notice that the public functions implementation (from lines 14 to 21) is quite simple. In this case,
no average is applied to the analog signal samples as the voltage is more stable than when reading
sensors; this was explained in Chapter 3. In this case, a small variation in the reading due to noise
has no significant impact on the system behavior. The functions lightLevelControlInit() (line 14) and
lightLevelControlUpdate() (line 16) are kept to maintain the same structure used as, for example, in the
temperature_sensor module.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

//=====[Libraries]===

#include "arm_book_lib.h"

#include "smart_home_system.h"
#include "light_level_control.h"

//=====[Declaration and initialization of public global objects]===============

AnalogIn potentiometer(A0);

//=====[Implementations of public functions]===================================

void lightLevelControlInit() { }

void lightLevelControlUpdate() { }

float lightLevelControlRead()
{
 return potentiometer.read();
}

//=====[Implementations of private functions]==================================

Code 8.7 Details of the implementation of light_level_control.cpp.

360

A Beginner’s Guide to Designing Embedded System Applications

Code 8.8 shows the implementation of light_level_control.h. The prototypes of the public functions are
declared from lines 8 to 10.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _LIGHT_LEVEL_CONTROL_H_
#define _LIGHT_LEVEL_CONTROL_H_

//=====[Declarations (prototypes) of public functions]=========================

void lightLevelControlInit();
void lightLevelControlUpdate();
float lightLevelControlRead();

//=====[#include guards - end]===

#endif // _LIGHT_LEVEL_CONTROL_H_

Code 8.8 Details of the implementation of light_level_control.h.

The new module bright_control is presented in Code 8.9, Code 8.10, and Code 8.11. From lines 3 to 8
of Code 8.9, the libraries used in this module are included. A private definition of LEDS_QUANTITY is
declared on line 12. On line 18, the public global array object RGBLed of DigitalOut, relating to each of
the colors of the RGB LED (PB_4 for red, PA_0 for green, and PD_12 for blue), is declared. These LEDs
represent the lights of the smart home system that will be controlled using PWM, with a duty cycle
that will be defined by the light level control (represented by a potentiometer).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

//=====[Libraries]===

#include "arm_book_lib.h"

#include "bright_control.h"

#include "light_level_control.h"
#include "pc_serial_com.h"

//=====[Declaration of private defines]==

#define LEDS_QUANTITY 3

//=====[Declaration and initialization of public global objects]===============

DigitalOut RGBLed[] = {(PB_4), (PA_0), (PD_12)};

Ticker tickerBrightControl;

//=====[Declaration and initialization of private global variables]============

static int onTime[LEDS_QUANTITY];
static int offTime[LEDS_QUANTITY];

static int tickRateMsBrightControl = 1;
static int tickCounter[LEDS_QUANTITY];

static float periodSFloat[LEDS_QUANTITY];

//=====[Declarations (prototypes) of private functions]========================

static void setPeriod(lightSystem_t light, float period);
static void tickerCallbackBrightControl();

Code 8.9 Details of the implementation of bright_control.cpp (Part 1/2).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

361

In this example, the PWM signal will be generated using a timer interrupt associated with a ticker. The
private global object tickerBrightControl of type ticker is declared on line 18. The global variables that
account for the on and off time of the RGB LEDs are declared on lines 22 and 23, respectively. On line
25, tickRateMsBrightControl is declared and initialized, which will be used to set the tick rate to 1 ms to
control the brightness.

Line 26 declares an array of int to account for the ticks of the ticker. On line 28, an array of type float
is declared to store the period of each LED expressed in seconds. Each position of this array stores the
period of each of the RGB LEDs’ PWM signals.

The prototype of the function setPeriod() is declared on line 32. This function will be used to set the
period of each of the LEDs. The callback function tickerCallbackBrightControl() is declared on line 33.
This callback function will be called once every millisecond, as discussed below.

Code 8.10 shows the implementation of brightControlInit(). In line 5, tickerBrightControl is configured.
The first parameter indicates that tickerCallbackBrightControl() must be called at the tick rate expressed
in seconds by the second parameter, (float) tickRateMsBrightControl) / 1000.0. The variable is divided by
1000 and the result is cast to a float in order to get 0.001 (which corresponds to one millisecond).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//=====[Implementations of public functions]===================================

void brightControlInit()
{
 tickerBrightControl.attach(tickerCallbackBrightControl,
 ((float) tickRateMsBrightControl) / 1000.0);

 setPeriod(RGB_LED_RED, 0.01f);
 setPeriod(RGB_LED_GREEN, 0.01f);
 setPeriod(RGB_LED_BLUE, 0.01f);

 setDutyCycle(RGB_LED_RED, 0.5f);
 setDutyCycle(RGB_LED_GREEN, 0.5f);
 setDutyCycle(RGB_LED_BLUE, 0.5f);
}

void setDutyCycle(lightSystem_t light, float dutyCycle)
{
 onTime[light] = int ((periodSFloat[light] * dutyCycle) * 1000);
 offTime[light] = int (periodSFloat[light] * 1000) - onTime[light];
}

//=====[Implementations of private functions]==================================

void setPeriod(lightSystem_t light, float period)
{
 periodSFloat[light] = period;
}

static void tickerCallbackBrightControl()
{
 int i;

 for (i = 0 ; i < LEDS_QUANTITY ; i++) {
 tickCounter[i]++;
 if (RGBLed[i].read() == ON) {

362

A Beginner’s Guide to Designing Embedded System Applications

37
38
39
40
41
42
43
44
45
46
47
48
49

 if(tickCounter[i] > onTime[i]) {
 tickCounter[i] = 1;
 if (offTime[i]) RGBLed[i] = OFF;

 }
 } else {
 if(tickCounter[i] > offTime[i]) {
 tickCounter[i] = 1;
 if (onTime[i]) RGBLed[i] = ON;
 }
 }
 }
}

Code 8.10 Details of the implementation of bright_control.cpp (Part 2/2).

For all three LEDs, a period of 10 milliseconds (0.01 f) is set from lines 8 to 10 using the private
function setPeriod(). An initial duty cycle of 50% (0.5 f) is set from lines 12 to 14, using the public
function setDutyCycle().

The function setDutyCycle() is shown on lines 17 to 21 of Code 8.10. This function receives a
parameter named light of type lightSystem_t, defined in light_system.h (Code 8.6), and a float named
dutyCycle. Because the handler of tickerBrightControl is called once a millisecond, the duty cycle needs
to be converted from a percentage to a time expressed in milliseconds. This implies a truncation that
affects the PWM signal accuracy and resolution. To set the on time, the period defined for each of the
LEDs is multiplied in line 19 by the duty cycle received as a parameter. Because the period is defined in
seconds, it is multiplied by 1000 to get the value in milliseconds. Finally, the result is cast (forcing one
data type to be converted into another) to an int variable. On line 20, the off time is computed.

NOTE: The cast operation removes the decimals of the result, so if the result
before the cast is 2.9, the value after the cast will be 2. As the reader may notice,
this operation degrades the accuracy and resolution of the PWM signal. In the next
example, a way to tackle this issue will be presented.

In Code 8.10, the implementation of setPeriod() is shown on lines 25 to 28. This function receives a
parameter named light of type lightSystem_t and a float named period. The value of period is stored in
the position light of the array periodSFloat declared on line 28 of Code 8.9.

The implementation of the callback function tickerCallbackBrightControl() is shown on lines 30 to 49
of Code 8.10. A for loop is used to update the state of the pins connected to each of the colors of the
RGB LEDs. The array tickCounter counts the milliseconds elapsed since the last transition (low to high
or high to low) of each color and is incremented in each call (line 35). If the RGB LED color pin being
compared is ON (line 36), then the tickCounter is compared with the stored value of onTime (line 37).
Otherwise, when it is OFF (line 42), the tickCounter is compared with the stored value of offTime (line
43). When these values are reached, the tickCounter is reset (lines 38 and 44), and the corresponding
RGB LED color pin is toggled if the duration of the next time (onTime or offTime) is different from zero
(lines 39 and 45).

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

363

In Code 8.11, the implementation of bright_control.h is shown. In this particular case, a library is
included on line 8, because the user-defined type lightSystem_t that is used in this module is defined in
light_system.h. It can be seen that the prototypes of the public functions are declared on lines 16 and 17.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//=====[#include guards - begin]===

#ifndef _BRIGHT_CONTROL_H_
#define _BRIGHT_CONTROL_H_

//=====[Libraries]===

#include "light_system.h"

//=====[Declarations (prototypes) of public functions]=========================

void brightControlInit();
void setDutyCycle(lightSystem_t light, float dutyCycle);

//=====[#include guards - end]===

#endif // _BRIGHT_CONTROL_H_

Code 8.11 Details of the implementation of bright_control.h.

The initialization of the light_level_control module is added to userInterfaceInit() (line 14 of Code 8.12),
and lightLevelControlUpdate() is called in userInterfaceUpdate() (line 23 of Code 8.12). As described,
these functions have no functionality and are only included to maintain the same structure as in
previous implementations. In order to make these calls, the library bright_control.h is included in
user_interface.cpp, as can be seen in Table 8.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void userInterfaceInit()
{
 gateOpenButton.mode(PullUp);
 gateCloseButton.mode(PullUp);

 gateOpenButton.fall(&gateOpenButtonCallback);
 gateCloseButton.fall(&gateCloseButtonCallback);

 incorrectCodeLed = OFF;
 systemBlockedLed = OFF;
 matrixKeypadInit(SYSTEM_TIME_INCREMENT_MS);
 userInterfaceDisplayInit();

 lightLevelControlInit();
}

void userInterfaceUpdate()
{
 userInterfaceMatrixKeypadUpdate();
 incorrectCodeIndicatorUpdate();
 systemBlockedIndicatorUpdate();
 userInterfaceDisplayUpdate();
 lightLevelControlUpdate();
}

Code 8.12 New implementation of the functions userInterfaceInit and userInterfaceUpdate.

364

A Beginner’s Guide to Designing Embedded System Applications

Table 8.5 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "bright_control.h"

Proposed Exercises

1. How can the PWM resolution be improved?

2. Why is the function setPeriod() private to the module bright_control, while the function setDutyCycle()
is public?

Answers to the Exercises

1. A larger period could be defined for each of the PWM signals (lines 8 to 10 of Code 8.10). The
period can be increased until the LED starts blinking instead of changing its brightness; then the
maximum period has been reached.

2. The function setPeriod() is private because it is only used by the module bright_control, and the
function setDutyCycle() is public because it is used by other modules.

Example 8.2: Implementation of PWM using the PwmOut Class

Objective

Use the PwmOut class to control the period and duty cycle of a PWM signal.

Summary of the Expected Behavior

The behavior should be the same as the previous example, although the reader may notice that the
accuracy and the resolution of the PWM signal is improved.

Test the Proposed Solution on the Board

Import the project “Example 8.2” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Rotate the knob of the potentiometer gradually, and observe how the RGB
LED turns on in a white color, and its brightness changes as the knob of the potentiometer is rotated.

Discussion of the Proposed Solution

The proposed solution modifies the module bright_control to use the PwmOut object.

Implementation of the Proposed Solution

In Code 8.13, the new implementation of bright_control.cpp is shown. An object of the class PwmOut
is used in line 11 to declare each of the pins connected to the colors of the RGB LED PwmOut. The
reader should notice that in Code 8.9, an array of DigitalOut objects was used to declare the pins
connected to the RGB LED.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

365

As a consequence, the reader may notice that the code is now far simpler than in the previous
example, by comparing Code 8.13 with Code 8.9 and Code 8.10. In Table 8.6, the sections in which
lines were removed from bright_control.cpp are shown. Functions in which lines were removed are
shown on Table 8.7. All the other lines remain the same. The implementations of setPeriod() and
setDutyCycle() are reduced in Code 8.13 to a single line. In setDutyCycle(), the duty cycle is set on line
32, and in setPeriod(), the period is configured on line 39. The on and off times of the PWM signal are
not truncated in this implementation, so the accuracy and resolution are improved.

Table 8.6 Sections in which lines were removed from bright_control.cpp.

Section Lines that were removed

Declaration of private defines #define LEDS_QUANTITY 3

Declaration and initialization of public global objects Ticker tickerBrightControl;

Declaration and initialization of private global variables static int onTime[LEDS_QUANTITY];

static int offTime[LEDS_QUANTITY];

int tickRateMSBrightControl = 1;

static int tickCounter[LEDS_QUANTITY];

static float periodSFloat[LEDS_QUANTITY];

Declarations (prototypes) of private functions static void tickerCallbackBrightControl();

Table 8.7 Functions in which lines were removed from bright_control.cpp.

Section Lines that were removed

void brightControlInit() atickerBrightControl.attach(

 tickerCallbackBrightControl,

((float) tickRateMSBrightControl) / 1000.0);

static void tickerCallbackBrightControl() This function was removed.

The reader may also notice that because of modularization and the use of functions, a different
implementation of PWM was introduced, and the only changes were in the bright control module. All
the other new modules presented in the previous examples are abstracted from the way the PWM is
implemented.

366

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

//=====[Libraries]===

#include "arm_book_lib.h"

#include "bright_control.h"

#include "light_level_control.h"

//=====[Declaration and initialization of public global objects]===============

PwmOut RGBLed[] = {(PB_4), (PA_0), (PD_12)};

//=====[Declaration and initialization of private global variables]============

static void setPeriod(lightSystem_t light, float period);

//=====[Implementations of public functions]===================================

void brightControlInit()
{
 setPeriod(RGB_LED_RED, 0.01f);
 setPeriod(RGB_LED_GREEN, 0.01f);
 setPeriod(RGB_LED_BLUE, 0.01f);

 setDutyCycle(RGB_LED_RED, 0.5);
 setDutyCycle(RGB_LED_GREEN, 0.5);
 setDutyCycle(RGB_LED_BLUE, 0.5);
}

void setDutyCycle(lightSystem_t light, float dutyCycle)
{
 RGBLed[light].write(dutyCycle);
}

//=====[Implementations of private functions]==================================

static void setPeriod(lightSystem_t light, float period)
{
 RGBLed[light].period(period);
}

Code 8.13 Details of the implementation of bright_control.cpp.

Proposed Exercise

1. How can the code of Examples 8.1 and 8.2 be compared, considering that their functionality is the
same?

Answer to the Exercise

1. In Example 8.1, the PWM technique was implemented using a ticker object and a set of functions
that were implemented, like setDutyCycle(), setPeriod(), and tickerCallbackBrightControl(). In
Example 8.2, the object PwmOut was used, which simplifies the usage of the PWM technique.
Having implemented all the details in Example 8.1 helps in understanding what is going on in the
background when the object PwmOut is used.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

367

Example 8.3: Control the Siren and Strobe Light using PWM

Objective

Use the PwmOut object to control the siren and the strobe light.

Summary of the Expected Behavior

The behavior should be the same as the previous example, although the problem related to the timing
of the strobe light and siren not always being 100 ms is addressed.

Test the Proposed Solution on the Board

Import the project “Example 8.3” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Activate the motion sensor and the fire alarm, and observe that the time for
which the strobe light and siren are on and off is always 100 ms.

Discussion of the Proposed Solution

The proposed solution modifies the module siren and strobe_light to use the PwmOut object. In
this way, there is not a DigitalOut object that is set on and off, as was the case in the previous
implementation, but a PwmOut object that is configured to alternate its state over time or to remain
in the off state all the time, depending on the value of the variable sirenState.

Implementation of the Proposed Solution

The proposed new implementation of siren.cpp and strobe_light.cpp is shown in Code 8.14 and
Code 8.15, respectively. These two implementations are identical except for the use of siren and
strobeLight in each case, and the value of the parameter in lines 24 and 46.

On line 12, the object is changed from DigitalOut to PwmOut. In order to avoid changes in other
files, the prototypes of all the public functions were left unmodified. When the function sirenUpdate()
or strobeLightUpdate() is called, the current strobe time (declared on line 17: currentStrobeTime) is
compared with the received parameter (line 40). If they are different, then the received strobe time is
multiplied by two (because the strobe time accounts only for the time the alarm must be in ON state,
while sirenPin.period is the sum of the time it is on and off), converted from milliseconds to seconds
(i.e., multiplied by 1000), and cast to float to set the PWM period (line 41). Then, the PWM signal duty
cycle is set to 50% (Iine 42), and the current strobe time is updated (line 43).

In order to turn off the siren, a 100% duty cycle is set (line 46 of Code 8.14) because the buzzer is
turned off with a high state signal. In the case of the strobe light, a 0% duty cycle is set (line 46 of
Code 8.15) because LD1 is turned off with a low state signal. The current strobe time is set to 0 in both
programs (line 47). The initialization of each module is implemented by setting a period of 1 second
(line 23) with a 100% duty cycle (line 24) (in the case of the strobe light, a 0% duty cycle is set).

368

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "siren.h"

#include "smart_home_system.h"

//=====[Declaration and initialization of public global objects]===============

PwmOut sirenPin(PC_9_ALT0);

//=====[Declaration and initialization of private global variables]============

static bool sirenState = OFF;
static int currentStrobeTime = 0;

//=====[Implementations of public functions]===================================

void sirenInit()
{
 sirenPin.period(1.0f);
 sirenPin.write(1.0f);
}

bool sirenStateRead()
{
 return sirenState;
}

void sirenStateWrite(bool state)
{
 sirenState = state;
}

void sirenUpdate(int strobeTime)
{
 if(sirenState) {
 if (currentStrobeTime != strobeTime) {
 sirenPin.period((float) strobeTime * 2 / 1000);
 sirenPin.write(0.5f);
 currentStrobeTime = strobeTime;
 }
 } else {
 sirenPin.write(1.0f);
 currentStrobeTime = 0;
 }
}

Code 8.14 Details of the new implementation of siren.cpp.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

369

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "strobe_light.h"

#include "smart_home_system.h"

//=====[Declaration and initialization of public global objects]===============

PwmOut strobeLight(LED1);

//=====[Declaration and initialization of private global variables]============

static bool strobeLightState = OFF;
static int currentStrobeTime = 0;

//=====[Implementations of public functions]===================================

void strobeLightInit()
{
 strobeLight.period(1.0f);
 strobeLight.write(0.0f);
}

bool strobeLightStateRead()
{
 return strobeLightState;
}

void strobeLightStateWrite(bool state)
{
 strobeLightState = state;
}

void strobeLightUpdate(int strobeTime)
{
 if(strobeLightState) {
 if (currentStrobeTime != strobeTime) {
 strobeLight.period((float) strobeTime * 2 / 1000);
 strobeLight.write(0.5f);
 currentStrobeTime = strobeTime;
 }
 } else {
 strobeLight.write(0.0f);
 currentStrobeTime = 0;
 }
}

Code 8.15 Details of the new implementation of strobe_light.cpp.

370

A Beginner’s Guide to Designing Embedded System Applications

Example 8.4: Adjustment of the Color of the Decorative RGB LED

Objective

Upgrade the code to allow independent control of each LED.

Summary of the Expected Behavior

The color of the decorative RGB LED is configured using the matrix keypad.

Test the Proposed Solution on the Board

Import the project “Example 8.4” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Rotate the knob of the potentiometer and set the maximum brightness of
the RGB LED. Press button 4 five times on the matrix keypad and observe how gradually the red color
of the RGB LED turns off. Press button 5 five times on the matrix keypad and observe how gradually
the green color of the RGB LED turns off. Press button 6 five times on the matrix keypad and observe
how gradually the blue color of the RGB LED turns off. Now press buttons 1, 2, and 3 several times
in order to see how the red, green, and blue colors of the RGB LED turn on. Rotate the knob of the
potentiometer to see that the light color of the RGB LED remains unchanged, while the brightness
increases and decreases.

NOTE: Buttons 1 through 6 of the matrix keypad are only available to use for this
functionality when the alarm is OFF.

Discussion of the Proposed Solution

The proposed solution modifies only the modules user_interface and light_system. An independent
factor for each color is introduced in order to multiply the duty cycle that is configured using the
potentiometer. In this way, each color can be varied independently.

Implementation of the Proposed Solution

In Code 8.16, the new implementation of the function userInterfaceMatrixKeypadUpdate() is shown. A
new set of options is included using the if statement from lines 34 to 51. In each of these options, the
function lightSystemBrightnessChangeRGBFactor() is called with all the possible combinations of colors
and true or false.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

371

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

static void userInterfaceMatrixKeypadUpdate()
{
 static int numberOfHashKeyReleased = 0;
 char keyReleased = matrixKeypadUpdate();

 if(keyReleased != '\0') {

 if(alarmStateRead() && !systemBlockedStateRead()) {
 if(!incorrectCodeStateRead()) {
 codeSequenceFromUserInterface[numberOfCodeChars] = keyReleased;
 numberOfCodeChars++;
 if (numberOfCodeChars >= CODE_NUMBER_OF_KEYS) {
 codeComplete = true;
 numberOfCodeChars = 0;
 }
 } else {
 if(keyReleased == '#') {
 numberOfHashKeyReleased++;
 if(numberOfHashKeyReleased >= 2) {
 numberOfHashKeyReleased = 0;
 numberOfCodeChars = 0;
 codeComplete = false;
 incorrectCodeState = OFF;
 }
 }
 }
 } else if (!systemBlockedStateRead()) {
 if(keyReleased == 'A') {
 motionSensorActivate();
 }
 if(keyReleased == 'B') {
 motionSensorDeactivate();
 }
 if(keyReleased == '1') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_RED, true);
 }
 if(keyReleased == '2') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_GREEN, true);
 }
 if(keyReleased == '3') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_BLUE, true);
 }
 if(keyReleased == '4') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_RED, false);
 }
 if(keyReleased == '5') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_GREEN, false);
 }
 if(keyReleased == '6') {
 lightSystemBrightnessChangeRGBFactor(RGB_LED_BLUE, false);
 }
 }
 }
}

Code 8.16 Details of the new implementation of userInterfaceMatrixKeypadUpdate().

372

A Beginner’s Guide to Designing Embedded System Applications

In order to make these calls, the library light_system.h is included in user_interface.cpp, as can be seen in
Table 8.8.

Table 8.8 Sections in which lines were added to user_interface.cpp.

Section Lines that were added

Libraries #include "light_system.h"

The new implementation of the function lightSystemUpdate() is shown in Code 8.17. On lines 5 to 7, the
function setDutyCycle() now includes an independent brightness factor for each color. These variables
are declared and initialized to 0.5 f in light_system.cpp, as can be seen in Table 8.9.

The new function lightSystemBrightnessChangeRGBFactor() is shown in Code 8.17. Depending on the
value of the parameters light and state, the brightness factor of each color is increased or decreased by
0.1. If statements are used to keep the brightness factor values between 0 and 1. The prototype of this
function is included in light_system.h, as shown in Table 8.10.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

void lightSystemUpdate()
{
 dutyCycle = lightLevelControlRead();

 setDutyCycle(RGB_LED_RED, brightnessRGBLedRedFactor*dutyCycle);
 setDutyCycle(RGB_LED_GREEN, brightnessRGBLedGreenFactor*dutyCycle);
 setDutyCycle(RGB_LED_BLUE, brightnessRGBLedBlueFactor*dutyCycle);
}

void lightSystemBrightnessChangeRGBFactor(lightSystem_t light, bool state)
{
 switch(light) {
 case RGB_LED_RED:
 if (state) brightnessRGBLedRedFactor+=0.1;
 else brightnessRGBLedRedFactor-=0.1;
 if (brightnessRGBLedRedFactor > 1) brightnessRGBLedRedFactor=1.0;
 if (brightnessRGBLedRedFactor < 0) brightnessRGBLedRedFactor=0.0;
 break;
 case RGB_LED_GREEN:
 if (state) brightnessRGBLedGreenFactor+=0.1;
 else brightnessRGBLedGreenFactor-=0.1;
 if (brightnessRGBLedGreenFactor > 1) brightnessRGBLedGreenFactor=1.0;
 if (brightnessRGBLedGreenFactor < 0) brightnessRGBLedGreenFactor=0.0;
 break;
 case RGB_LED_BLUE:
 if (state) brightnessRGBLedBlueFactor+=0.1;
 else brightnessRGBLedBlueFactor-=0.1;
 if (brightnessRGBLedBlueFactor > 1) brightnessRGBLedBlueFactor=1.0;
 if (brightnessRGBLedBlueFactor < 0) brightnessRGBLedBlueFactor=0.0;
 break;
 default:
 break;
 }
}

Code 8.17 Details of the new implementation of lightSystemUpdate() and the implementation of lightSystemBrightnessChangeRGBFactor().

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

373

Table 8.9 Sections in which lines were added to light_system.cpp.

Section Lines that were added

Declaration and initialization of private global
variables

static float brightnessRGBLedRedFactor = 0.5f;

static float brightnessRGBLedGreenFactor = 0.5f;

static float brightnessRGBLedBlueFactor = 0.5f;

Table 8.10 Sections in which lines were added to light_system.h.

Section Lines that were added

Declarations (prototypes) of public functions void lightSystemBrightnessChangeEnable(lightSystem_t

light, bool state);

Proposed Exercises

1. How many different colors can be obtained by means of the implemented functionality?

2. How can the number of obtainable colors be increased?

Answers to the Exercises

1. Each color factor can take 11 intensity values (from 0.0 to 1.0). Therefore, 11 × 11 × 11 = 1331
different colors can be obtained.

2. By means of modifying the 0.1 factor that is used in lightSystemBrightnessChangeRGBFactor(). For
example, if this value is changed to 0.05, then 21 × 21 × 21 = 9621 different colors can be obtained.

Example 8.5: Use of the Light Sensor Reading to Control the RGB LED

Objective

Introduce the basics of a negative feedback control.

Summary of the Expected Behavior

The brightness of the RGB LEDs is governed by the LDR reading.

NOTE: The LDR should be placed as close as possible to the RGB LED, and ambient
light should be reduced as much as possible.

Test the Proposed Solution on the Board

Import the project “Example 8.5” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Set the potentiometer to mid-way through its range. Change the lighting
conditions of the LDR. Observe how the RGB LED responds to these changes.

374

A Beginner’s Guide to Designing Embedded System Applications

WARNING: If the RGB LED does not respond as expected, it is recommended to wait
a few seconds until the system stabilizes. If after waiting a few seconds the problem
is not solved, in the Proposed Exercises subsection an implementation will be shown
that will allow the reader to understand what is happening.

Discussion of the Proposed Solution

The proposed solution is based on a new module called ldr_sensor and the implementation of a negative
feedback control system. The potentiometer is used to establish a set point in the range of 0 to 1, and
the light intensity is measured by means of the LDR circuit introduced in Figure 8.6, obtaining a value
in the range of 0 to 1. The duty cycle of the RGB LED is increased or decreased in order to make the
reading of the LDR sensor as similar as possible to the set point established using the potentiometer.

Implementation of the Proposed Solution

A new module called ldr_sensor is created, with its implementation shown in Code 8.18 and Code 8.19.
Because the implementation is similar to the module light_level_sensor, no explanation will be included.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//=====[Libraries]===

#include "arm_book_lib.h"

#include "smart_home_system.h"
#include "ldr_sensor.h"

//=====[Declaration and initialization of public global objects]===============

AnalogIn LDR(A2);

//=====[Implementations of public functions]===================================

void ldrSensorInit() { }

void ldrSensorUpdate() { }

float ldrSensorRead()
{
 return LDR.read();
}

Code 8.18 Details of the implementation of ldr_sensor.cpp.

In Code 8.8, the implementation of light_level_control.h is shown. It can be seen that the prototypes of
the public functions are declared in lines 14 to 16.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

375

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _LDR_SENSOR_H_
#define _LDR_SENSOR_H_

//=====[Declarations (prototypes) of public functions]=========================

void ldrSensorInit();
void ldrSensorUpdate();
float ldrSensorRead();

//=====[#include guards - end]===

#endif // _LDR_SENSOR_H_

Code 8.19 Details of the implementation of ldr_sensor.h.

In Code 8.20, the new implementation of the function lightSystemUpdate() is shown. The only
difference appears on lines 3 and 4, where a negative feedback control system is implemented. The
basics of negative feedback control theory are explained in the Under the Hood section. For now, it is
enough to explain that the difference between the reading of the LDR sensor and the set point (line 4)
is multiplied by a gain factor (line 5) and added to the previous value of the duty cycle. In this way, the
duty cycle is increased or decreased until the difference between the LDR sensor reading and the set
point becomes negligible.

Note that if the set point or the LDR sensor reading is modified (for example, the potentiometer knob
is rotated), then the difference changes, so the duty cycle is modified again in order to reduce this
difference.

In order to make the call to LDRSensorRead(), the library ldr_sensor.h is included in light_system.cpp, as
can be seen in Table 8.11. In the same table, a variable named lightSystemLoopGain is declared and
initialized.

1
2
3
4
5
6
7
8
9

void lightSystemUpdate()
{
 dutyCycle = dutyCycle + lightSystemLoopGain
 * (lightLevelControlRead() - ldrSensorRead());

 setDutyCycle(RGB_LED_RED, brightnessRGBLedRedFactor*dutyCycle);
 setDutyCycle(RGB_LED_GREEN, brightnessRGBLedGreenFactor*dutyCycle);
 setDutyCycle(RGB_LED_BLUE, brightnessRGBLedBlueFactor*dutyCycle);
}

Code 8.20 Details of the new implementation of the function lightSystemUpdate().

Table 8.11 Sections in which lines were added to light_system.cpp.

Section Lines that were added

Libraries #include "ldr_sensor.h"

Declaration and initialization of private global
variables

static float lightSystemLoopGain = 0.01;

376

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercises

1. How can the code be modified to monitor the variables related to the negative feedback control
system?

2. How can the duty cycle value be limited to the range 0 to 1, in order to improve the system
behavior?

Answers to the Exercises

1. Lines 3, 4, and 13 to 34 could be added to the function lightSystemUpdate(), as shown in Code 8.21.
Ten positions were assigned to str (line 4) for safety reasons because dutyCycle is not limited in size,
as discussed below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

void lightSystemUpdate()
{
 static int i = 0;
 char str[10];

 dutyCycle = dutyCycle + lightSystemLoopGain
 * (lightLevelControlRead() - ldrSensorRead());

 setDutyCycle(RGB_LED_RED, brightnessRGBLedRedFactor*dutyCycle);
 setDutyCycle(RGB_LED_GREEN, brightnessRGBLedGreenFactor*dutyCycle);
 setDutyCycle(RGB_LED_BLUE, brightnessRGBLedBlueFactor*dutyCycle);

 if (i > 100) {
 i=0;

 pcSerialComStringWrite("SP: ");
 sprintf(str, "%0.4f", lightLevelControlRead());
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("LDR: ");
 sprintf(str, "%0.4f", ldrSensorRead());
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("Duty: ");
 sprintf(str, "%0.4f", dutyCycle);
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("Added: ");
 sprintf(str, "%0.4f", lightSystemLoopGain
 * (lightLevelControlRead() - ldrSensorRead()));
 pcSerialComStringWrite(str);
 pcSerialComStringWrite("\r\n");
 }
 i++;
}

Code 8.21 Details of the new implementation of the function lightSystemUpdate().

In this way, an output similar to the one presented in Figure 8.14 should appear on the serial terminal.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

377

NOTE: The line numbers in Figure 8.14 have been added for pedagogical purposes
only.

WARNING: Ambient light should be reduced as much as possible when testing this
program.

In Figure 8.14, as shown in Code 8.21, SP stands for set point (the reading of the potentiometer), LDR
shows the reading of the LDR, Duty shows the dutyCycle (where 0 stands for 0% and 1 for 100%), and
Added shows the value added in each call of the variable dutyCycle.

NOTE: These parameters are shown once every 100 calls of lightSystemUpdate()
(approximately once every second), as defined on line 12 of Code 8.21.

There are some interesting things to highlight in the output presented in Figure 8.14:

 n From lines 1 to 5, the loop appears to be stable despite the noise of the LDR reading.

 n From lines 6 to 11, the LDR is exposed to external light. This can be identified by an increase in
its value. The negative feedback control system tries to compensate for this change by reducing
dutyCycle, but because there are no limits, starting from line 8 the duty cycle moves into negative
values.

WARNING: Duty cycles cannot have negative values. The negative values are a
consequence of the implementation of the negative feedback control system. The
interface PwmOut assigns 0 in these cases.

 n From lines 12 to 21, the LDR is not exposed to external light. This can be identified by a decrease
in its value. The negative feedback control system is able to minimize the error, and the duty cycle
presents values between 0 and 1 starting from line 17.

 n From lines 21 to 27, the LDR is again exposed to external light, and the potentiometer is turned
to the extremes of its rotation. The negative feedback control system tries to compensate for this
change by increasing dutyCycle but, again because there are no limits, starting from line 23 the duty
cycle takes values bigger than 1.

WARNING: Duty cycles cannot have values beyond 100%. Values beyond 1 are a
consequence of the implementation of the negative feedback control system. The
interface PwmOut assigns 1 in these cases.

378

A Beginner’s Guide to Designing Embedded System Applications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

SP: 0.2369 | LDR: 0.2046 | Duty: 0.2678 | Added: 0.0010

SP: 0.2374 | LDR: 0.1951 | Duty: 0.3121 | Added: 0.0010

SP: 0.2361 | LDR: 0.1832 | Duty: 0.3605 | Added: 0.0002

SP: 0.2352 | LDR: 0.2042 | Duty: 0.4100 | Added: 0.0001

SP: 0.2369 | LDR: 0.1954 | Duty: 0.4613 | Added: -0.0017

SP: 0.2354 | LDR: 0.4303 | Duty: 0.3605 | Added: -0.0032

SP: 0.2381 | LDR: 0.5067 | Duty: 0.1212 | Added: -0.0021

SP: 0.2374 | LDR: 0.4281 | Duty: -0.0811 | Added: -0.0019

SP: 0.2369 | LDR: 0.4300 | Duty: -0.2743 | Added: -0.0019

SP: 0.2342 | LDR: 0.4313 | Duty: -0.4704 | Added: -0.0020

SP: 0.2347 | LDR: 0.4379 | Duty: -0.6724 | Added: -0.0020

SP: 0.2352 | LDR: 0.0525 | Duty: -0.8133 | Added: 0.0018

SP: 0.2359 | LDR: 0.0364 | Duty: -0.6107 | Added: 0.0020

SP: 0.2359 | LDR: 0.0344 | Duty: -0.4080 | Added: 0.0020

SP: 0.2357 | LDR: 0.0371 | Duty: -0.2055 | Added: 0.0020

SP: 0.2369 | LDR: 0.0371 | Duty: -0.0041 | Added: 0.0020

SP: 0.2386 | LDR: 0.1438 | Duty: 0.1236 | Added: 0.0014

SP: 0.2371 | LDR: 0.1683 | Duty: 0.2022 | Added: 0.0012

SP: 0.2364 | LDR: 0.1768 | Duty: 0.2594 | Added: 0.0011

SP: 0.2376 | LDR: 0.1766 | Duty: 0.3355 | Added: 0.0002

SP: 0.2357 | LDR: 0.1766 | Duty: 0.4040 | Added: -0.0017

SP: 0.9990 | LDR: 0.4965 | Duty: 0.7392 | Added: 0.0071

SP: 0.9961 | LDR: 0.5026 | Duty: 1.2705 | Added: 0.0050

SP: 0.9949 | LDR: 0.5021 | Duty: 1.7722 | Added: 0.0050

SP: 0.9988 | LDR: 0.5023 | Duty: 2.2741 | Added: 0.0050

SP: 0.9993 | LDR: 0.5016 | Duty: 2.7758 | Added: 0.0050

SP: 0.9978 | LDR: 0.5023 | Duty: 3.2778 | Added: 0.0049

Figure 8.14 Output of serial terminal generated by proposed example 8.4.

2. The duty cycle values can be limited within the 0 to 1 range by means of including lines 9 and 10
shown in Code 8.22. This implementation is a first step towards saturation arithmetic, which is a
version of arithmetic in which all operations such as addition and multiplication are limited to a
fixed range between a minimum and maximum value. This is very important in the context of control
systems, such as the one implemented in this example.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

379

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

void lightSystemUpdate()
{
 static int i = 0;
 char str[100] = "";

 dutyCycle = dutyCycle + lightSystemLoopGain
 * (lightLevelControlRead() - ldrSensorRead());

 if (dutyCycle > 1) dutyCycle = 1;
 if (dutyCycle < 0) dutyCycle = 0;

 setDutyCycle(RGB_LED_RED, brightnessRGBLedRedFactor*dutyCycle);
 setDutyCycle(RGB_LED_GREEN, brightnessRGBLedGreenFactor*dutyCycle);
 setDutyCycle(RGB_LED_BLUE, brightnessRGBLedBlueFactor*dutyCycle);

 if (i > 100) {
 i=0;

 pcSerialComStringWrite("SP: ");
 sprintf(str, "%0.4f", lightLevelControlRead());
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("LDR: ");
 sprintf(str, "%0.4f", ldrSensorRead());
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("Duty: ");
 sprintf(str, "%0.4f", dutyCycle);
 pcSerialComStringWrite(str);
 pcSerialComStringWrite(" | ");
 pcSerialComStringWrite("Added: ");
 sprintf(str, "%0.4f", lightSystemLoopGain
 * (lightLevelControlRead() - ldrSensorRead()));
 pcSerialComStringWrite(str);
 pcSerialComStringWrite("\r\n");
 }
 i++;
}

Code 8.22 Details of the new implementation of the function lightSystemUpdate().

Example 8.6: Playback of an Audio Message using the PWM Technique

Objective

Introduce the basics of how to obtain analog signals using the PWM technique.

Summary of the Expected Behavior

Play back a “Welcome to the Smart Home System” message during the smart home system power up.

Test the Proposed Solution on the Board

Import the project “Example 8.6” using the URL available in [4], build the project, and drag the .bin file
onto the NUCLEO board. Plug headphones into the audio jack. The “Welcome to the Smart Home
System” message should be heard every time the NUCLEO board is restarted.

380

A Beginner’s Guide to Designing Embedded System Applications

Discussion of the Proposed Solution

The proposed solution is based on a new module named audio and the usage of the PWM technique
together with an appropriate low pass filter and a digitized audio signal, as discussed in subsection
8.2.2. The new module has three files: audio.h, audio.cpp, and welcome_message.h. The information
about the digitized audio signal is stored in welcome_message.h, as explained below.

Implementation of the Proposed Solution

In Code 8.23, the new implementation of smart_home_system.cpp is shown. The audio module is
included in line 17, and the function audioInit() is called on line 23.

In Code 8.24, the implementation of audio.h is shown. The only public function of this module is
audioInit().

The implementation of audio.cpp is shown in Code 8.25. On lines 6 and 8, the files welcome_message.h
and audio.h are included. On line 12, AUDIO_SAMPLE_DURATION is defined with the value of 125.
On line 16, an object of type PwmOut named audioOut is declared and assigned to PE_6. On line
20, the private function welcomeMessage() is declared. The implementation of the public function
audioInit() is shown on line 24, which only makes a call to welcomeMessage() on line 25 and then
returns.

The implementation of the private function welcomeMessage() is shown on line 32. On line 34, the float
variable audioDutyCycle is declared and initialized at zero. On line 36, the period of audioOut is set to
25 microseconds, as shown in Figure 8.13. On line 38, the integer variable i is declared, and on line 39
it is used in a for loop.

On line 40, audioDutyCycle is assigned with the value of welcomeMessageData[i] divided by 255. Note
that the (float) cast is used, otherwise this value will always be zero because welcomeMessageData is
an array of unsigned char, as will be seen below.

On line 41, the duty cycle of audioOut is set to audioDutyCycle, and on line 42, the Mbed OS function
wait_us() is called in order to introduce a delay of length AUDIO_SAMPLE_DURATION (125
microseconds). In this way, five periods of the PWM are generated with the same duty cycle, as
illustrated in Figure 8.13.

In Code 8.26, the first lines of welcome_message.h are shown. On line 1, the constant integer variable
welcomeMessageLength is defined. The const keyword is used to prevent overriding the variable’s value.
On line 3, the first part of the constant array of type unsigned char named welcomeMessageData is
shown.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

381

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

//=====[Libraries]===

#include "arm_book_lib.h"

#include "smart_home_system.h"

#include "alarm.h"
#include "user_interface.h"
#include "fire_alarm.h"
#include "intruder_alarm.h"
#include "pc_serial_com.h"
#include "event_log.h"
#include "motion_sensor.h"
#include "motor.h"
#include "gate.h"
#include "light_system.h"
#include "audio.h"

//=====[Implementations of public functions]===================================

void smartHomeSystemInit()
{
 audioInit();
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 lightSystemInit();
}

void smartHomeSystemUpdate()
{
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 lightSystemUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 8.23 Details of the new implementation of the smart_home_system.cpp.

1
2
3
4
5
6
7
8
9
10
11
12

//=====[#include guards - begin]===

#ifndef _AUDIO_H_
#define _AUDIO_H_

//=====[Libraries]===

void audioInit();

//=====[#include guards - end]===

#endif // _AUDIO_H_

Code 8.24 Details of the implementation of the audio.h.

382

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "welcome_message.h"

#include "audio.h"

//=====[Declaration of private defines]==

#define AUDIO_SAMPLE_DURATION 125

//=====[Declaration and initialization of public global objects]===============

PwmOut audioOut(PE_6);

//=====[Declarations (prototypes) of private functions]========================

static void welcomeMessage();

//=====[Implementations of public functions]===================================

void audioInit()
{
 welcomeMessage();
 return;
}

//=====[Implementations of private functions]==================================

static void welcomeMessage()
{
 float audioDutyCycle = 0.0;

 audioOut.period(0.000025f);

 int i = 0;
 for(i=1; i<welcomeMessageLength; i++) {
 audioDutyCycle = (float) welcomeMessageData[i]/255;
 audioOut.write(audioDutyCycle);
 wait_us(AUDIO_SAMPLE_DURATION);
 }

 return;
}

Code 8.25 Details of the implementation of audio.cpp.

1
2
3

const int welcomeMessageLength=24000;

const unsigned char welcomeMessageData[] = {128, 128, 128, 128, 128, 128, ...

Code 8.26 Details of the implementation of welcome_message.h.

Proposed Exercise

1. How can the welcome message be modified?

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

383

Answer to the Exercise

1. The file welcome_message.h should be modified with the data corresponding to the new message.

TIP: Many online “text to speech” tools are available on the internet, as well as many
wav to C converters. These enable different messages to be generated, even in
different languages.

8.3 Under the Hood

8.3.1 Fundamentals of Control Theory

In this chapter, the brightness of an RGB LED was controlled by means of the NUCLEO board
considering a set point reference established using a potentiometer and reading the light intensity using
an LDR. This implementation can be analyzed using control theory. In Figure 8.15, a diagram is shown
of a negative feedback control system. It is based on a feedback loop, which controls the process variable
by comparing it with a desired value (the reference) and applying the difference (measured error) as
an error signal to generate a control output to reduce or eliminate the error.

Figure 8.15 Diagram of a negative feedback control system.

The model shown in Figure 8.15 can be applied to the setup used in Example 8.6, as shown in
Figure 8.16, where the duty cycle of the PWM signal was obtained by adding the current value of
the duty cycle to the product of a given gain and the difference between the reading of the analog
conversion of A0 and A2:

dutyCycle = dutyCycle + lightSystemLoopGain * (lightLevelControlRead − LDRSensorRead) (1)

Figure 8.16 Diagram of the negative feedback control system implemented in Example 8.5.

384

A Beginner’s Guide to Designing Embedded System Applications

In Example 8.6, different values can be tested with the controller gain, and it will be seen that,
depending on the values, the response of the controller can be appropriate, or can be unstable or too
slow.

If the control system is implemented using a microcontroller, as in the example above, it is referred to
as digital control, and its behavior is adjusted by the values of the parameters used in the computation.
If the control system is implemented using analog components, such as operational amplifiers, it
is called analog control, and the system behavior depends on the values of resistors, capacitors,
etc. Usually, a digital controller is more resistant to noise, more power efficient, and needs less
maintenance, because digital devices do not tend to degrade or get damaged over time or need to be
calibrated, which is often the case with analog devices.

Proposed Exercise

1. In the Example 8.5 implementation, is the measured error signal obtained outside the controller?

Answer to the Exercise

1. No, it can be seen that in Example 8.5 the measured error is computed by the microcontroller.

8.4 Case Study

8.4.1 Smart City Bike Lights

In this chapter, an RGB LED and a light sensor were connected to the NUCLEO board. In this way,
the brightness of the RGB LED was controlled using PWM. An example of smart city bike lights, built
with Mbed with similar features, can be found in [7]. In Figure 8.17, the smart city bike light is shown
mounted on a bike (red rear light, on the left), and the set of front and rear lights is shown with the
smartphone application (on the right).

17:24

91 %

www.smart-city-bike.com

3Bici ID#12345

ON

ON

Front Light Status

Back Light Status

Smart City Bike

Figure 8.17 On the left, smart city bike light mounted on a bike. On the right, rear and front lights and the mobile app.

Chapter 8 | Advanced Time Management, Pulse-Width Modulation ...

385

The smart city bike light system can adjust its brightness level based on ambient light to conserve
battery life. It also flashes brighter and faster depending on a set of conditions to make sure that
the cyclist stands out. It is also provided with accelerometers to monitor various conditions such as
swerving, sudden braking, road surface condition, and falls. It contains two different types of LEDs
(focused and dispersed beam) to make it visible up to 3 km away and also gives 270° of side visibility.
The mobile app lets the cyclist personalize light settings and gives low battery alerts straight to the
phone.

The smart city bike light uses the PWM technique introduced in this chapter to adjust the brightness
level. The sensor used in this chapter to measure ambient light is also very similar to the sensor used
by the smart city bike light. Moreover, the system is connected to a smartphone using Bluetooth Low
Energy in the same way as will be shown for the smart home system in Chapter 10.

Proposed Exercise

1. The smart city bike light states that it has 300 lumens of luminous flux in the rear and 400 lumens
in the front. How does this compare with the maximum light intensity that an RGB LED such as the
one used in this chapter can provide?

Answer to the Exercise

1. The luminous flux Φv in lumens (lm) is related to the luminous intensity Iv in candela (cd) and the
apex angle θ in degrees (°) by means of the following formula:

Φv(lm) = Iv(cd) × (2π(1 − cos(θ/2))) (2)

Considering that the RGB LED has three LEDs and that altogether can provide up to 5 cd over a
typical viewing angle of 45°, as shown in [1], the luminous flux results in about 2.5 lumens. This value
is about a hundred times smaller than the luminous flux provided by the smart city bike light rear and
front lights.

 References
[1] “RGB LED Pinout, Features, Circuit & Datasheet”. Accessed July 9, 2021.

https://components101.com/diodes/rgb-led-pinout-configuration-circuit-datasheet

[2] “LDR Pinout, Working, Applications & Datasheet”. Accessed July 9, 2021.
https://components101.com/resistors/ldr-datasheet

[3] “Low-pass filter - Wikipedia”. Accessed July 9, 2021.
https://en.wikipedia.org/wiki/Low-pass_filter#RC_filter

[4] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

https://components101.com/diodes/rgb-led-pinout-configuration-circuit-datasheet
https://components101.com/diodes/rgb-led-pinout-configuration-circuit-datasheet
https://components101.com/resistors/ldr-datasheet
https://components101.com/resistors/ldr-datasheet
https://github.com/armBookCodeExamples/Directory/
https://github.com/armBookCodeExamples/Directory/

386

A Beginner’s Guide to Designing Embedded System Applications

[5] “pinout_labels - | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/teams/ST/wiki/pinout_labels

[6] “mbed-os/PeripheralPinMaps.h at master · ARMmbed/mbed-os · GitHub”. Accessed July 9, 2021.
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_STM/TARGET_STM32F4/
TARGET_STM32F429xI/TARGET_NUCLEO_F429ZI/PeripheralPinMaps.h

[7] “Smart City Bike Lights | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/smart-city-bike-lights/

https://os.mbed.com/teams/ST/wiki/pinout_labels
https://os.mbed.com/teams/ST/wiki/pinout_labels
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_STM/TARGET_STM32F4/TARGET_STM32F429xI/TARGET_NUCLEO_F429ZI/PeripheralPinMaps.h
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_STM/TARGET_STM32F4/TARGET_STM32F429xI/TARGET_NUCLEO_F429ZI/PeripheralPinMaps.h
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_STM/TARGET_STM32F4/TARGET_STM32F429xI/TARGET_NUCLEO_F429ZI/PeripheralPinMaps.h
https://os.mbed.com/built-with-mbed/smart-city-bike-lights/
https://os.mbed.com/built-with-mbed/smart-city-bike-lights/

File Storage on SD Cards and
Usage of Software Repositories

Chapter 9

388

A Beginner’s Guide to Designing Embedded System Applications

9.1 Roadmap

9.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect an SD card to the NUCLEO board using an SPI bus interface.

 n Develop programs to manage files on an SD card with the NUCLEO board.

 n Implement a revision control system using repositories.

 n Summarize the fundamentals of filesystems.

9.1.2 Review of Previous Chapters

In the previous chapters, many sensors and actuators were included in the smart home system.
Different events were detected, for example over temperature or the presence of intruders. These
events were reported using the serial terminal, as well as the display, a range of lights, and the siren,
which was simulated using a buzzer. However, once the system is turned off, there is no record of the
events that took place. This can be inconvenient, as after a fire alarm or an intruder detection, the
system manager might wish to analyze what happened even if there was a power outage in between.

9.1.3 Contents of This Chapter

In this chapter, an SD card (Secure Digital memory card) is used to store a copy of the events log of the
smart home system. In this way, events can be recorded over time on the SD card, even after turning
off the power supply of the smart home system. In addition, the files stored in the SD card can be read
by any device provided with an SD card reader, such as a PC or a smartphone.

For this purpose, the concept of a filesystem will be introduced as a way to organize the storage
capacity of the SD card into files and folders. The files on the SD card will be able to be created, written,
read, modified, and deleted.

9.2 File Storage with the NUCLEO Board

9.2.1 Connect an SD Card to the Smart Home System

In this chapter, a micro-SD card, such as the one described in [1], is connected to the smart home
system, as shown in Figure 9.1. The aim of this setup is to store the events log on the SD card (for the
sake of brevity, we use “SD card” to refer to the micro-SD card).

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

389

House
outside

view

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

SD ardc

J
A

P
A

N
FC

C
v

R
e

pr
ari

1

S
D

C
S

/3
2
G

B

3
2
4
2
0
-0

1
0
.A

0
0
L
F

SD card
reader

Gate Closing

Open

Close

Gate Opening

Light Intensity

Figure 9.1 The smart home system is now connected to an SD card.

The connections that should be made are shown in Figure 9.2 and summarized in Table 9.1. The reader
may notice that an SPI bus is used to connect the NUCLEO board with the SD card.

390

A Beginner’s Guide to Designing Embedded System Applications

Figure 9.2 The smart home system is now connected to an SD card.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

391

Table 9.1 Summary of the connections between the NUCLEO board and the SD card.

 NUCLEO board SD card

3.3 V 3V3

PA_4 CS

 PC_12 MOSI

 PC_10 CLK

 PC_11 MISO

GND GND

NOTE: In Figure 8.5 it can be seen that PC_10, PC_11, PC_12, and PA_4 correspond to
SPI3_SCK, SPI3_MISO, SPI3_MOSI, and SPI3_CS, respectively. In Chapter 6, in order
to connect the graphical display, the pins PA_5, PA_6, PA_7, and PD_14 (SPI1_SCK,
SP1_MISO, SPI1_MOSI, and SPI1_CS) were used. The graphical LCD display does not
ignore the SPI MOSI and SCK signals even if its CS signal is inactive. Therefore, if the
same SPI bus was used for both devices, the display would show glitches every time
the program used the SD card.

In Figure 9.3, the details of the SD card module pins are shown. It can be seen that they correspond to
the SPI bus signals that were introduced in section 6.2.4. Figure 9.3 also shows how to properly insert
the SD card into the SD card module.

Figure 9.3 Details of the SD card module pins and how to insert the SD card into the module.

WaRNiNg: It is important to use an SD card properly formatted as FAT32. To format
the SD card, it is recommended to use a notebook provided with an SD card slot and
the format tool of its operating system.

WaRNiNg: Some SD card modules have a different pinout. Follow the 3.3V, CS,
MOSI, CLK, MISO and GND labels of the module when making the connections. Be
sure to use a module that can be powered using 3.3 V and that supports the SD card
memory size you are using.

To test if the SD card is working correctly, the .bin file of the program “Subsection 9.2.1” should be
downloaded from the URL available in [2] and loaded onto the NUCLEO board. Press “w” on the PC
keyboard to create a file called Hello.txt on the SD card connected to the NUCLEO board. Then press
“l” to get a list of all the files in the root directory of the SD card. The file Hello.txt should be in the
listing, as well as other files and folders contained on the SD card.

392

A Beginner’s Guide to Designing Embedded System Applications

TiP: Ignore all the other elements of the setup during the proposed test (Alarm LED,
display, etc.).

9.2.2 a Filesystem to Control how Data is Stored and Retrieved

Data are usually stored on devices such as SD cards or hard disk drives. Without appropriate
organization, the data placed on those devices would be one single body of useless bits with no way
to determine where each element of data begins and ends. In order to organize the data, a filesystem is
used.

In a filesystem, each group of data is called a file. The logical rules and structure used to manage the
data and their names is called a filesystem. Typically, a filesystem consists of two or three layers, as
shown in Figure 9.4. The logical layer provides access to files and directories, among other operations.
It is usually accessed by means of an Application Programming Interface (API), using functions such as
open, read, write, close, etc. The reader might notice that the modularization implemented in Chapter 5
and many of the names of the functions introduced in that chapter follow this logic. Examples include
eventLogRead() and eventLogWrite().

Figure 9.4 Diagram of a typical organization of a filesystem.

The second layer shown in Figure 9.4 is the physical layer. This layer is concerned with the physical
operation of the storage device, for example an SD card. It is responsible for the physical placement of
data in specific locations on the storage medium, and for retrieving the data when needed.

The filesystem is responsible for organizing files and directories and keeping track of which areas of
the media belong to which file and which are not being used. The data are usually stored in allocation
units of a given size. This results in unused space when a file is not an exact multiple of the allocation
unit. Choosing an allocation size based on the average size of the files expected to be in the filesystem
can minimize the amount of unusable space.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

393

There are different kinds of filesystems, each having different advantages and disadvantages. The
family of File Allocation Table (FAT) filesystems is simpler than other technologies and is supported by
almost all operating systems for personal computers. For that reason, it is used in this chapter to store
data on the SD card. It is based on a table (the file allocation table) stored on the device in which the
areas associated with each file are identified.

Example 9.1: Create a File with the Event Log on the SD Card

Objective

Introduce the usage of filesystems and repositories.

Summary of the Expected Behavior

When pressing the “w” key on the PC keyboard, a .txt text file with a copy of the current event log
(containing up to twenty events) should be created on the SD card.

Test the Proposed Solution on the Board

Import the project “Example 9.1” using the URL available in [2], build the project, and drag the .bin file
onto the NUCLEO board. Press “s” on the PC keyboard in order to configure the date and time of the
RTC of the NUCLEO board. Press “t” on the PC keyboard to confirm that the RTC is working properly.
Use the Fire alarm test button (B1 button) to activate the alarm. Press “e” on the PC keyboard to
get the date and time of the alarm activation. Press “w” on the PC keyboard to write a file with the
events log onto the SD card connected to the NUCLEO board. A message indicating that the file was
successfully written on the SD card should be shown on the serial terminal, as shown in Figure 9.5.

Storing event 1 in file 2021_07_09_05_25_26.txt
Storing event 2 in file 2021_07_09_05_25_26.txt
Storing event 3 in file 2021_07_09_05_25_26.txt
Storing event 4 in file 2021_07_09_05_25_26.txt
File successfully written

Figure 9.5 Example of events storage messages.

NOTE: Jan 1, 1970, 00:00 hours will be the date and time if the RTC is not configured,
as was explained in Chapter 4.

The content of the event file after storing the four events corresponding to Figure 9.5 is shown
in Figure 9.6. It can be seen that the content of the .txt file shown in Figure 9.6 is the same as the
message that is shown on the serial terminal if the letter “e” is pressed on the PC keyboard. This .txt
file can be opened using a PC or a smartphone if the SD card is inserted into those devices, provided
they are properly formatted as FAT32.

394

A Beginner’s Guide to Designing Embedded System Applications

Event = ALARM_ON
Date and Time = Fri Jul 9 05:25:24 2021

Event = GAS_DET_ON
Date and Time = Fri Jul 9 05:25:24 2021

Event = GAS_DET_OFF
Date and Time = Fri Jul 9 05:25:25 2021

Event = ALARM_OFF
Date and Time = Fri Jul 9 05:25:25 2021

Figure 9.6 Example of the content of an event file stored on the SD card as a .txt file.

Discussion of the Proposed Solution

The proposed solution is based on a new module named sd_card. This module is composed of two
files, sd_card.cpp and sd_card.h, following the modularized structure discussed in previous chapters. In
addition, some Mbed OS libraries to manage FAT filesystems and SD devices that are available in [3]
are included in sd_card.cpp (FATFileSystem.h, SDBlockDevice.h, and mbed_retarget.h). Also, the mbed_app.
json file is used by the Mbed OS to configure the SD card, so it was modified as shown in Code 9.1.

{
 "target_overrides": {
 "*": {
 "platform.stdio-convert-newlines": 1,
 "target.features_add": ["STORAGE"],
 "target.components_add": ["SD"],
 "sd.INIT_FREQUENCY": 350000,
 "target.printf_lib": "std"
 }
 }
}

Code 9.1 Content of the mbed_app.json file.

The line “target.printf_lib”: “std” was already in the mbed_app.json file that was introduced in Chapter
3. By means of the other parameters that are now on the mbed_app.json file, the SD card is configured.
For more information, see [3].

Implementation of the Proposed Solution

In Table 9.2 and Table 9.3, the sections where lines were added to pc_serial_com.h and pc_serial_com.
cpp are shown. It can be seen that the library sd_card.h is now included, as well as the new functions
pcSerialComIntWrite() and commandEventLogSaveToSdCard(). In Table 9.4, the lines that were added in
pcSerialComCommandUpdate() and availableCommands() in order to implement the “w” command are
shown.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

395

Table 9.2 Sections in which lines were added to pc_serial_com.h.

Section Lines that were added

Declarations (prototypes) of public functions void pcSerialComIntWrite(int number);

Table 9.3 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Libraries #include "sd_card.h"

Declarations (prototypes) of private functions static void commandEventLogSaveToSdCard();

Table 9.4 Functions in which lines were added in pc_serial_com.cpp.

Section Lines that were added

static void pcSerialComCommandUpdate(char
receivedChar)

case 'w': case 'W': commandEventLogSaveToSdCard();

 break;

static void availableCommands() pcSerialComStringWrite("Press 'w' or 'W' to store

 the events log in the SD card\r\n");

In Code 9.2, the implementation of the function pcSerialComIntWrite() is shown. This function is used
to show on the serial terminal the number of the event that has been stored on the SD card.

1
2
3
4
5
6

void pcSerialComIntWrite(int number)
{
 char str[4] = "";
 sprintf(str, "%d", number);
 pcSerialComStringWrite(str);
}

Code 9.2 Implementation of the function pcSerialComIntWrite().

In Code 9.3, the implementation of the function commandEventLogSaveToSdCard() is shown. This
function is called when the “w” key is pressed on the PC keyboard. As can be seen in Code 9.3, it only
calls the function eventLogSaveToSdCard().

1
2
3
4

static void commandEventLogSaveToSdCard()
{
 eventLogSaveToSdCard();
}

Code 9.3 Implementation of the function commandEventLogSaveToSdCard().

In Table 9.5 and Table 9.6, the sections in which lines were added to event_log.h and event_log.cpp are
shown. It can be seen that commandEventLogSaveToSdCard() has been declared as a public function,
and that the library sd_card has been included.

396

A Beginner’s Guide to Designing Embedded System Applications

Table 9.5 Sections in which lines were added to event_log.h.

Section Lines that were added

Declarations (prototypes) of public functions bool eventLogSaveToSdCard();

Table 9.6 Sections in which lines were added to event_log.cpp.

Section Lines that were added

Libraries #include "sd_card.h"

In Code 9.4, the implementation of the new function eventLogSaveToSdCard() is shown. On lines 3 and
4, two char arrays, fileName and eventStr are declared and initialized. The former is used to store the
name of the file, while the latter is used to store a string corresponding to the event to be stored. The
Boolean variable eventsStored on line 5 is used to indicate whether events have been stored. On lines 7
and 8, two more variables that are used in this example are declared, seconds and i.

On line 10, the RTC of the NUCLEO board is read, and the current time is stored in the variable
seconds. On line 12, the name of the new file to be created is generated by means of the function
strftime() provided by Mbed OS. For this purpose, the value of the variable seconds is used. This value is
converted into the “YYYY MM DD HH MM SS” format by means of the function localtime(). The value
of SD_CARD_FILENAME_MAX_LENGTH (that is defined in sd_card.h) is used to limit the number of
characters that are used in fileName. On line 14, the file extension .txt is appended to the fileName by
means of strcat().

The for loop on line 16 is used to read all the events that are stored in memory, and one after the other
these events are stored in the string eventStr (line 17).

On line 18, the function sdCardWriteFile() is called to write the event log onto the SD card. This
function receives two parameters, the filename and a string corresponding to the event to be stored.
There is an if statement on line 18 as the function sdCardWriteFile() returns true if it can successfully
write the event in the file, and false if not.

Lines 19 to 23 are used to display a message on the serial terminal showing the event that has been
written, as shown in Figure 9.5.

Note that if there are no events in the log, then the function eventLogNumberOfStoredEvents() returns
0 on line 16 and, therefore, the for loop is never executed. If this is the case, the variable eventsStored
remains false and the message “There are no events to store or SD card is not available” is shown, as
can be seen on line 31 of Code 9.4.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

397

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

bool eventLogSaveToSdCard()
{
 char fileName[SD_CARD_FILENAME_MAX_LENGTH] = "";
 char eventStr[EVENT_STR_LENGTH] = "";
 bool eventsStored = false;

 time_t seconds;
 int i;

 seconds = time(NULL);

 strftime(fileName, SD_CARD_FILENAME_MAX_LENGTH,
 "%Y_%m_%d_%H_%M_%S", localtime(&seconds));
 strcat(fileName, ".txt");

 for (i = 0; i < eventLogNumberOfStoredEvents(); i++) {
 eventLogRead(i, eventStr);
 if (sdCardWriteFile(fileName, eventStr)){
 pcSerialComStringWrite("Storing event ");
 pcSerialComIntWrite(i+1);
 pcSerialComStringWrite(" in file ");
 pcSerialComStringWrite(fileName);
 pcSerialComStringWrite("\r\n");
 eventsStored = true;
 }
 }

 if (eventsStored) {
 pcSerialComStringWrite("File successfully written\r\n\r\n");
 } else {
 pcSerialComStringWrite("There are no events to store ");
 pcSerialComStringWrite("or SD card is not available\r\n\r\n");
 }

 return true;
}

Code 9.4 Implementation of the function eventLogSaveToSdCard().

Code 9.5 shows the content of the sd_card.h file. On line 8 it can be seen that the #define
SD_CARD_FILENAME_MAX_LENGTH that is used in the function eventLogSaveToSdCard() has the
value 32. It can also be seen on lines 12 and 13 that two public functions are declared, sdCardInit() and
sdCardWriteFile().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//=====[#include guards - begin]===

#ifndef _SD_CARD_H_
#define _SD_CARD_H_

//=====[Libraries]===

#define SD_CARD_FILENAME_MAX_LENGTH 32

//=====[Declarations (prototypes) of public functions]=========================

bool sdCardInit();
bool sdCardWriteFile(const char* fileName, const char* writeBuffer);

//=====[#include guards - end]===

#endif // _SD_CARD_H_

Code 9.5 Content of the sd_card.h file.

398

A Beginner’s Guide to Designing Embedded System Applications

In Code 9.6, the first part of the file sd_card.cpp is shown. From lines 3 to 15 all the libraries that are
used in the sd_card module can be seen. It can also be seen that mbed_retarget.h, FATFileSystem.h, and
SDBlockDevice.h are included. These are libraries that are used to work with files on the SD card.

On lines 19 to 22 the pins used to connect the SD card are defined. These pins are related to SPI3,
and it is important to note that an alternative pin (PA_4_ALT0) is used on line 22 for the chip select pin
(SPI3_CS).

NOTE: It is not necessary to use the SPI port-specific pin for chip select; a DigitalOut
can be used and controlled by software. In Chapter 6, PD_14 was used instead of
pin PA_4, which is the SPI1 port-specific chip select pin. In this case, the specific pin
for SPI3 is used in order to show a usage example of the alternative pins that were
introduced in Chapter 8. More information about alternative pins and port-specific
pins for peripherals can be found in [4] and [5].

Finally, on lines 26 and 28, two objects are declared; the former is used in the communication with the
SD card, and the latter is used to implement the filesystem.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "sd_card.h"

#include "event_log.h"
#include "date_and_time.h"
#include "pc_serial_com.h"

#include "FATFileSystem.h"
#include "SDBlockDevice.h"

#include "platform/mbed_retarget.h"

//=====[Declaration of private defines]==

#define SPI3_MOSI PC_12
#define SPI3_MISO PC_11
#define SPI3_SCK PC_10
#define SPI3_CS PA_4_ALT0

//=====[Declaration and initialization of public global objects]===============

SDBlockDevice sd(SPI3_MOSI, SPI3_MISO, SPI3_SCK, SPI3_CS);

FATFileSystem sdCardFileSystem("sd", &sd);

Code 9.6 Content of the sd_card.cpp file (Part 1/2).

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

399

NOTE: An SPI object is not declared as in Chapter 6 despite the fact that the SD
card is connected to the NUCLEO board using an SPI bus. Recall that in Chapter 6
the objects SPI spiSt7920(SPI1_MOSI, SPI1_MISO, SPI1_SCK) and DigitalOut
spiSt7920ChipSelect(SPI1_CS) were declared, the SPI bus was configured by means of
SPI_ST9720.format(8,3) and SPI_ST9720.frequency(1000000), and this was used by SPI_
ST9720.write(). In this chapter, the objects SDBlockDevice sd(SPI3_MOSI, SPI3_MISO,
SPI3_SCK, SPI3_CS) and FATFileSystem sdCardFileSystem(“sd”, &sd) are declared to
control the SD card using the SPI bus, following the format established by Mbed OS.

In Code 9.7, the second part of the sd_card.cpp file is shown. Lines 1 to 16 show the implementation
of the function sdCardInit(). It can be seen that a message is first displayed indicating that it is looking
for a filesystem (line 3). On line 4, mount() is used to get the information of the FAT filesystem of
the SD card into the object sdCardFileSystem. On line 5, the function opendir(), which is declared
and implemented in the Mbed OS, is used to get the list of directories on the SD card. If the list of
directories can be successfully read, then it is stored in the object sdCardListOfDirectories; otherwise
NULL is stored in sdCardListOfDirectories. On line 6, the value of sdCardListOfDirectories is checked in
order to determine if there is a FAT filesystem mounted on the SD card. If so, the message shown on
line 7 is shown and the directory is closed by means of line 8.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

bool sdCardInit()
{
 pcSerialComStringWrite("Looking for a filesystem in the SD card... \r\n");
 sdCardFileSystem.mount(&sd);
 DIR *sdCardListOfDirectories = opendir("/sd/");
 if (sdCardListOfDirectories != NULL) {
 pcSerialComStringWrite("Filesystem found in the SD card.\r\n");
 closedir(sdCardListOfDirectories);
 return true;
 } else {
 pcSerialComStringWrite("Filesystem not mounted. \r\n");
 pcSerialComStringWrite("Insert an SD card and ");
 pcSerialComStringWrite("reset the NUCLEO board.\r\n");
 return false;
 }
}

bool sdCardWriteFile(const char* fileName, const char* writeBuffer)
{
 char fileNameSD[SD_CARD_FILENAME_MAX_LENGTH+4] = "";

 fileNameSD[0] = '\0';
 strcat(fileNameSD, "/sd/");
 strcat(fileNameSD, fileName);

 FILE *sdCardFilePointer = fopen(fileNameSD, "a");

 if (sdCardFilePointer != NULL) {
 fprintf(sdCardFilePointer, "%s", writeBuffer);
 fclose(sdCardFilePointer);
 return true;
 } else {
 return false;
 }
}

Code 9.7 Content of the sd_card.cpp file (Part 2/2).

400

A Beginner’s Guide to Designing Embedded System Applications

If an appropriate FAT filesystem is not found on the SD card, then lines 10 to 15 are executed in order
to indicate this to the user.

WaRNiNg: The messages on lines 11 to 13 will be displayed in any of the following
situations:

 n The SD card is not connected.
 n The SD card module is not properly connected.
 n The SD card is not working properly (i.e., it is damaged).
 n The filesystem format of the SD Card is not FAT32 as expected.

On line 18 of Code 9.7, the implementation of the function sdCardWriteFile() is shown. The first
parameter that this function receives (fileName) is the filename, and the second parameter
(writeBuffer) is the data to be written. Lines 22 to 24 are used to write the prefix “/sd/” in fileNameSD,
which is necessary in order to indicate that this is the root folder of the SD card. On line 26, the object
sdCardFilePointer of type FILE is declared and is assigned a pointer to the file that is opened by means
of fopen(). The parameter “a” on line 26 is used to indicate that new content will be appended to the
opened file. It is important to note that the use of the “a” parameter implies that if the file doesn’t exist,
then it must be created.

NOTE: Recall that a pointer is an object that stores a memory address, usually
corresponding to a variable. Pointers will be discussed in detail in Chapter 10 and an
example will be implemented using pointers.

Line 28 assesses whether the file was correctly opened and, if so, the content of writeBuffer is written
to the file by means of fprintf() (line 29). Then, the file is closed (line 30) and the Boolean value true is
returned (line 31). If the content of writeBuffer was not successfully appended to the file, then false is
returned (line 33).

Lastly, in Code 9.8 the new implementation of smartHomeSystemInit() is shown. It can be seen that
sdCardInit() was added on line 12.

1
2
3
4
5
6
7
8
9
10
11
12
13

void smartHomeSystemInit()
{
 audioInit();
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 lightSystemInit();
 sdCardInit();
}

Code 9.8 New implementation of the function smartHomeSystemInit.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

401

Proposed Exercise

1. What should be modified in order to connect the SD card to a different set of pins of the NUCLEO
board?

Answer to the Exercise

1. The pins’ assignment in sd_card.cpp (line 28 of Code 9.6) should be modified to use the SPI_4. For
example, the following assignment can be used:

 #define SPI4_MOSI PE_14
 #define SPI4_MISO PE_5
 #define SPI4_SCK PE_2
 #define SPI4_CS PE_4

 SDBlockDevice sd(SPI4_MOSI, SPI4_MISO, SPI4_SCK, SPI4_CS);

Example 9.2: Save a File on the SD Card with only New Events that were not Previously Saved

Objective

Introduce functionality regarding the management of data storage in files.

Summary of the Expected Behavior

When pressing the key “w” on the PC keyboard, a .txt file with a copy of events that were not saved
previously is stored on the SD card. In this way, multiple copies of the same events in different files are
avoided.

Test the Proposed Solution on the Board

Import the project “Example 9.2” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. Repeat the steps in Example 9.1 in order to write a log file onto the SD
card such as the one shown in Figure 9.6. Use the Fire alarm test button (B1 button) to activate the
alarm again. Press “e” on the PC keyboard to get the date and time of the alarm activation. Press “w”
on the PC keyboard to write the events log onto the SD card. A message indicating that the file was
successfully written on the SD card with only the new events that were not previously stored should
be shown on the serial terminal, as in Figure 9.7.

Storing event 5 in file 2021_07_09_08_12_54.txt
Storing event 6 in file 2021_07_09_08_12_54.txt
Storing event 7 in file 2021_07_09_08_12_54.txt
Storing event 8 in file 2021_07_09_08_12_54.txt
New events successfully stored in the SD card

Figure 9.7 Example of events storage messages.

The content of the event file after storing the new events corresponding to Figure 9.7 is shown in
Figure 9.8. The .txt file has only the new events corresponding to the second time the Fire alarm test

402

A Beginner’s Guide to Designing Embedded System Applications

button was pressed (i.e., event 5 to event 8). Note that in Example 9.1, a new file was created each
time the “w” key was pressed on the PC keyboard, logging all events, not only new events.

Event = ALARM_ON
Date and Time = Fri Jul 9 08:12:51 2021

Event = GAS_DET_ON
Date and Time = Fri Jul 9 08:12:51 2021

Event = GAS_DET_OFF
Date and Time = Fri Jul 9 08:12:53 2021

Event = ALARM_OFF
Date and Time = Fri Jul 9 08:12:53 2021

Figure 9.8 Example of the content of an event file stored on the SD card as a .txt file.

Finally, press “w” again. It will show a message “No new events to store in SD card.” In this way, it is
seen that now a file is created only if there are events that were not previously stored.

Discussion of the Proposed Solution

Due to the modularization that has been followed in the program structure, the proposed modification
can be done by means of only changing the event_log.cpp file. The corresponding details are shown below.

Implementation of the Proposed Solution

In order to identify which events were already stored on the SD card, a new member is included
in the data structure systemEvent_t, which is defined in the event_log.cpp file. This member is
named storedInSd, as shown in Code 9.9. The value storedInSd of an element will be set as false if
the corresponding event was not stored on the SD card and will be set to true when it has been
successfully stored on the SD card.

1
2
3
4
5

typedef struct systemEvent {
 time_t seconds;
 char typeOfEvent[EVENT_LOG_NAME_MAX_LENGTH];
 bool storedInSd;
} systemEvent_t;

Code 9.9 New declaration of the data structure systemEvent_t.

Code 9.10 shows the new implementation of the function eventLogWrite(). It may be noted that only
line 14 has been incorporated. This line is used to set to false the Boolean member storedInSd of the
corresponding element of arrayOfStoredEvents (indicated by eventsIndex) each time a new event is
added to the log.

The new implementation of eventLogSaveToSdCard() is shown in Code 9.11. An if statement has been
included on line 17 in order to evaluate the value of arrayOfStoredEvents[i].storedInSd. If the value is
false, then the event is stored on the SD card and then is set to true (line 20) in order to avoid storing
it again in the future. The messages on lines 32 and 34 were also modified to indicate whether events
were stored or not.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

403

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void eventLogWrite(bool currentState, const char* elementName)
{
 char eventAndStateStr[EVENT_LOG_NAME_MAX_LENGTH] = "";

 strcat(eventAndStateStr, elementName);
 if (currentState) {
 strcat(eventAndStateStr, "_ON");
 } else {
 strcat(eventAndStateStr, "_OFF");
 }

 arrayOfStoredEvents[eventsIndex].seconds = time(NULL);
 strcpy(arrayOfStoredEvents[eventsIndex].typeOfEvent, eventAndStateStr);
 arrayOfStoredEvents[eventsIndex].storedInSd = false;
 if (eventsIndex < EVENT_LOG_MAX_STORAGE - 1) {
 eventsIndex++;
 } else {
 eventsIndex = 0;
 }

 pcSerialComStringWrite(eventAndStateStr);
 pcSerialComStringWrite("\r\n");
}

Code 9.10 New implementation of the function eventLogWrite().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bool eventLogSaveToSdCard()
{
 char fileName[SD_CARD_FILENAME_MAX_LENGTH] = "";
 char eventStr[EVENT_STR_LENGTH] = "";
 bool eventsStored = false;

 time_t seconds;
 int i;

 seconds = time(NULL);

 strftime(fileName, SD_CARD_FILENAME_MAX_LENGTH,
 "%Y_%m_%d_%H_%M_%S", localtime(&seconds));
 strcat(fileName, ".txt");

 for (i = 0; i < eventLogNumberOfStoredEvents(); i++) {
 if (!arrayOfStoredEvents[i].storedInSd) {
 eventLogRead(i, eventStr);
 if (sdCardWriteFile(fileName, eventStr)){
 arrayOfStoredEvents[i].storedInSd = true;
 pcSerialComStringWrite("Storing event ");
 pcSerialComIntWrite(i+1);
 pcSerialComStringWrite(" in file ");
 pcSerialComStringWrite(fileName);
 pcSerialComStringWrite("\r\n");
 eventsStored = true;
 }
 }
 }

 if (eventsStored) {
 pcSerialComStringWrite("New events successfully stored in the SD card\r\n\r\n");
 } else {
 pcSerialComStringWrite("No new events to store in the SD card\r\n\r\n");
 }
 return true;
}

Code 9.11 New implementation of the function eventLogSaveToSdCard().

404

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. How can the code be modified in order to name the files using the year, month, and day?

Answer to the Exercise

1. Line 13 of Code 9.11 can be replaced by:

 strftime(fileName, SD_CARD_FILENAME_MAX_LENGTH,
 “%Y_%m_%d_%H_%M_%S”, localtime(&seconds));

Example 9.3: get the List of Event Log Files Stored on the SD Card

Objective

Introduce more advanced functionality of the filesystem.

Summary of the Expected Behavior

When pressing the “l” key on the PC keyboard, a list of the event log files stored on the SD card should
be displayed on the serial monitor.

Test the Proposed Solution on the Board

Import the project “Example 9.3” using the URL available in [2], build the project, and drag the .bin file
onto the NUCLEO board. Press “l” on the PC keyboard to get the list of all the event log files stored
on the SD card. A message similar to the one shown in Figure 9.9 should be displayed on the serial
monitor.

Printing all filenames:
hello.txt
image.jpg
1970_01_01_00_04_13.txt
2021_07_09_05_25_26.txt
2021_07_09_08_12_54.txt

Figure 9.9 Example of the file listing that is shown on the PC.

Discussion of the Proposed Solution

The proposed solution is based on the function sdCardListFiles(), which is used to retrieve the listing of
the files that are stored on the SD card. The list of the files is then shown on the serial monitor.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

405

Implementation of the Proposed Solution

Table 9.7 shows that the private function commandSdCardListFiles() was added to pc_serial_com.cpp. In
Table 9.8, the lines that were added in pcSerialComCommandUpdate() and availableCommands() in order
to implement the “l” command are shown.

Table 9.7 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Declarations (prototypes) of private
functions

static void commandSdCardListFiles();

Table 9.8 Functions in which lines were added in pc_serial_com.cpp.

Section Lines that were added

static void
pcSerialComCommandUpdate(char
receivedChar)

case 'l': case 'L': commandSdCardListFiles(); break;

static void availableCommands() pcSerialComStringWrite("Press 'l' or 'L' to list all

 the files ");

pcSerialComStringWrite("in the root directory of the SD

 card\r\n");

In Code 9.12, the implementation of the function commandSdCardListFiles() is shown. On line 3, the
array of char fileListBuffer is declared with the appropriate size to store a list of up to ten files
(SD_CARD_MAX_FILE_LIST is defined as 10) in the situation of all the filenames having a length of
32 bytes (SD_CARD_FILENAME_MAX_LENGTH is defined as 32). On line 4, sdCardListFiles() is called
in order to load up to a maximum of ten filenames into fileListBuffer. On line 6, the list of files is sent to
the serial terminal, followed by “\r\n”, as can be seen on line 7.

1
2
3
4
5
6
7
8

static void commandSdCardListFiles()
{
 char fileListBuffer[SD_CARD_MAX_FILE_LIST*SD_CARD_FILENAME_MAX_LENGTH] = "";
 sdCardListFiles(fileListBuffer,
 SD_CARD_MAX_FILE_LIST*SD_CARD_FILENAME_MAX_LENGTH);
 pcSerialComStringWrite(fileListBuffer);
 pcSerialComStringWrite("\r\n");
}

Code 9.12 Implementation of the function commandSdCardListFiles().

In Table 9.9, the sections where lines were added to sd_card.h are shown. It can be seen that
SD_CARD_MAX_FILE_LIST was defined, and the new public function sdCardListFiles() has been
declared. The corresponding code is shown in Code 9.13.

406

A Beginner’s Guide to Designing Embedded System Applications

Table 9.9 Sections in which lines were added to sd_card.h.

Section Lines that were added

Declaration of private defines #define SD_CARD_MAX_FILE_LIST 10

Declarations (prototypes) of public functions bool sdCardListFiles(char* fileNamesBuffer,

 int fileNamesBufferSize);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
31

bool sdCardListFiles(char* fileNamesBuffer, int fileNamesBufferSize)
{
 int NumberOfUsedBytesInBuffer = 0;
 struct dirent *sdCardDirectoryEntryPointer;

 DIR *sdCardListOfDirectories = opendir("/sd/");

 if (sdCardListOfDirectories != NULL) {
 pcSerialComStringWrite("Printing all filenames:\r\n");
 sdCardDirectoryEntryPointer = readdir(sdCardListOfDirectories);

 while ((sdCardDirectoryEntryPointer != NULL) &&
 (NumberOfUsedBytesInBuffer + strlen(sdCardDirectoryEntryPointer->d_name)
 < fileNamesBufferSize)) {
 strcat(fileNamesBuffer, sdCardDirectoryEntryPointer->d_name);
 strcat(fileNamesBuffer, "\r\n");
 NumberOfUsedBytesInBuffer = NumberOfUsedBytesInBuffer +
 strlen(sdCardDirectoryEntryPointer->d_name);
 sdCardDirectoryEntryPointer = readdir(sdCardListOfDirectories);
 }

 closedir(sdCardListOfDirectories);

 return true;
 } else {
 pcSerialComStringWrite("Insert an SD card and ");
 pcSerialComStringWrite("reset the NUCLEO board.\r\n");
 return false;
 }
}

Code 9.13 Implementation of the function sdCardListFiles().

On line 3 of Code 9.13, it can be seen that a variable called NumberOfUsedBytesInBuffer is declared
and initialized to zero. This variable will be used to keep track of the number of bytes used to store the
list of files on the SD card. On line 4, a pointer named sdCardDirectoryEntryPointer of the type dirent
(directory entry) is declared.

On line 6, the root directory of the SD card is opened by means of the function opendir(), and a
pointer to it is stored in the object sdCardListOfDirectories. Line 8 evaluates if the root directory was
successfully opened by means of evaluating the content of sdCardListOfDirectories. If the directory was
successfully opened, then the message on line 9 is shown on the serial monitor. Then, the list of files in
the directory is retrieved by means of readdir() on line 10 and stored in sdCardDirectoryEntryPointer.

The while loop shown on line 12 is used to (i) check that sdCardDirectoryEntryPointer is not NULL (in
that case it implies that all the files were already explored) and (ii) that the memory usage is below the
limit given by the expression “(bufferNumberUsedBytes + strlen(sdCardDirectoryEntryPointer->d_name)

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

407

< fileNamesBufferSize)”. This expression assesses if the number of bytes that has already been used
(NumberOfUsedBytesInBuffer) plus the size in bytes of the next filename to be read (given by
strlen(sdCardDirectoryEntryPointer->d_name)) is smaller than the maximum number of available bytes
(fileNamesBufferSize).

NOTE: The (->) arrow operator is used to dereference the address a pointer contains
(in this example sdCardDirectoryEntryPointer points to the next directory entry)
to get or set the value stored in the variable itself. This operator will be discussed in
detail in Chapter 10.

On lines 15 and 16, the file names are written one after the other into fileNamesBuffer. On line 17,
the value of the NumberOfUsedBytesInBuffer is updated by means of adding the size of the filename
(i.e., strlen(sdCardDirectoryEntryPointer->d_name)) to be appended to the list of files. On line 19, the
pointer sdCardDirectoryEntryPointer is pointed to the next file in the directory in order to be ready to
start a new iteration of the while loop.

After finishing the while loop, the directory is closed on line 22 and the value true is returned on line 24.

If the statement on line 8 is false (i.e., the root directory was not successfully opened), then the
statements on lines 26 and 27 are executed in order to instruct the user to insert an SD card, just like
in the previous examples.

Proposed Exercise

1. What will happen if the SCK signal of the SD card module is disconnected before pressing the “l”
key?

Answer to the Exercise

1. The message “Insert an SD card and reset the board.” will be shown on the PC screen.

Example 9.4: Choose and Display One of the Event Log Files Stored on the SD Card

Objective

Introduce more advanced functionality regarding the filesystem.

Summary of the Expected Behavior

When pressing the “o” key on the PC keyboard, a filename can be entered. After pressing the Enter
key on the PC keyboard, the content of the corresponding file is shown on the serial terminal.

Test the Proposed Solution on the Board

Import the project “Example 9.4” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. Press “l” on the PC keyboard to get a list of all the event log files stored
on the SD card. A message with the listing should be displayed on the PC. Then, press “o” on the PC

408

A Beginner’s Guide to Designing Embedded System Applications

keyboard and type in the name of the file that will be opened, and then press Enter. The contents of
the file should be shown on the serial terminal.

In Figure 9.10, the result of executing the “o” command is shown for two different situations. First, the
name of a file that does exist (2021_01_27_17_05_06.txt) is entered and then the name of a file that
does not exist (2021_01_27_17_00_00.txt) is entered.

Please enter the file name
2021_01_27_17_05_06.txt
Opening file: /sd/2021_01_27_17_05_06.txt
The file content is:
Event = ALARM_ON
Date and Time = Wed Jan 27 17:04:47 2021
Event = MOTION_ON
Date and Time = Wed Jan 27 17:04:47 2021
Event = MOTION_OFF
Date and Time = Wed Jan 27 17:04:51 2021
Event = ALARM_OFF
Date and Time = Wed Jan 27 17:04:54 2021

Please enter the file name
2021_01_27_17_00_00.txt
File not found

Figure 9.10 Two examples of opening a file: first, when the file exists, and second, when the file does not exist.

Discussion of the Proposed Solution

The proposed solution is based on the function sdCardReadFile(), which is used to read the content of a
file on the SD card that is opened once its name has been entered by means of the PC keyboard.

Implementation of the Proposed Solution

In Table 9.10, the sections where lines were added to pc_serial_com.cpp are shown. It can be seen
that two private global variables are declared: an integer variable named numberOfCharsInFileName
and a char array named fileName of size SD_CARD_FILENAME_MAX_LENGTH (i.e., 32, which was
introduced in Code 9.5). In addition, four new private functions are declared: pcSerialComCharWrite(),
pcSerialComGetFileName(), pcSerialComShowSdCardFile(), and commandGetFileName(). The
implementation of these functions is discussed below.

In Table 9.11, the lines that were added in pcSerialComCommandUpdate() and availableCommands() in
order to implement the “o” command are shown.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

409

Table 9.10 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Declaration and initialization of private
global variables

static int numberOfCharsInFileName = 0;

static char fileName[SD_CARD_FILENAME_MAX_LENGTH] = "";

Declarations (prototypes) of private
functions

static void pcSerialComCharWrite(char chr);

static void pcSerialComGetFileName(char receivedChar);

static void pcSerialComShowSdCardFile(char * fileName);

static void commandGetFileName();

Table 9.11 Functions in which lines were added in pc_serial_com.cpp.

Function Lines that were added

static void
pcSerialComCommandUpdate(char
receivedChar)

case 'o': case 'O': commandGetFileName(); break;

static void availableCommands() pcSerialComStringWrite("Press 'o' or 'O' to show an SD

 Card file contents\r\n");

The implementation of the function commandGetFileName(), which is called when the “o” key is
pressed, is presented in Code 9.14. On line 3, it can be seen that a message is shown in order
to indicate that a filename should be entered. Then, on line 4, the variable pcSerialComMode is
assigned by PC_SERIAL_GET_FILE_NAME. This new mode is introduced in the new definition of
pcSerialComMode_t, as can be seen on line 2 of Code 9.15. The new mode is used in a similar way to the
other modes used in pcSerialComUpdate(), as can be seen on lines 6 to 8 of Code 9.16.

Finally, it is important to mention that the value of numberOfCharsInFileName is set to zero on line 5
of commandGetFileName(), as can be seen in Code 9.14. This is done in order to prepare the variable
numberOfCharsInFileName to receive a new filename.

NOTE: When pcSerialComMode is in the PC_SERIAL_GET_FILE_NAME mode, the
smart home system will not accept new commands until the filename is entered.

1
2
3
4
5
6

static void commandGetFileName()
{
 pcSerialComStringWrite("Please enter the file name \r\n");
 pcSerialComMode = PC_SERIAL_GET_FILE_NAME ;
 numberOfCharsInFileName = 0;
}

Code 9.14 Implementation of the function commandGetFileName().

1
2
3
4
5
6

typedef enum{
 PC_SERIAL_GET_FILE_NAME,
 PC_SERIAL_COMMANDS,
 PC_SERIAL_GET_CODE,
 PC_SERIAL_SAVE_NEW_CODE,
} pcSerialComMode_t;

Code 9.15 New declaration of the type definition pcSerialComMode_t.

410

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void pcSerialComUpdate()
{
 char receivedChar = pcSerialComCharRead();
 if(receivedChar != '\0') {
 switch (pcSerialComMode) {
 case PC_SERIAL_GET_FILE_NAME:
 pcSerialComGetFileName(receivedChar);
 break;
 case PC_SERIAL_COMMANDS:
 pcSerialComCommandUpdate(receivedChar);
 break;
 case PC_SERIAL_GET_CODE:
 pcSerialComGetCodeUpdate(receivedChar);
 break;
 case PC_SERIAL_SAVE_NEW_CODE:
 pcSerialComSaveNewCodeUpdate(receivedChar);
 break;
 default:
 pcSerialComMode = PC_SERIAL_COMMANDS;
 break;
 }
 }
}

Code 9.16 New implementation of the function pcSerialComUpdate().

In Code 9.17, the implementation of the function pcSerialComGetFileName(), which is called on line 7 of
the function pcSerialComUpdate(), is shown. On lines 3 and 4, it can be seen that the entered character
is checked to find out if it is '\r' (i.e., the “Enter” key on the PC keyboard), and it is also checked to see
if the length of the filename is smaller than the maximum filename length. If so, then PC_SERIAL_
COMMANDS is assigned to pcSerialComMode in order to be ready to receive new commands. Then,
a null character is written at the last position of fileName in order to finalize the string (line 6), and
numberOfCharsInFileName is set to zero in order to be ready to get a new filename the next time the
function pcSerialComGetFileName() is called. Finally, the pcSerialComShowSdCardFile() function is used
to display the contents of the file on the serial terminal.

In the event that the key pressed is not “Enter” and the length of the filename is smaller than the
maximum filename length, the else statement shown on line 9 of Code 9.17 is executed. It can be seen
that the received character is stored in the last position of fileName (line 10), the received character
is printed on the serial terminal (line 11), and then the number of characters in the filename is
incremented.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

411

1
2
3
4
5
6
7
8
9
10
11
12
13
14

static void pcSerialComGetFileName(char receivedChar)
{
 if ((receivedChar == '\r') &&
 (numberOfCharsInFileName < SD_CARD_FILENAME_MAX_LENGTH)) {
 pcSerialComMode = PC_SERIAL_COMMANDS;
 fileName[numberOfCharsInFileName] = '\0';
 numberOfCharsInFileName = 0;
 pcSerialComShowSdCardFile(fileName);
 } else {
 fileName[numberOfCharsInFileName] = receivedChar;
 pcSerialComCharWrite(receivedChar);
 numberOfCharsInFileName++;
 }
}

Code 9.17 Implementation of the function pcSerialComGetFileName().

The implementation of pcSerialComShowSdCardFile() is shown in Code 9.18. On line 3, the array of char
fileContentBuffer is declared with the appropriate size to store a file with twenty events, as discussed
below. Then, “\r\n” is written to the PC screen in order to start a new line. After this, the new function
sdCardReadFile() that is included in the sd_card module is called. This function copies the content of the
file whose name is indicated by fileName to fileContentBuffer, up to a maximum number of bytes indicated
by its third parameter, EVENT_STR_LENGTH*EVENT_LOG_MAX_STORAGE (line 6). If the file exists,
then sdCardReadFile() returns true, lines 7 to 9 are executed, and the file content is shown on the serial
monitor. If that file doesn’t exist, then sdCardReadFile() returns false, and lines 7 to 9 are not executed.

1
2
3
4
5
6
7
8
9
10
11

static void pcSerialComShowSdCardFile(char* fileName)
{
 char fileContentBuffer[EVENT_STR_LENGTH*EVENT_LOG_MAX_STORAGE] = "";
 pcSerialComStringWrite("\r\n");
 if (sdCardReadFile(fileName, fileContentBuffer,
 EVENT_STR_LENGTH*EVENT_LOG_MAX_STORAGE)) {
 pcSerialComStringWrite("The file content is:\r\n");
 pcSerialComStringWrite(fileContentBuffer);
 pcSerialComStringWrite("\r\n");
 }
}

Code 9.18 Implementation of the function pcSerialComShowSdCardFile().

The implementation of pcSerialComCharWrite() is shown on Code 9.19. Note that its parameter, chr, is
of type char, instead of the parameter of the function pcSerialComStringWrite(), which is of type const
char*, as was discussed in previous chapters. Because of this, pcSerialComStringWrite() cannot be used
on line 11 of Code 9.17 instead of pcSerialComCharWrite().

1
2
3
4
5
6

static void pcSerialComCharWrite(char chr)
{
 char str[2] = "";
 sprintf (str, "%c", chr);
 uartUsb.write(str, strlen(str));
}

Code 9.19 Implementation of the function pcSerialComCharWrite().

412

A Beginner’s Guide to Designing Embedded System Applications

In Table 9.12, the lines that were added to sd_card.h are shown. It can be seen that the public function
sdCardReadFile() has been included.

Table 9.12 Sections in which lines were added to sd_card.h.

Section Lines that were added

Declarations (prototypes) of public functions bool sdCardReadFile(const char* fileName, char *

readBuffer, int readBufferSize);

In Code 9.20, the implementation of the function sdCardReadFile() as can be seen in sd_card.cpp is
shown. Lines 3 to 8 are similar to previous examples. The aim of these lines is to append /sd/ to the
filename and store this in the string fileNameSD. For that reason, this string is declared with four more
positions (i.e., +4).

On line 10, the chosen file is opened and a pointer to the file is stored in sdCardFilePointer. It should be
noted that the parameter “r” is used when the file is opened, which states that the file is to be opened
with read privileges only. If the file has been successfully opened, then sdCardFilePointer is not NULL
and lines 13 to 24 are executed.

By means of lines 13 to 15, the name of the file that is being opened is shown. The while loop on line 18
is used to read all of the characters in the file sequentially and copy them to the readBuffer array until
the end of the file is reached (in that event the return value by feof(sdCardFilePointer) becomes true
and the while loop is finished) or the size of the read buffer has been reached (in that event the while
loop is finished, too).

The function fread() on line 19 has the following four parameters: a pointer to a block of memory
where the read bytes are stored (&readBuffer[i] in this example), the size in bytes of each element to be
read (1 in this example, because the elements are of type char), the number of elements to read (1 in
this example, because the characters of the file are read one after the other), and, finally, a pointer to a
FILE object that specifies the input stream (sdCardFilePointer in this example).

On line 22, the null character is written into readBuffer in order to indicate the end of the data, and on
line 23 the file is closed.

If the file does not exist, then sdCardFilePointer is assigned the NULL value. In that case, the else
condition of the if statement on line 12 is executed in order to indicate that the file was not found.

NOTE: In summary, in this example the reading of the file was ended because of one of
these reasons:
 i) It was not possible to open the file (i.e., sdCardFilePointer == NULL)
 ii) The end of the file was reached (i.e., feof(sdCardFilePointer) == true)
 iii) The maximum size of the buffer was reached (i.e., i == readBufferSize - 1)

For the sake of simplicity, the situation of an error on the file, which is assessed using
ferror(), is not considered in Code 9.19.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

413

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

bool sdCardReadFile(const char* fileName, char * readBuffer, int readBufferSize)
{
 char fileNameSD[SD_CARD_FILENAME_MAX_LENGTH+4] = "";
 int i;

 fileNameSD[0] = '\0';
 strcat(fileNameSD, "/sd/");
 strcat(fileNameSD, fileName);

 FILE *sdCardFilePointer = fopen(fileNameSD, "r");

 if (sdCardFilePointer != NULL) {
 pcSerialComStringWrite("Opening file: ");
 pcSerialComStringWrite(fileNameSD);
 pcSerialComStringWrite("\r\n");

 i = 0;
 while ((!feof(sdCardFilePointer)) && (i < readBufferSize - 1)) {
 fread(&readBuffer[i], 1, 1, sdCardFilePointer);
 i++;
 }
 readBuffer[i-1] = '\0';
 fclose(sdCardFilePointer);
 return true;
 } else {
 pcSerialComStringWrite("File not found\r\n");
 return false;
 }
}

Code 9.20 Implementation of the function sdCardReadFile().

Proposed Exercises

1. What will happen if an event log file with no events is selected?

2. How can the code be modified in order to automatically generate a daily backup of the events?

Answers to the Exercises

1. The smart home system will not store event log files with no events.

2. The eventLogUpdate() function can be modified in order to keep track of the current day, and once it
detects that the day has changed, it generates a new file with the corresponding events of the day.

9.3 Under the Hood

9.3.1 Fundamentals of Software Repositories

All the programs used in this book are imported from [2] to the Keil Studio Cloud. This program
sharing is done by means of a set of links and buttons, which are the front end (the presentation layer)
of a software repository that is being used in the back end (the data access layer) to support the file
sharing.

414

A Beginner’s Guide to Designing Embedded System Applications

A software repository is a storage location for software. At the user side, a package manager (such as
some tools provided by Keil Studio Cloud) usually helps to manage the repositories. The server side is
typically provided by organizations, either free of charge or for a subscription fee. For example, major
Linux distributions have many repositories around the world that mirror the main repository.

A repository provides a revision control system, which includes a historical record of changes in the
repository together with the corresponding committed objects. The user of a repository usually has
access to basic information about the repository, such as that shown in Table 9.13.

Table 9.13 Summary of typical information available about a repository.

information Used to

Versions available Indicate current and previous versions

Dependencies Indicate other elements that the current element depends on

Dependants Specify other elements that depend on the current element

License Govern the use or redistribution of the element

Build date and time Be able to trace each specific version

Metrics Indicate some properties of the element

Some functionality that is provided by most repositories is to add, edit, and delete content; show the
elements using different sorting properties; search for different types of elements and data; provide
access control; and import and export elements.

By means of this functionality, a repository can evolve as shown in Figure 9.11. It can be seen that
there is a main project (indicated in green) with different tags (1, 3, and 7 in Figure 9.11) from which
branches (indicated in yellow) can be created. The branches can be merged with the main project, as
shown in red, in order to create a new version of the software. They could, alternatively, become a
discontinued development branch, such as the one indicated in violet.

Figure 9.11 Diagram of a typical evolution of a repository.

The use of repositories provides many advantages, among which the following can be highlighted:

 n Allows many programmers to work in the same repository without interrupting one another.

 n Indicates when changes in the repository (commits) have been introduced by other programmers.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

415

The Keil Studio Cloud provides an easy-to-use environment where most of these things can be done,
as described in [6]:

 n Set a remote repository

 n Branch a repository

 n Edit files from a repository

 n Stage changes of a repository

 n Commit to a repository

 n Push to a repository

Proposed Exercises

1. How can the revision history of a given project be accessed using Keil Studio Cloud?

2. How can the changes between selected revisions be seen using Keil Studio Cloud?

3. How can changes made on a program be committed?

4. How can a program be shared with other people?

WaRNiNg: In order to do some of the proposed exercises, it is important to set
credentials for GitHub in Keil Studio Cloud as described step-by-step in [6].

Answers to the Exercises

1. The project should be selected as the active project and then the “History” view selected
(its shortcut is Alt+H). The “Revision History” window will open, showing all the information
corresponding to the commits that were made along the project history.

2. In the “Revision History” window, click once on any of the commits shown in order to select it. Click
for a second time on the same commit in order to display the list of changed files. Double-click on
one of the selected files. A window will open where the changes between revisions are shown in
different colors.

3. The reader is encouraged to make a change in Example 9.4; for example, in sdCardReadFile(), change
the line pcSerialComStringWrite(“File not found\r\n”); to pcSerialComStringWrite(“File not found in the
SD Card\r\n”). Then, select the “Source Control” window (Ctrl+Shift+G). Select the file sd_card.cpp

416

A Beginner’s Guide to Designing Embedded System Applications

and press the “+” sign. The file should be listed in the “Staged changes” list. Enter a commit message
and press the “Commit” button (its drawing is a check mark). Press the “More Actions...” button
(represented by three small dots). A menu will be displayed. Select “Push”. A message indicating that
the reader does not have permission to push will be shown.

 In order to commit the changes, the reader can fork to their own GitHub account but will first need
to connect the Mbed account to their GitHub account, following the instructions shown by Keil
Studio Cloud. If it was not previously connected, follow the step-by-step instructions indicated in
[6]. Once the Mbed account is connected to the GitHub account of the reader, press “Push” again.
A message indicating that the reader does not have permission to push will be shown. This time,
the option to “Fork on GitHub” will be shown. After doing so, a message indicating that the fork has
been created will be shown. In this way, the changes will be committed to the GitHub repository of
the reader.

4. The reader should use a web browser to access GitHub and open the repository related to the
project. Then, be sure that the repository access is configured as “public” and copy the URL of the
repository in order to share the created repository with other people.

9.4 Case Study

9.4.1 Repository Usage in Mbed-Based Projects

In this chapter, the fundamentals of repositories and their usage was introduced. It is interesting to
explore how repositories are used in Mbed-based projects. As an example, the game console provided
with a graphical LCD display [7] that was introduced in the Case Study of Chapter 6 can be used.

A representation of the system is shown in Figure 9.12. On that web page, similar to the one in [8], a
basic example of the game console “Pokitto” is shown, named “Hello World!” It can be seen that the
current version is indicated by a label (where it says “Files at revision”). All the previous versions are
available in the “History” tab.

At the bottom of Figure 9.12, it can be seen that there are three files in the repository: My_settings.h,
PokittoLib.lib, and main.cpp. This file structure is similar to the one used in the first chapters of this
book. By clicking on the “Revisions” link at the right of each file, the details of the corresponding
revisions can be seen.

In the “Repository details” frame at the right of Figure 9.12, some interesting information can be
seen. For example, it shows how many forks have been made of this repository, as well as how many
commits were made to the repository. At the bottom of the frame, the whole repository can be
downloaded.

Chapter 9 | File Storage on SD Cards and Usage of Software Repositories

417

Figure 9.12 Repository of an example of a game console based on Mbed.

Proposed Exercises

1. Are there any other examples of Pokitto programs available in repositories on the Mbed OS web
page?

2. How could a copy of the Pokitto “Hello World!” example be copied into the reader’s personal
repository?

Answers to the Exercises

1. About thirty examples are available in [9], all having the same organization as shown in Figure 9.12.

2. In order to make a copy of the example “Hello World!”, the “Import into Compiler” button must be
pressed.

418

A Beginner’s Guide to Designing Embedded System Applications

 References
[1] “microSD Card Pinout, Features & Datasheet”. Accessed July 9, 2021.

https://components101.com/misc/microsd-card-pinout-datasheet

[2] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory/

[3] “Data storage - API references and tutorials | Mbed OS 6 Documentation”. Accessed July 9, 2021.
https://os.mbed.com/docs/mbed-os/v6.12/apis/data-storage.html

[4] “pinout_labels - | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/teams/ST/wiki/pinout_labels

[5] “mbed-os/PeripheralPinMaps.h at master · ARMmbed/mbed-os · GitHub”. Accessed July 9, 2021.
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_STM/TARGET_STM32F4/
TARGET_STM32F429xI/TARGET_NUCLEO_F429ZI/PeripheralPinMaps.h

[6] “Arm Keil Studio Cloud User Guide”. Accessed July 9, 2021.
https://developer.arm.com/documentation/102497/1-5/Source-control/Work-with-Git

[7] “Game Console | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/game-console/

[8] “HelloWorld - This is an example “Hello World” program that w... | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/teams/Pokitto-Community-Team/code/HelloWorld/

[9] “Pokitto Community Team | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/teams/Pokitto-Community-Team/

Bluetooth Low Energy
Communication with a
Smartphone

Chapter 10

420

A Beginner’s Guide to Designing Embedded System Applications

10.1 Roadmap

10.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect Bluetooth Low Energy (BLE) modules to the NUCLEO board using a UART.

 n Develop programs to exchange data between the NUCLEO board and a smartphone using a BLE
connection.

 n Summarize the fundamentals of a BLE connection.

 n Describe the fundamentals of C++ objects.

10.1.2 Review of Previous Chapters

In previous chapters, the smart home system was provided with many functions, implemented by
means of a set of sensors and actuators. This functionality was configured by the user using different
interfaces, including a matrix keypad, an LCD display, and a PC. These interfaces were appropriate for
this project, but often there are other interfaces that are more convenient, more flexible, or allow a
better presentation of the information.

10.1.3 Contents of This Chapter

In this chapter, it will be explained how to enable communication between the NUCLEO board and
a smartphone using a BLE connection. This will be achieved by using an HM-10 module connected
to one of the UARTs of the NUCLEO board available in the ST ZIO connectors. In this way, relevant
information from the smart home system will be shown on the smartphone. In addition, the gate will
be controlled using the smartphone.

The fundamentals of object-oriented programming (OOP) will be introduced. It will be explained how
OOP can be used to increase code modularity, reusability, flexibility, and effectiveness. Some details
about the Mbed OS library objects that were used in previous chapters will be discussed.

Finally, a new way of implementing delays using interrupts and pointers will be shown. The delay
in the main loop will be replaced by a non-blocking delay. This will be useful to avoid blocking the
processor and keep it executing instructions while waiting for the expiration of the delay time.

10.2 Bluetooth Low Energy Communication between a
Smartphone and the NUCLEO Board

10.2.1 Connect the Smart Home System to a Smartphone

In this chapter, the smart home system will be connected to a smartphone using Bluetooth Low
Energy (BLE), as shown in Figure 10.1. The aim of this setup is to monitor relevant information from
the smart home system and control the gate from the smartphone.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

421

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

House
outside

view

Motion
sensor

Smart home
system controller

Smartphone

Gas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

SD ardc

J
A

P
A

N
FC

C
v

R
e

pr
ari

1

S
D

C
S

/3
2
G

B

3
2
4
2
0
-0

1
0
.A

0
0
L
F

Bluetooth
Low Energy

(BLE)

BLE
antenna

App

BLE Antenna

Gate Closing

Open

Close

Gate Opening

Light Intensity

Figure 10.1 The smart home system will be connected to a smartphone via Bluetooth Low Energy.

In order to connect the NUCLEO board to a smartphone, two elements are required:

1. A module that provides the NUCLEO board with BLE communication capabilities.

2. A specifically prepared application running on a smartphone.

Figure 10.2 shows how to connect the HM-10 Bluetooth module, which is described in [1], to the
NUCLEO board. These connections are summarized in Table 10.1.

422

A Beginner’s Guide to Designing Embedded System Applications

(R
e

la
y

G
N

D
)

(R
e

la
y

V
C

C
)

N
U

C
L

E
O

-F
4
2
9
Z

I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

CN8

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

MQ-2
Gas sensor

-2MQ

GND

5V

RGB LED

G
N
D

3
V
3

G
N
D

V

5

3
V
3

5
V

3
V
3

5
V

MB-102

CN9

CN7CN10

GND

3.3V

Potentiometer

5V

GND

A1

Temperature
sensor

LM 35

3.3V

5V
GND

GND

HV1HV2HV

LV

HV3

LV3 LV3 LV1

HV4

LV4 LV4 LV2

GND

GND

G
N
D

V
C
C

V
O

R
S

R
/
W

ED
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

01234567

N
C

P
S
B

R
S
T

V
O
U
T

B
L
A

B
L
K

120

A0
PG 0_

10KΩGND 5V

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0PIR
sensor

Red
GND

Blue

Green

P
E

1

2
_

(G
a

s)

P
F

9

_

P
F

7

_

P
F

8

_

P
G

1_

(D
ir
1

L
S

)

(D
ir
1

)

P
E

6_

(A
u

d
io

)

(D
ir

L
S

)
2

(D
ir

)
2

P
B

4

_

P
D

1

2
_

P
A

0_

(R
e

d
)

(B
lu

e
)

(G
re

e
n
)

LDR

L
35

M

P
C

9

_

Buzzer

5V

DO

1
0
3

3.3V

SD card and
SD card reader

GND

A

B

C

D

87

1

4

2

5

3

6

9

0 #

5
1

5
1

1
0
K

JAPAN FCC v

RKingston

1

SDCS/32GB

32420-010.A00LF

3
V

3
C

S
M

O
S

I
C

L
K

M
IS

O
G

N
D

PA 4_

(CLK)

(O)MIS

(MOSI)

(CS)

PC 10_

PC 11_

PC 12_

(R
e

la
y

IN
2

)

(R
e

la
y

IN
1

)

CN9

P
E

3_

P
F

2
_

5V G
N

D

(tput)PIR Ou

PD 5_PD 6_
(D)RX(XD)T

A2

C

2
5
4
1

P
2
5
B

T
1

7
4
J

P
1
2

0
4

C

3.3V GND

To igure 7F .4

HM-10
BLE module

CN9
2

Figure 10.2 Connections to be made between the NUCLEO board and the HM-10 module.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

423

Table 10.1 Summary of the connections between the NUCLEO board and the HM-10 module.

NUCLEO board HM-10 module

3V3 VCC

GND GND

PD_6 (UART2_RX) TXD

PD_5 (UART2_TX) RXD

In Figure 10.3, the pins of the HM-10 module are shown. The STATE pin is the connection status. It is in
LOW when not connected and in HIGH when connected. The BRK pin is the Break pin. When there is
an active connection, bringing the BRK pin LOW breaks the connection. These two pins are not used in
this book.

Figure 10.3 Basic functionality of the HM-10 module pins.

The HM-10 module is connected to the NUCLEO board by means of the pins PD_5 and PD_6, which
are the TXD and RXD signals of a UART on the NUCLEO board; this is shown in Figure 8.5 and
Table 10.1. The HM-10 module is responsible for the communication with the smartphone using a
BLE connection. Using a UART serial communication, such as the one explained in Chapter 2, the
information is exchanged between the NUCLEO board and the HM-10 module.

On the other side of the connection, a BLE module inside the smartphone implements the
communication with the HM-10 module. The smartphone routes the messages from the smart home
system to the application “Smart Home System App.”

To test the HM-10 module, download the .bin file of the program “Subsection 10.2.1” from the URL
available in [2] and load it onto the NUCLEO board. The application to be used on the smartphone
is named “Smart Home System App” and should be downloaded from Google Play or the App
Store (depending on the operating system of the smartphone the user owns) and installed on the
smartphone as usual.

Open the application. The “Connect to the Smart Home System” screen is displayed. Click on the
magnifying glass located at the bottom of the screen (Figure 10.4). Some BLE connections should be
listed on the smartphone. Select the “BT05” connection (Figure 10.4). Once the connection is established,
different icons will be displayed on the screen, and the status of the connection will be indicated in the top
right corner (Figure 10.4). Wave a hand over the PIR sensor. The “ALARM” and “MOTION DETECTOR”
indicators of the “Smart Home System App” should change their color. Press the “OPEN THE GATE” and
“CLOSE THE GATE” buttons of the “Smart Home System App.” The motor should rotate in one direction
and then the other. If so, the reader is ready to move forward to the first example of this chapter.

424

A Beginner’s Guide to Designing Embedded System Applications

Figure 10.4 Screenshots of the “Smart Home System App,” showing the sequence to connect and use the application.

WaRNiNg: Ignore all the other elements of the setup during the proposed test
(Alarm LED, display, etc.).

TiP: If the BLE connection is not established, check if all the wires are properly
connected. If there are no mistakes in the connections detailed in Table 10.1, try using
another HM-10 module or smartphone.

10.2.2 Messages Exchanged with the Smartphone application

In order to exchange information between the program running on the NUCLEO board and the
smartphone application, the list of messages that the smartphone application is prepared to receive
and send by means of the BLE connection must be known.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

425

NOTE: The code used to implement the application running on the smartphone is
beyond the scope of this book and, therefore, is not analyzed. However, the reader
may download from Google Play or the App Store a “Bluetooth terminal” application
and use it on the smartphone to receive and send the messages detailed below in a
similar way as messages are received and sent to the PC using the serial terminal. In
that case, the “Smart Home System App” behavior can be emulated using a Bluetooth
terminal. “CR+LF” should be configured in “newline receive settings” and “None” in
“newline send settings.”

All the messages that can be sent from the NUCLEO board to the application are listed in Table 10.2.
These messages force a given element in the application to turn on or off.

Table 10.2 Summary of the messages from the NUCLEO board to the application.

 Message Meaning

 ALARM_ON Turn on the state indicator of the alarm in the application

 ALARM_OFF Turn off the state indicator of the alarm in the application

 GAS_DET_ON Turn on the state indicator of the gas detector in the application

 GAS_DET_OFF Turn off the state indicator of the gas detector in the application

 OVER_TEMP_ON Turn on the state indicator of the over temperature detector in the application

 OVER_TEMP_OFF Turn off the state indicator of the over temperature detector in the application

 LED_IC_ON Turn on the state indicator of the Incorrect code LED in the application

 LED_IC_OFF Turn off the state indicator of the Incorrect code LED in the application

 LED_SB_ON Turn on the state indicator of the System blocked LED in the application

 LED_SB_OFF Turn off the state indicator of the System blocked LED in the application

 MOTION_ON Turn on the state indicator of the motion sensor in the application

 MOTION_OFF Turn off the state indicator of the motion sensor in the application

All the messages that can be sent from the application to the NUCLEO board are listed in Table 10.3.
The aim of these messages is to inform the board that a given button has been pressed or released
in the application or to request the current state of all the system events that are shown by the
smartphone.

Table 10.3 Summary of the messages from the application to the NUCLEO board.

 Message Meaning

 O The “Open the gate” button was pressed in the application

 C The “Close the gate” button was pressed in the application

 b The application requested the current state of all the system events shown in Table 10.2

426

A Beginner’s Guide to Designing Embedded System Applications

NOTE: In order to simplify the software implementation, only one letter is used in the
messages from the application to the NUCLEO board, as can be seen in Table 10.3.
Messages having more letters, as in Table 10.2, could be used. However, in that case
the program becomes more complex.

In the following examples, the messages in Table 10.2 and Table 10.3 will be gradually introduced as
more functionality regarding the smartphone application is incorporated into the smart home system.

Example 10.1: Control the gate Opening and Closing from a Smartphone

Objective

Introduce the use of a BLE module to receive data sent from a smartphone application to the
NUCLEO board.

Summary of the Expected Behavior

If the “Open the gate” button is pressed in the application, it is reported to the NUCLEO board,
which in turn opens the gate if it is not already opened. If the “Close the gate” button is pressed in the
application, it is reported to the NUCLEO board, which closes the gate if it is not already closed.

Test the Proposed Solution on the Board

Import the project “Example 10.1” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. Open the application “Smart Home System App” on the smartphone.
Connect the application to the NUCLEO board. Press the “Open the gate” button in the application. If
the gate is not already opened, then it should be opened by the NUCLEO board. Press the “Close the
gate” button in the application. The gate should close.

Discussion of the Proposed Solution

The proposed solution is based on the BLE communication that is established between the HM-10
module and the application running on the smartphone. The fundamentals of BLE communication are
described in the Under the Hood section at the end of this chapter. In this example, only the code that
runs on the STM32 microcontroller is explained.

A new module named ble_com is included in order to receive commands from the smartphone
application.

Implementation of the Proposed Solution

The function bleComUpdate() is included in smartHomeSystemUpdate() (line 10 of Code 10.1) to
periodically check if a new command is received from the smartphone. In order to implement this call,
the library ble_com.h is included in smart_home_system.cpp, as can be seen in Table 10.4.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

427

1
2
3
4
5
6
7
8
9
10
11
12

void smartHomeSystemUpdate()
{
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 lightSystemUpdate();
 bleComUpdate();
 delay(SYSTEM_TIME_INCREMENT_MS);
}

Code 10.1 Details of the new implementation of smart_home_system.cpp.

Table 10.4 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "ble_com.h"

The new module ble_com is shown in Code 10.2 and Code 10.3. The libraries that are included are
shown from lines 3 to 6 of Code 10.2. On line 10, the public global object uartBle is declared. On line
14, the prototype of the private function bleComCharRead() is declared.

The implementation of the public function bleComUpdate() is shown on lines 18 to 27 of Code 10.2.
The reader may notice that this is similar to the function pcSerialComCommandUpdate() of the
pc_serial_com module. On line 20, the private function bleComCharRead() (implemented on lines 31 to
38) is used to read characters that the smartphone application sends. If the application does not send
a character, then the function returns the null character (‘\0’).

On lines 21 to 26, if a new character is received from the smartphone application, a switch statement
is used to call gateOpen() or gateClose() from the module gate if the character is “O” or “C”, respectively.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

//=====[Libraries]===

#include "mbed.h"

#include "ble_com.h"
#include "gate.h"

//=====[Declaration and initialization of public global objects]===============

UnbufferedSerial uartBle(PD_5, PD_6, 9600);

//=====[Declarations (prototypes) of private functions]========================

static char bleComCharRead();

//=====[Implementations of public functions]===================================

void bleComUpdate()
{
 char receivedChar = bleComCharRead();

428

A Beginner’s Guide to Designing Embedded System Applications

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 if(receivedChar != '\0') {
 switch (receivedChar) {
 case 'O': gateOpen(); break;
 case 'C': gateClose(); break;
 }
 }
}

//=====[Implementations of private functions]==================================

static char bleComCharRead()
{
 char receivedChar = '\0';
 if(uartBle.readable()) {
 uartBle.read(&receivedChar,1);
 }
 return receivedChar;
}

Code 10.2 Details of the implementation of the ble_com.h.

NOTE: The program code implemented in this example does not include the response
of the “b” message that was introduced in Table 10.3. This will be addressed in
Example 10.3.

Finally the implementation of the file ble_com.h is shown in Code 10.3.

1
2
3
4
5
6
7
8
9
10
11
12

//=====[#include guards - begin]===

#ifndef _BLE_COM_H_
#define _BLE_COM_H_

//=====[Declarations (prototypes) of public functions]=========================

void bleComUpdate();

//=====[#include guards - end]===

#endif // _BLE_COM_H_

Code 10.3 Implementation of the file ble_com.h.

Proposed Exercise

1. How can the Fire alarm test button functionality be implemented by means of a button press on the
smartphone application?

Answer to the Exercise

1. A “Fire alarm test button” should be included in the application, and a character (such as “A”) should
be sent from the smartphone to the NUCLEO board when this button is pressed. The program
running on the NUCLEO board should process this message and trigger the corresponding actions
in order to set the variables overTemperatureDetected and gasDetected to ON.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

429

Example 10.2: Report the Smart Home System State to a Smartphone

Objective

Use of a BLE module to send data from the NUCLEO board to the smartphone.

Summary of the Expected Behavior

The states of different elements of the smart home system (alarm, gas detector, over temperature
detector, Incorrect code indicator, System blocked indicator, and motion sensor) are communicated to
the application running on the smartphone.

Test the Proposed Solution on the Board

Import the project “Example 10.2” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. Make sure that the alarm is not active. Open the smartphone application
“Smart Home System App.” Connect the application to the NUCLEO board. Press the Fire alarm test
button (B1 User button). The state of the alarm should be displayed in the application. Wave a hand
over the PIR sensor. The application should notify the user that motion has been detected.

Discussion of the Proposed Solution

The proposed solution is again based on the BLE communication established between the HM-10
module and the application running on the smartphone. New functionality is included in the ble_com
module in order to implement the expected behavior.

Implementation of the Proposed Solution

The states of the alarm, gas detector, over temperature detector, Incorrect code indicator, System
block indicator, and motion sensor are to be reported. To send the states to the smartphone
application, the function eventLogWrite() from the module event_log is modified. The new
implementation can be seen in Code 10.4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void eventLogWrite(bool currentState, const char* elementName)
{
 char eventAndStateStr[EVENT_LOG_NAME_MAX_LENGTH]) = "";

 strcat(eventAndStateStr, elementName);
 if (currentState) {
 strcat(eventAndStateStr, "_ON");
 } else {
 strcat(eventAndStateStr, "_OFF");
 }

 arrayOfStoredEvents[eventsIndex].seconds = time(NULL);
 strcpy(arrayOfStoredEvents[eventsIndex].typeOfEvent, eventAndStateStr);
 if (eventsIndex < EVENT_LOG_MAX_STORAGE - 1) {
 eventsIndex++;
 } else {
 eventsIndex = 0;

430

A Beginner’s Guide to Designing Embedded System Applications

18
19
20
21
22
23
24
25
26
27
28
29

 }

 arrayOfStoredEvents[eventsIndex].storedInSd = false;

 pcSerialComStringWrite(eventAndStateStr);
 pcSerialComStringWrite("\r\n");

 bleComStringWrite(eventAndStateStr);
 bleComStringWrite("\r\n");

 eventAndStateStrSent = true;
}

Code 10.4 New implementation of the function eventLogWrite().

The function eventLogWrite() already sends the messages shown in Table 10.2 to the serial
terminal (lines 22 and 23). Following a similar procedure, lines 25 and 26 are added to call the new
function bleComStringWrite(). In order to implement this call, the library ble_com.h is included in
event_log.cpp, as can be seen in Table 10.5. When the function eventLogWrite() is called, the variable
eventAndStateStrSent is set to true (line 28). This variable is declared in event_log.cpp, as can be seen in
Table 10.5, and its meaning will be explained in Code 10.5.

The new implementation of the function eventLogUpdate() can be seen in Code 10.5. This function is
called approximately every 10 milliseconds (depending on the delays executed in the other function
calls of smartHomeSystemUpdate()). The application running on the smartphone needs some time
between received messages in order to process each command. For this reason, eventLogUpdate()
is modified in order to send only one message in each call. To accomplish this, the variable
eventAndStateStrSent is set to false in line 3. The event states will be updated only if this variable is
false (lines 6 to 41).

As explained for Code 10.4, eventAndStateStrSent is set to true when a message is sent to the
smartphone. This is because eventLogWrite() is called if there are changes in the state of any event.
Then, if more than one event changes its state simultaneously, there will be at least a 10-millisecond
delay between the corresponding messages. For instance, the ALARM_ON and GAS_DET_ON events
occur almost simultaneously. Also, the LED_SB_ON and LED_IC_ON events occur simultaneously. In
any of these cases, the corresponding messages will be sent to the smartphone with a gap of at least
10 milliseconds.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void eventLogUpdate()
{
 eventAndStateStrSent = false;
 bool currentState;

 if (!eventAndStateStrSent) {
 currentState = sirenStateRead();
 eventLogElementStateUpdate(sirenLastState, currentState, "ALARM");
 sirenLastState = currentState;
 }

 if (!eventAndStateStrSent) {
 currentState = gasDetectorStateRead();
 eventLogElementStateUpdate(gasLastState, currentState, "GAS_DET");

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

431

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 gasLastState = currentState;
 }

 if (!eventAndStateStrSent) {
 currentState = overTemperatureDetectorStateRead();
 eventLogElementStateUpdate(tempLastState, currentState, "OVER_TEMP");
 tempLastState = currentState;
 }

 if (!eventAndStateStrSent) {
 currentState = incorrectCodeStateRead();
 eventLogElementStateUpdate(ICLastState, currentState, "LED_IC");
 ICLastState = currentState;
 }

 if (!eventAndStateStrSent) {
 currentState = systemBlockedStateRead();
 eventLogElementStateUpdate(SBLastState ,currentState, "LED_SB");
 SBLastState = currentState;
 }

 if (!eventAndStateStrSent) {
 currentState = motionSensorRead();
 eventLogElementStateUpdate(motionLastState ,currentState, "MOTION");
 motionLastState = currentState;
 }
}

Code 10.5 New implementation of the function eventLogUpdate().

Table 10.5 Sections in which lines were added to event_log.cpp.

Section Lines that were added

Libraries #include "ble_com.h"

Declaration and initialization of private global
variables

static bool eventAndStateStrSent;

The implementation of the new public function bleComStringWrite() from module ble_com is shown in
Code 10.6, and its prototype is declared in ble_com.h, as shown in Table 10.6.

1
2
3
4

void bleComStringWrite(const char* str)
{
 uartBle.write(str, strlen(str));
}

Code 10.6 New function bleComStringWrite() in ble_com.cpp.

Table 10.6 Sections in which lines were added to ble_com.h.

Section Lines that were added

Declarations (prototypes) of public functions void bleComStringWrite(const char* str);

432

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. Given that the modules pc_serial_com and ble_com have many similarities, why was a function named
bleComInit() not included in smartHomeSystemInit()?

Answer to the Exercise

1. The HM-10 module automatically initializes itself after power on, so no initialization is required.
However, as stated in other chapters, this function may have been included in order to follow the
same pattern as in other modules even though no functionality is needed in the BLE communication.

Example 10.3: implement the Smart Home System State Report Using Objects

Objective

Introduce the use of object-oriented programming.

NOTE: The C language does not support object-oriented programming. The C++
language is a superset of C that introduces the concept of classes and objects, among
other features. Given that objects are used in all of the program code of this book (for
example, DigitalIn, DigitalOut, etc.), the C language is not sufficient to interpret the
code. The IDE (Integrated Development Environment, such as Keil Studio Cloud) infers
that C++ is being used because the files have the extension .cpp (“C plus plus”, C++).

Summary of the Expected Behavior

The behavior of this example will remain exactly the same as that in Example 10.2, but some changes
are included to improve the smartphone application functionality. Also, the code will be refactored in
order to introduce the use of object-oriented programming.

Test the Proposed Solution on the Board

Import the project “Example 10.3” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. Open the smartphone application “Smart Home System App.” Connect
the application to the NUCLEO board. Press the Fire alarm test button (B1 User button). The state of
the alarm should be displayed in the application. Reset the NUCLEO board. Note that the alarm turns
off on the NUCLEO board but in the smartphone application it remains on. Press the button “System
Controller” in the smartphone application, which is used to send a request to the NUCLEO board for
the updated state of the system events. The alarm should turn off.

Discussion of the Proposed Solution

Throughout this book, the concept of object has been mentioned several times. In this example, a class
named system_event is created. Several instances of this class are declared to implement part of the
functionality of the event_log module. Each instance of the system_event class is called an object. How to
implement methods and create attributes to use the system_event objects that are created is shown below.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

433

Implementation of the Proposed Solution

A new module called system_event is created. The implementation is shown in Code 10.7 and
Code 10.8. In Code 10.7, the library event_log.h is included because the definition of EVENT_LOG_
NAME_MAX_LENGTH is used on line 20. The declaration of the new class systemEvent can be seen
on lines 12 to 21 of file system_event.h. The objects of this class will provide the functionality that is
needed to implement the events that are logged and reported by the module event_log.

The class is divided into public (line 17) and private (line 22) members. The public members (from lines
14 to 17) are accessible outside the class, and the private members (from lines 19 to 21) are neither
accessible nor viewable from outside the class. The concept is similar to the concepts of public and
private that were introduced in Chapter 5. The variables and functions that belong to the class alone
are called attributes and methods, respectively.

The public method declared on line 14 is a special method that every class must have, called the
constructor. The constructor is a method with the same name as the class, which is automatically called to
initialize an object of a class when it is created. The constructor may execute statements or call functions.

The implementation of the other methods and use of the attributes of this class is shown in Code 10.8
from lines 10 to 39. The difference in the implementation of functions is that the name of the class and
“::” should precede the name of the method.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[#include guards - begin]===

#ifndef _SYSTEM_EVENT_H_
#define _SYSTEM_EVENT_H_

//=====[Libraries]===

#include "event_log.h"

//=====[Declaration of public classes]===

class systemEvent {
 public:
 systemEvent(const char* eventLabel);
 void stateUpdate(bool state);
 bool lastStateRead();
 char* getLabel();
 private:
 void lastStateUpdate(bool state);
 char label[EVENT_LABEL_MAX_LENGTH];
 bool lastState;
};

//=====[#include guards - end]===

#endif // _SYSTEM_EVENT_H_

Code 10.7 Details of the implementation of the file system_event.h.

434

A Beginner’s Guide to Designing Embedded System Applications

If the current state of the event is different from the previous state (line 32), then the function
eventLogWrite() is called (line 33). Finally, the last state of the event is stored (line 35). The keyword this
is an expression whose value is the memory address of the object on which the member function is
being called.

The methods lastStateRead(), getLabel(), and lastStateUpdate() are shown in Code 10.8. The
implementation of these methods is very straightforward: lastStateRead() returns the last state,
while getLabel() returns a pointer to the label. The method lastStateUpdate() assigns the value of the
parameter state to the lastState private variable of the object of the class systemEvent.

In Code 10.9, some sections of the file event_log.cpp are shown. The names of the struct and data types
previously named systemEvent and systemEvent_t were renamed to storedEvents and storedEvents_t,
respectively (lines 3 and 7). Line 21 was modified to account for this change. Also, the private function
eventLogElementStateUpdate() was removed from this module.

The objects related to each of the events shown in Table 10.2 are declared on lines 11 to 16. When
each of these objects is created, the constructor is called and the eventLabel attribute is assigned to
the created object (line 12 of Code 10.8). Then, the private attribute lastState is initialized to OFF
on line 13 of Code 10.8. In order to make use of the class systemEvent, the library system_event.h is
included in event_log.cpp, as indicated in Table 10.7. Also in Table 10.7 the declarations of the function
prototype eventLabelReduce and the private definition EVENT_LOG_NAME_SHORT_MAX_LENGTH
are shown. In Table 10.8, the lines added to event_log.h are shown.

Table 10.7 Sections in which lines were added to event_log.cpp.

Section Lines that were added

Libraries #include "system_event.h"

Declarations (prototypes) of private functions void eventLabelReduce(char * eventLogReportStr,

 systemEvent * event);

Declaration of private defines #define EVENT_LOG_NAME_SHORT_MAX_LENGTH 22

Table 10.8 Sections in which lines were added to event_log.h.

Section Lines that were added

Declarations (prototypes) of public functions void eventLogReport();

Declaration of public definitions #define EVENT_LABEL_MAX_LENGTH 10

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

435

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "system_event.h"

//=====[Implementations of public methods]=====================================

systemEvent::systemEvent(const char* eventLabel)
{
 strcpy(label, eventLabel);
 lastState = OFF;
}

void systemEvent::stateUpdate(bool state)
{
 if (state != this->lastStateRead()) {
 eventLogWrite(state, this->getLabel());
 }
 this->lastStateUpdate(state);
}

bool systemEvent::lastStateRead()
{
 return lastState;
}

char* systemEvent::getLabel()
{
 return label;
}

//=====[Implementations of private methods]====================================

void systemEvent::lastStateUpdate(bool state)
{
 lastState = state;
}

Code 10.8 Details of the implementation of the file system_event.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

//=====[Declaration of private data types]=====================================

typedef struct storedEvent {
 time_t seconds;
 char typeOfEvent[EVENT_LOG_NAME_MAX_LENGTH];
 bool storedInSd;
} storedEvent_t;

//=====[Declaration and initialization of public global objects]===============

systemEvent alarmEvent("ALARM");
systemEvent gasEvent("GAS_DET");
systemEvent overTempEvent("OVER_TEMP");
systemEvent ledICEvent("LED_IC");
systemEvent ledSBEvent("LED_SB");
systemEvent motionEvent("MOTION");

//=====[Declaration and initialization of private global variables]============

static int eventsIndex = 0;
static storedEvent_t arrayOfStoredEvents[EVENT_LOG_MAX_STORAGE];
static bool eventAndStateStrSent;

Code 10.9 Details of the new implementation of some sections of the file event_log.cpp.

436

A Beginner’s Guide to Designing Embedded System Applications

The new implementation of the public function eventLogUpdate() is shown in Code 10.10. The method
stateUpdate() is called for each system event if eventAndStateStrSent is false (lines 5 to 13) and replaces
the functionality of the private function eventLogElementStateUpdate(), which was removed from
event_log.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void eventLogUpdate()
{
 eventAndStateStrSent = false;

 if (!eventAndStateStrSent) alarmEvent.stateUpdate(sirenStateRead());
 if (!eventAndStateStrSent) gasEvent.stateUpdate(gasDetectorStateRead());
 if (!eventAndStateStrSent)
 overTempEvent.stateUpdate(overTemperatureDetectorStateRead());
 if (!eventAndStateStrSent)
 ledICEvent.stateUpdate(incorrectCodeStateRead());
 if (!eventAndStateStrSent)
 ledSBEvent.stateUpdate(systemBlockedStateRead());
 if (!eventAndStateStrSent) motionEvent.stateUpdate(motionSensorRead());
}

Code 10.10 Details of the implementation of the ble_com.h.

By comparing lines 11 to 16 of Code 10.9 and Code 10.10 with Code 7.20, it can be seen how the
code modularity, reusability, flexibility, and effectiveness is increased by the use of object-oriented
programming (OOP).

NOTE: Some other features of OOP, such as polymorphism, inheritance,
encapsulation, and abstraction, are beyond the scope of this book and are, therefore,
not discussed here.

NOTE: The objects defined by the Mbed OS that were introduced in previous
chapters, such as DigitalIn, DigitalOut, UnbufferedSerial, etc. are used in a very
similar way to the object introduced in this example. All those Mbed OS objects have
a constructor and a set of publicly defined methods and can be instantiated as many
times as needed, just like the systemEvent Object.

In order to improve the experience of using the smartphone application, the NUCLEO board now
responds to the character “b” sent from the smartphone application. When this character is received,
the function eventLogReport() is called, as shown in the new implementation of bleComUpdate() (line 8
of Code 10.11).

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

437

1
2
3
4
5
6
7
8
9
10
11

void bleComUpdate()
{
 char receivedChar = bleComCharRead();
 if(receivedChar != '\0') {
 switch (receivedChar) {
 case 'O': gateOpen(); break;
 case 'C': gateClose(); break;
 case 'b': eventLogReport(); break;
 }
 }
}

Code 10.11 Details of the implementation of the bleComUpdate().

The implementation of eventLogReport() in the module event_log is shown in Code 10.12. This function
sends a string to the smartphone application that contains the state of the system events, separated
by commas. Because there is a limitation in the length of the string, each event label and state is sent
using only a character; for instance, the string “AF,GF,TF,IF,SF,MF” means that all the system events are
off. From lines 5 to 20, this string (eventLogReportStr) is prepared using the function eventLabelReduce(),
and on lines 22 to 23, eventLogReportStr is sent using bleComStringWrite().

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void eventLogReport()
{
 char eventLogReportStr[EVENT_LOG_NAME_SHORT_MAX_LENGTH] = "";

 eventLabelReduce(eventLogReportStr, &alarmEvent);
 strcat(eventLogReportStr, ",");

 eventLabelReduce(eventLogReportStr, &gasEvent);
 strcat(eventLogReportStr, ",");

 eventLabelReduce(eventLogReportStr, &overTempEvent);
 strcat(eventLogReportStr, ",");

 eventLabelReduce(eventLogReportStr, &ledICEvent);
 strcat(eventLogReportStr, ",");

 eventLabelReduce(eventLogReportStr, &ledSBEvent);
 strcat(eventLogReportStr, ",");

 eventLabelReduce(eventLogReportStr, &motionEvent);

 bleComStringWrite(eventLogReportStr);
 bleComStringWrite("\r\n");
}

Code 10.12 Details of the implementation of the function eventLogReport().

The implementation of the function eventLabelReduce() is shown in Code 10.13. This function
concatenates onto the string eventLogReportStr a character that represents the event (lines 4, 6, 8, 10,
12, and 14) by using strcmp to compare the label of the event received with each event string (lines 3,
5, 7, 9, 11, and 13). Then, it checks the last state of the event (line 17) and appends a character that
represents the state (lines 18 or 20).

438

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

static void eventLabelReduce(char * eventLogReportStr, systemEvent * event)
{
 if (strcmp(event->getLabel(), "ALARM") == 0) {
 strcat(eventLogReportStr,"A");
 } else if (strcmp(event->getLabel(), "GAS_DET") == 0) {
 strcat(eventLogReportStr,"G");
 } else if(strcmp(event->getLabel(), "OVER_TEMP") == 0) {
 strcat(eventLogReportStr,"T");
 } else if(strcmp(event->getLabel(), "LED_IC") == 0) {
 strcat(eventLogReportStr,"I");
 } else if(strcmp(event->getLabel(), "LED_SB") == 0) {
 strcat(eventLogReportStr,"S");
 } else if(strcmp(event->getLabel(), "MOTION") == 0) {
 strcat(eventLogReportStr,"M");
 }

 if (event->lastStateRead()) {
 strcat(eventLogReportStr, "N");
 } else {
 strcat(eventLogReportStr, "F");
 }
}

Code 10.13 Details of the implementation of the function eventLabelReduce().

Proposed Exercise

1. How can a systemEvent object be created in order to monitor the state of the strobe light?

Answer to the Exercise

1. A possible implementation may be by means of declaring the object in Code 10.9 as:

 systemEvent strobeLightEvent(“STROBE_LIGHT”);

and then incorporating the following lines in Code 10.10:

 strobeLightEvent.stateUpdate(strobeLightStateRead());

Example 10.4: implement Non-Blocking Delays using Pointers and interrupts

Objective

Introduce the use of non-blocking delays and review the concepts of pointer and interrupt.

Summary of the Expected Behavior

The behavior of this example will remain exactly the same as that in Example 10.3. However, the delay
used in the main loop of the program will be replaced by a non-blocking delay.

Test the Proposed Solution on the Board

Import the project “Example 10.4” using the URL available in [2], build the project, and drag the .bin
file onto the NUCLEO board. The behavior should be exactly the same as in Example 10.3.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

439

Discussion of the Proposed Solution

The proposed solutions implemented throughout the examples in the book use blocking delays.
This means that the processor waits until the expiration of the delay time without executing other
instructions. Using non-blocking delays allows the program to check the condition of the delay time
expiration with an if statement. In this way, the processor can execute other instructions while waiting
for the delay time to expire.

Implementation of the Proposed Solution

Code 10.14 shows the new implementations of smartHomeSystemInit() and smartHomeSystemUpdate().
The blocking delay of the function smartHomeSystemUpdate() is replaced by the function
nonBlockingDelayRead(). This function is called using smartHomeSystemDelay as a parameter.

The “&” operator before the parameter is called the reference operator and it is defined as the “memory
address of…”. This operator brings an important concept: parameter passing to functions. In this book,
the two most common methods are used: pass-by-value and pass-by-reference. In the former, a local
copy of the variable used as a parameter is created and used inside the function, as introduced in
Chapter 3. Therefore, the value of the variable used as a parameter is not modified, only the local
copy. In the latter, the memory address of the variable used as a parameter is passed, and the function
can change its value. In this way, if the value of the variable used as a parameter is modified inside the
function, its value outside the function scope is also modified. Some examples are shown in Table 10.9.

Table 10.9 Examples of functions with parameters passed by reference and by value.

Parameter passing method Example

pass-by-value static void setPeriod(lightSystem_t light, float

 period);

pass-by-reference bool sdCardWriteFile(const char* fileName, const

 char* writeBuffer)

The function nonBlockingDelayRead() that is used on line 19 of Code 10.14 checks if the
time configured on line 14 of Code 10.14 (SYSTEM_TIME_INCREMENT_MS) to the variable
smartHomeSystemDelay using nonBlockingDelayInit() is reached and returns true in that case or false
otherwise. In this way, the processor is able to execute other instructions while waiting for the delay
time to expire.

On line 3, the function tickInit() is called to configure the interrupt service routine (ISR) used to
account time by the non_blocking_delay module. This function is based on a ticker, in a very similar
way to the brightControlInit() function that was introduced in Example 8.1, as discussed below.
The library non_blocking_delay.h is included to implement these function calls, and the variable
smartHomeSystemDelay of type nonBlockingDelay_t is declared, as can be seen in Table 10.10.

NOTE: Recall the concept of interrupt service routines (ISRs), which was introduced
in Chapter 7.

440

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

void smartHomeSystemInit()
{
 tickInit();
 audioInit();
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 lightSystemInit();
 sdCardInit();
 nonBlockingDelayInit(&smartHomeSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void smartHomeSystemUpdate()
{
 if(nonBlockingDelayRead(&smartHomeSystemDelay)) {
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 motorControlUpdate();
 lightSystemUpdate();
 bleComUpdate();
 }
}

Code 10.14 New implementation of the functions smartHomeSystemInit and smartHomeSystemUpdate.

Table 10.10 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "non_blocking_delay.h"

Declaration and initialization of public global objects static nonBlockingDelay_t smartHomeSystemDelay;

The implementation of non_blocking_delay.cpp is shown in Code 10.15 and Code 10.16. The library
that is included is shown on line 3 of Code 10.15. On line 7, the global object that will be used for the
ISR that is triggered by the ticker is created, and on line 8, the variable tickCounter is declared. Finally,
the prototype of the function tickerCallback() is declared on line 12, and the prototype of tickRead() is
declared on line 13.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

441

1
2
3
4
5
6
7
8
9
10
11
12
13

//=====[Libraries]===

#include "non_blocking_delay.h"

//=====[Declaration and initialization of private global variables]============

static Ticker ticker;
static tick_t tickCounter;

//=====[Declarations (prototypes) of private functions]========================

void tickerCallback();
tick_t tickRead();

Code 10.15 Details of the implementation of the file non_blocking_delay.cpp (1/2).

Code 10.16 shows the implementation of the public functions. On lines 3 to 6, the timer interrupt
is configured in the function tickInit(). The callback function tickerCallback will be called once every
millisecond. This function, implemented from lines 40 to 43, increments the variable tickCounter by
one in each call.

The function used to initialize the non-blocking delays is implemented from lines 8 to 12. As was
mentioned before, the first parameter of type nonBlockingDelay_t is passed-by-reference. For this
reason, the operator “*” should be included before delay (line 8 of Code 10.16). The operator “*” is
called the dereference operator and it is defined as “the content pointed to by... ”.

Because delay is a pointer to the type nonBlockingDelay_t and nonBlockingDelay_t is a struct, its
members are accessed using the “->” operator. When line 14 of Code 10.14 is executed, the value
SYSTEM_TIME_INCREMENT_MS is assigned to the member duration (line 10 of Code 10.16), and false
is assigned to the member isRunning of the content pointed by delay (line 11), that is, the variable
smartHomeSystemDelay (Code 10.14). As has been explained, the function modifies the passed
variable directly.

The parameters of the function nonBlockingDelayRead() are also passed-by-reference. On line 16, a local
bool variable named timeArrived is declared and initialized with false. If the member isRunning of the
content pointed by delay is true, then the delay time has not expired. This condition is checked by
an if-else statement. If it is not running (line 19), then the non-blocking delay is started (lines 20 and
21). If it is running (line 22), the elapsed time is obtained as the difference between tickCounter and
delay->startTime (line 23). Line 24 assesses if elapsedTime has reached the delay duration. If so, true is
assigned to timeArrived on line 25, and the member isRunning of the content pointed by delay is set to
false (line 26). Finally, the local variable timeArrived is returned by the function nonBlockingDelayRead()
on line 28.

442

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//=====[Implementations of public functions]===================================

void tickInit()
{
 ticker.attach(tickerCallback, ((float) 0.001));
}

void nonBlockingDelayInit(nonBlockingDelay_t * delay, tick_t durationValue)
{
 delay->duration = durationValue;
 delay->isRunning = false;
}

bool nonBlockingDelayRead(nonBlockingDelay_t * delay)
{
 bool timeArrived = false;
 tick_t elapsedTime;

 if(!delay->isRunning) {
 delay->startTime = tickCounter;
 delay->isRunning = true;
 } else {
 elapsedTime = tickCounter - delay->startTime
 if (elapsedTime >= delay->duration) {
 timeArrived = true;
 delay->isRunning = false;
 }
 }

 return timeArrived;
}

void nonBlockingDelayWrite(nonBlockingDelay_t * delay, tick_t durationValue)
{
 delay->duration = durationValue;
}

//=====[Implementations of private functions]==================================

void tickerCallback(void)
{
 tickCounter++;
}

Code 10.16 Details of the implementation of the file non_blocking_delay.cpp (2/2).

The function nonBlockingDelayWrite() implemented from lines 33 to 36 of Code 10.16 assigns the
parameter durationValue (passed-by-value as the second parameter of the function) to the member
duration of the content pointed by delay.

The implementation of non_blocking_delay.h is shown in Code 10.17. The library mbed.h (line 8) is
included because the new data type tick_t is defined using an unsigned integer of 64 bits: uint64_t (line
14). This definition will allow the implementation of large delays without overflow.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

443

TiP: In some applications, a ticker is used to implement a very precise measurement
with a high resolution of time elapsed between events (for example, the time between
the transmission of a signal and the reception of the response). In those cases, the
ticker interval can be specified in microseconds, as can be seen in [3].

The other data type in this module is defined from lines 16 to 20: nonBlockingDelay_t. Finally, the
prototypes of public functions are declared from lines 24 to 26.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

//=====[#include guards - begin]===

#ifndef _NON_BLOCKING_DELAY_H_
#define _NON_BLOCKING_DELAY_H_

//==================[Libraries]===

#include "mbed.h"

//=====[Declaration of public data types]======================================

typedef uint64_t tick_t;

typedef struct{
 tick_t startTime;
 tick_t duration;
 bool isRunning;
} nonBlockingDelay_t;

//=====[Declarations (prototypes) of public functions]=========================

void tickInit();

void nonBlockingDelayInit(nonBlockingDelay_t* delay, tick_t durationValue);
bool nonBlockingDelayRead(nonBlockingDelay_t* delay);
void nonBlockingDelayWrite(nonBlockingDelay_t* delay, tick_t durationValue);

//=====[#include guards - end]===

#endif // _NON_BLOCKING_DELAY_H_

Code 10.17 Details of the implementation of the file non_blocking_delay.h.

NOTE: The proposed implementation of the non-blocking delay is based on a
software module of the sAPI library. The sAPI (simple Application Programming Interface)
library is an open-source library written by Eric Pernia and other collaborators for
Proyecto CIAA. Many ideas in the sAPI library were used as a starting point for many of
the code examples in this book. The reader is encouraged to explore the sAPI library in
[4], where a broad set of useful functions is available, ranging from step motor drivers
to LED dimming code, as well as information about Proyecto CIAA (Computadora
Industrial Abierta Argentina, Argentine Open Industrial Computer), which is the
context in which the sAPI library was written.

444

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. How can a blocking delay be implemented using the tick interrupt?

Answer to the Exercise

1. A module similar to non_blocking_delay might be implemented with a function blockingDelay(), as
shown in Code 10.18.

1
2
3
4
5
6
7
8
9

void blockingDelay(tick_t durationMs)
{
 tick_t startTime = tickCounter;
 tick_t elapsedTime;

 while (elapsedTime < durationMs) {
 elapsedTime = tickCounter - startTime;
 }
}

Code 10.18 Details of the implementation of the function blockingDelay().

10.3 Under the Hood

10.3.1 Basic Principles of Bluetooth Low Energy Communication

In this chapter, the connection between the NUCLEO board and the smartphone was made using
Bluetooth Low Energy (BLE) by means of an HM-10 module. Firstly, it should be noted that classic
Bluetooth and BLE are two different technologies. There are many differences, but the most relevant
is that BLE is designed for low energy consumption.

NOTE: In BLE, the low energy consumption is achieved by using smaller data packets
that are transmitted only when necessary. BLE is not designed for continuous
connections and large amounts of data. When large amounts of data need to be
transmitted, it is more convenient to use classic Bluetooth, which maintains a
continuous connection.

In this chapter, a connection of the type Central + Peripheral was used. In this configuration, a
peripheral advertises itself at startup and waits for a central device to connect to it. A peripheral is
usually a small device like a smart sensor. A central device is usually a smartphone that is scanning
for devices. After a peripheral makes a connection, it is called the subordinate. After a central makes a
connection, it is called the manager. This is illustrated in Figure 10.5.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

445

Figure 10.5 Illustration of the names and behaviors of each device in the BLE startup process.

After a BLE connection has been established, the more typical names and behaviors are as shown in
Figure 10.6. The client is usually the manager, and the server is usually the subordinate.

Figure 10.6 Illustration of the names and behaviors of each device in a typical BLE communication.

NOTE: The data exchange shown in Figure 10.5 and Figure 10.6 is automatically
managed by the HM-10 module. Therefore, the C/C++ code to use the BLE
communication does not have to tackle this task.

446

A Beginner’s Guide to Designing Embedded System Applications

A server provides resources to the client. For example, in this chapter the NUCLEO board with
the HM-10 module is the server. It provides the states of the alarm, the gas detector, the over
temperature detector, the Incorrect code LED, the System blocked LED, and the motion detector to
the client (the smartphone).

NOTE: It must be mentioned that a client is usually the manager, but a client could
instead be the subordinate. Conversely, a server is usually the subordinate, but a
server could be the manager. This role change is not necessary for basic setups and,
therefore, is neither used nor explained further in this book.

As can be seen in Figure 10.6, there are three possible ways in which data can be exchanged between
the client and the server:

 n A client sends Read/Write operations to the server, and the server responds with data; if
appropriate, the server changes its local data or configuration.

 n A server sends an Indicate operation to the client, which is acknowledged by the client.

 n A server sends a Notify operation to the client, which is not acknowledged by the client.

In this chapter, the connection implemented was based on Notify and Read/Write operations
over a personalized service of the HM-10 module. The messages sent by the NUCLEO board to the
smartphone (Table 10.2) correspond to Notify operations. The messages sent by the smartphone to
the NUCLEO board (Table 10.3) are Read/Write operations, even if there is no response from the
NUCLEO board.

BLE operates in the spectrum range of 2.400–2.4835 GHz, as does classic Bluetooth technology. It
uses a different set of channels, however. Instead of classic Bluetooth’s 79 1-MHz channels, BLE has
40 2-MHz channels. In order to avoid communication collisions between different clients and servers,
each client–server pair should use a different channel. BLE also uses frequency hopping to counteract
narrowband interference problems.

Within a channel, data is transmitted using Gaussian frequency shift modulation, similar to classic
Bluetooth’s Basic Rate scheme. The bit rate is between 1 Mbit/s and 2 Mbit/s, depending on the BLE
version. Further details are given in Volume 6 Part A (Physical Layer Specification) of the Bluetooth
Core Specification V4.0 [5].

NOTE: In advanced setups, a device can be the central device to up to eight other
devices that are acting as peripherals. A device can also be a central and peripheral
simultaneously to different devices.

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

447

Proposed Exercises

1. It was discussed in the proposed exercises of subsection “2.3.1 Basic Principles of Serial
Communication” how one device can be sure that another device has received information with no
errors. It was concluded that both devices must be involved in the process of checking the integrity
of the information. Is it possible to find this kind of process in Figure 10.6?

2. It was concluded in the proposed exercises subsection “2.3.1 Basic Principles of Serial
Communication” that using 115,200 bps serial communication, such as that used in Chapter 2, it
will take about 86 seconds to transfer a 1 MB file. How much time will it take to transfer a 1 MB file
using the BLE connection under optimal conditions?

Answers to the Exercises

1. In Figure 10.6 it can be seen that the Indicate operation has an acknowledgement. This
acknowledgement contains information that is used to check the integrity of the information.

2. 1 MB is equal to 8 Mbits. Considering a 1 Mbit/s physical layer bit rate and assuming that this
reflects the actual data rate (which is not true), it will take 8 seconds to transfer a 1 MB file. This is
about ten times less than the 86 seconds that was obtained in the calculation of subsection 2.3.1 for
the UART connection at 115,200 bps.

WaRNiNg: It is important to note that optimal conditions (namely, no interference
from other devices, maximum possible speed with every device, etc.) are not easy to
achieve, so in practical situations the real bit rate is lower than the aforementioned
1 Mbit/s. In the implementation of this chapter, the transfer speed of 1 Mbit/s cannot
be reached because the communication with the HM-10 is at 9600 bps.

10.4 Case Study

10.4.1 Wireless Bolt

In this chapter, the NUCLEO board communicated with a smartphone by means of a BLE connection
implemented with an HM-10 module. By using an application, it was possible to access the state of
the elements and control the gate through the smartphone. A brief of a commercial “wireless bolt”
built with Mbed, containing some similar features, can be found in [5]. An image of this is shown in
Figure 10.7.

448

A Beginner’s Guide to Designing Embedded System Applications

Figure 10.7 “Anybus wireless bolt” built with Mbed contains elements introduced in this chapter.

The wireless bolt shown in Figure 10.7 is designed to be mounted on an industrial device, machine,
or cabinet and to enable wireless access via Bluetooth or wireless LAN. The system is made up of
two elements: the black device shown inside the circle in Figure 10.7, and an application that runs
on a tablet, laptop, or smartphone. By connecting the appropriate signals to the wireless bolt and
properly configuring the application, it is possible to save the cost of buying an HMI (Human–Machine
Interface). Another typical use is connecting the wireless bolt to an existing infrastructure or an
external cloud service.

It can be appreciated that the functionality shown in Figure 10.7 is very similar to the functionality
implemented in this chapter (to monitor and configure a device from a smartphone application
using BLE). In the following chapter, it will be explained how to implement a Wi-Fi connection to
the NUCLEO board, as well as looking at some other technologies that are mentioned in [6], such as
TCP/UDP.

Proposed Exercises

1. If the Anybus wireless bolt were to be connected to the smart home system, what elements might it
be used to observe?

2. What are the main differences between the smart home system developed so far and the Anybus
wireless bolt?

Answers to the Exercises

1. It might be used to observe the state of the alarm, the gas detector, and the over temperature
detector, for example.

2. The smart home system is intended to be used to monitor and control certain specific elements.
Conversely, Anybus wireless bolt allows monitoring and control of various elements, according to

Chapter 10 | Bluetooth Low Energy Communication with a Smartphone

449

need in each case. Furthermore, the smart home system developed so far supports few connectivity
options, just USB and Bluetooth, while the Anybus wireless bolt supports many connectivity options.
In the next chapter, the connectivity of the smart home system will be increased.

 References
[1] “HM-10 Bluetooth Module Pinout, Features, Interfacing & Datasheet”. Accessed July 9, 2021.

https://components101.com/wireless/hm-10-bluetooth-module

[2] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory

[3] “Ticker - API references and tutorials | Mbed OS 6 Documentation”. Accessed July 9, 2021.
https://os.mbed.com/docs/mbed-os/v6.12/apis/ticker.html

[4] “sAPI library for microcontrollers”. Accessed July 9, 2021.
https://github.com/epernia/firmware_v3/blob/master/libs/sapi/documentation/api_reference_
en.md

[5] Bluetooth Core Specification V4.0
https://www.bluetooth.com/specifications/bluetooth-core-specification/

[6] “Anybus® Wireless Bolt™ | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/anybus-wireless-bolt/

http://paperpile.com/b/bGTbn5/XKJz
https://components101.com/wireless/hm-10-bluetooth-module
https://components101.com/wireless/hm-10-bluetooth-module
https://github.com/armBookCodeExamples/Directory
https://github.com/armBookCodeExamples/Directory
https://os.mbed.com/docs/mbed-os/v6.12/apis/ticker.html
https://os.mbed.com/docs/mbed-os/v6.12/apis/ticker.html
https://github.com/epernia/firmware_v3/blob/master/libs/sapi/documentation/api_reference_en.md
https://github.com/epernia/firmware_v3/blob/master/libs/sapi/documentation/api_reference_en.md
https://os.mbed.com/built-with-mbed/anybus-wireless-bolt/
https://os.mbed.com/built-with-mbed/anybus-wireless-bolt/

Embedded Web Server
over a Wi-Fi Connection

Chapter 11

452

A Beginner’s Guide to Designing Embedded System Applications

11.1 Roadmap

11.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how to connect a Wi-Fi module to the NUCLEO board.

 n Develop programs to serve a web page using the NUCLEO board and a Wi-Fi module.

 n Summarize the fundamentals of AT commands and TCP/IP connections.

11.1.2 Review of Previous Chapters

In the previous chapter, the smart home system was provided with a BLE (Bluetooth Low Energy)
connection by means of which it was possible to get some information on the state of the system using
a smartphone, as well as to control the opening and closing of the gate. A limitation is that the BLE
range is just a few meters, and sometimes it is useful to monitor the state of the system from a greater
distance. This could be, for example, a web browser that is running on a PC or a smartphone. Also, in
certain applications, a high data rate over a wireless connection is needed, as well as error-checked
delivery of data, error-detection, and retransmission, among other capabilities that are limited if BLE
is used.

11.1.3 Contents of This Chapter

In this chapter, the process of serving a web page using a Wi-Fi module is carried out step-by-step by
the reader in subsection 11.2.2. The reader enters each command one after the other. The process
is then gradually automated through the examples. In this way, the aim is to give an insight into the
process in order to separate understanding of what should be done (the commands and the logic
around those commands) from the automation of those commands and the corresponding logic on the
NUCLEO board.

Some basic AT commands will be introduced (the de facto standard to communicate with different
types of modems, Wi-Fi modules, GPS modules, cellular modules, etc.). Some basic concepts about
TCP connections and Wi-Fi communications will also be discussed. In addition, the implementation
of a parser will be shown, in order to analyze the responses of the Wi-Fi module to the AT commands
sent by the NUCLEO board.

11.2 Serve a Web Page with the NUCLEO Board

11.2.1 Connect a Wi-Fi Module to the Smart Home System

In this chapter, the smart home system is provided with the capability of serving a web page using
Wi-Fi, as shown in Figure 11.1. In this way, the information can be accessed using a smartphone or
a PC.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

453

Smartphones

House
outside

view

Motion
sensor

Smart home
system controllerGas etectord

Alarm

PC

Over
emperaturet

etectord

Fire larma Automatic gate

Intruder larma

Gate control panel

Gate with motor and
limit switches

House
Inside
view

Alarm control panel

°F
°C/

SD ardc

J
A

P
A

N
FC

C
v

R
e

pr
ari

1

S
D

C
S

/3
2
G

B

3
2
4
2
0
-0

1
0
.A

0
0
L
F

BLE

BLE
antenna

antenna

Wi-Fi

Web browser
(in PC or Smartphone)

Wi-Fi

Wi-Fi

A321

B654

C987

D#0*

Incorrect Code

System Blocked

+

-

Red Green Blue

Wi-Fi Antenna

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

192.168.43.53

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

Gate Closing

Open

Close

Gate Opening

Light Intensity

Figure 11.1 The smart home system is now able to serve a web page.

The Wi-Fi connection is implemented using an ESP-01 module, which is described in [1] and shown in
Figure 11.2, and which is part of a broad family of Wi-Fi modules based on the ESP8266 chipset [2].

454

A Beginner’s Guide to Designing Embedded System Applications

++

++

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

MQ-2
Gas sensor

-2MQ

GND

5V

DO

BorgMicro
25 80ASSIG6

1682

RGB LED

(R
e
la

y
IN

2
)

(R
e
la

y
G

N
D

)

(R
e
la

y
V

C
C

)

(R
e
la

y
IN

1
)

N
U
C
L
E
O

-F
429Z

I

32F429ZIT6U

A
R
M

7B776 VQ
PHL 7B 721

3

D
G

K
Y

D
K

M
S

-1
1

0
2

N
L

17
06

C STM32
F103CBT6

e3

93
701
GH218
CHN

ST890C
GK717

GN
D

3V
3

GN
D

V5

3V
3

5V
3V

3
5V

MB-102

CN9

CN7

CN10

GND

3.3V

Potentiometer

P
E

3_

P
F

2
_

L
35

M

5V

GND

A1

Temperature
sensor

LM 35

3.3V

5V
GND

GND

HV1HV2HV

LV

HV3

LV3 LV3 LV1

HV4

LV4 LV4 LV2

GND

GND

GN
D

VC
C

VORSR/
W

EDBDBDBDBDBDBDBDB

01234567

NC PS
B

RS
T

VO
UT

BL
A

BL
K

120

PG 0_

10KΩ

GND 5V

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0

2
5

V
2

u
F

 2
2

0PIR
sensor 5V G

N
D

To Figure 7.4

(tput)PIR Ou

Red
GND

Blue

P
E

1
2

_
(G

a
s)

P
E

 6_
(A

u
d
io

)

LDR

1
0

3

A2

HM-10
BLE module

C
25

41
P2

5B
T1

 7
4J

P1
2

04

C

A0

PE 7_ (X)T

PE 8_
()RX

3.3V GND

ESP-01
Wi-Fi moduleP

C
 9_

Buzzer

5V

3.3V

SD card and
SD ard readerc

GND

5
1

5
1

10K

RKingston

3
V

3
C

S
M

O
S

I
C

L
K

M
IS

O
G

N
D

PA 4_

(CLK)

(O)MIS

(MOSI)

(CS)

PC 10_

PC 11_

PC 12_

Green

L
35

M

PD 5_PD 6_
(D)RX(XD)T

+
--

BorgMicro
25 80ASSIG6

1682

D
G

K
K

M
S

CN1

3.3V
GND

PE 7_ (X)T

PE 8_
()RX

ESP-01
Wi-Fi module

Figure 11.2 The smart home system is now connected to a ESP-01 module.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

455

In Figure 11.3, the basic functions of the ESP-01 module pins are shown. Besides the GND and VCC
power supply pins, the RST (reset) pin, and the EN (chip enabled) pin, it can be seen that there are two
UART pins (RXD and TXD) and two GPIO pins (IO0 and IO2). The UART pins are used in this chapter to
connect the ESP-01 module and the NUCLEO board, while the GPIO pins are not used in this book.

NOTE: More information about the broad set of functions of the ESP-01 module is
available in [1].

Figure 11.3 Basic functionality of the ESP-01 module pins.

The connections between the NUCLEO board and the ESP-01 module are summarized in Table 11.1,
while the connections between the ESP-01 module and the breadboard are summarized in Table 11.2.

Table 11.1 Summary of the connections between the NUCLEO board and the ESP-01 module.

 NUCLEO board ESP-01 module

PE_8 (UART7_TX) RXD

PE_7 (UART7_RX) TXD

Table 11.2 Summary of other connections that should be made to the ESP-01.

ESP-01 module Breadboard

GND GND

EN 3.3 V

VCC 3.3 V

WaRNiNg: The ESP-01 module has soldered pins on its bottom side. The connections
in Figure 11.2 are for illustrative purposes only. The soldered pins on its bottom side
must be used to connect the module.

456

A Beginner’s Guide to Designing Embedded System Applications

To test if the ESP-01 module is working, the setup shown in Figure 11.4 will be used. In this setup,
there is a smartphone or PC with a web browser that is connected to an access point by means of
a Wi-Fi connection. The test program that runs on the NUCLEO board uses the connection to a
PC, where the serial terminal is running. The program that runs on the NUCLEO board also uses a
connection to the ESP-01 module, as shown in Figure 11.4. As discussed below, the ESP-01 module
runs a TCP server (Transmission Control Protocol server), while the NUCLEO board runs an HTML
server, which is implemented in this chapter.

During the test, the user is asked for the SSID (Service Set IDentifier) and password of the access point,
and the test program configures the ESP-01 module using these credentials. This allows it to connect
to the same access point as the smartphone or PC with the web browser. The ESP-01 module internally
runs a TCP server, which receives requests from other devices connected to the access point – in this
case the smartphone or PC. The ESP-01 module reports the requests to the test program that runs
on the NUCLEO board, which provides the ESP-01 module with the HTML document to use in the
response. The HTML document contains relevant information about the smart home system.

Figure 11.4 Diagram of the communication that is implemented between the different devices.

Download the .bin file of the program “Subsection 11.2.1” from the URL available in [3] and load it
onto the NUCLEO board. This program uses the setup illustrated in Figure 11.4. After powering on,
the NUCLEO board will ask the user to enter the SSID and the password of the Wi-Fi access point.
It will then indicate the IP (Internet Protocol) address assigned to the ESP-01 module by the Wi-Fi
access point, as shown in Figure 11.5.

Subsection 11.2.1 test program

Please provide the SSID of the Wi-Fi Access Point and press the Enter key
> mySSID
Wi-Fi Access Point SSID configured

Please provide the Password of the Wi-Fi Access Point and press the Enter
key
> **********
Wi-Fi Access Point password configured

Wi-Fi communication started, please wait...

IP address assigned correctly

Enter 192.168.43.53 as the URL in the web browser

Figure 11.5 Steps to follow in the test program used in this subsection.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

457

Open the web browser on a PC or smartphone connected to the same access point as the ESP-01
module, and in the address bar enter the IP indicated on the serial terminal, as shown in Figure 11.6.
A web page such as the one shown in Figure 11.6 should be displayed in the web browser. If so, the
ESP-01 module is connected and working properly. Otherwise, review the connections of the module
and the access point, and check that the ESP-01 is connected to the same access point as the PC or
smartphone where the web browser runs.

Temperature: 10 °C

Over temperature detected: OFF

Gas detected: OFF

Motion detected: OFF

Alarm: OFF

Incorrect code : OFFLED

System blocked : OFFLED

Smart Home System

Figure 11.6 Web page served by the ESP-01 module.

11.2.2 Fundamentals of the Web Server to be implemented

In this subsection, the fundamentals of web servers are introduced in order to allow the reader to
understand the main concepts that are used in the examples that are discussed in this chapter.

The web page that was displayed in subsection 11.2.1 is provided by a web server that is composed of a
TCP server that runs on the ESP-01 module and an HTML server that runs on the NUCLEO board. The
primary function of a web server is to store, process, and deliver web pages to clients. Usually, a client
is a web browser, which initiates the communication by making a request for a specific web page using
the Hypertext Transfer Protocol (HTTP). The web server then responds with the web page content or
with an error message if it is unable to retrieve the requested web page.

The web pages delivered are most frequently Hypertext Markup Language (HTML) documents, which
may include images, style sheets, and scripts in addition to the textual content. The received HTML
documents are rendered by the web browser. For this purpose, HTML documents can be assisted by
technologies such as Cascading Style Sheets (CSS) used for describing the presentation of a web page
(colors, fonts, etc.) and scripting languages such as JavaScript to enable interactive behavior.

458

A Beginner’s Guide to Designing Embedded System Applications

It is also important to mention that the ESP8266 chipset, on which the ESP-01 module is based, can be
configured as a server, as a client, and as server and client at the same time. When it is configured as
a server, it serves HTML documents that in the proposed setup are retrieved by the NUCLEO board,
as shown in subsection 11.2.1. When it is configured as a client, it retrieves HTML documents from a
server.

The configuration of the ESP8266 chipset is done by means of AT commands. These commands were
originally defined by Hayes Microcomputer Products in the early 1980s to be used to configure
and operate modems. The AT commands consist of short texts that can be combined to produce
commands for operations such as changing the parameters of a connection or connecting to a given IP
address. In this subsection and in the examples below, some basic AT commands are used to configure
the ESP8266 chipset. More information about the ESP8266 AT commands can be found in [4].

In order to get an idea about how all these concepts are used, a step-by-step example is shown, where
AT commands are used to implement an embedded web server that serves a basic web page to a web
browser.

First, download the .bin file of the program “Subsection 11.2.2” from the URL available in [3] and load
it onto the NUCLEO board.

Next, the command “AT” (which stands for attention) should be typed into the serial terminal and the
“Enter” key pressed on the PC keyboard. This AT command is forwarded by the NUCLEO board to
the ESP-01 module, which should reply “OK”. The NUCLEO board will forward this “OK” message
to the serial terminal, as shown in Figure 11.7. This step is only to confirm that the most basic AT
command works.

AT

OK

Figure 11.7 The “AT” command (attention) is sent to the ESP-01 module, which replies “OK”.

The user should then type “AT+CWMODE=1” (standing for Change Wi-Fi mode) in order to configure
the operation mode of the ESP-01 module as a station. This indicates that it should connect to an
access point in order to get an IP address, after which it should reply “OK”, as shown in Figure 11.8.

AT+CWMODE=1

OK

Figure 11.8 The “AT+CWMODE=1” command (mode configuration) is sent to the ESP-01 module, which replies “OK”.

The next step is to connect the ESP-01 module to an available Wi-Fi access point, by means of
entering the corresponding SSID and password. For example, if the SSID name is “mySSID” and the

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

459

password is “abcd1234”, then the user should type: AT+CWJAP=“mySSID”,“abcd1234” (note: for clarity,
the quotes around commands issued to the ESP=01 module are omitted here and in the remainder
of this section). This stands for Join Access Point, as shown in Figure 11.9. The ESP-01 module should
reply “WIFI CONNECTED”, “WIFI GOT IP”, and “OK”, and the NUCLEO board should forward these
messages to the serial terminal, as shown in Figure 11.9.

AT+CWJAP="mySSID","abcd1234"
WIFI CONNECTED
WIFI GOT IP

OK

Figure 11.9 The “AT+CWJAP” command (Join Access Point) is sent to the ESP-01 module.

The user should then type AT+CIFSR in order to retrieve the IP address that has been assigned to the
ESP-01 module. The response of the ESP-01 module will be forwarded by the NUCLEO board and will
look as in Figure 11.10, where the IP address 192.168.43.53 has been assigned to the ESP-01 module.

AT+CIFSR
+ CIFSR:STAIP,"192.168.43.53"
+ CIFSR:STAMAC,"84:f3:eb:b7:34:84"

OK

Figure 11.10 The “AT+CIFSR” command (Get IP Address) is sent to the ESP-01 module.

NOTE: In Figure 11.10, STAIP stands for Station IP, and STAMAC stands for Station
MAC. The MAC (Media Access Control) address is a unique identifier assigned to each
network interface controller.

Next, the command AT+CIPMUX=1 should be entered in order to enable multiple connections with the
ESP-01 module using the assigned IP. The ESP-01 module should reply “OK”, as shown in Figure 11.11.

AT+CIPMUX=1

OK

Figure 11.11 The “AT+CIPMUX=1” command to enable multiple connections is sent to the ESP-01 module.

The command AT+CIPSERVER=1,80 should then be typed into the serial terminal to create a TCP
server on the ESP-01 module. The “1” indicates that the command is to create a TCP server, and “80”
is the port number assigned. This is the default HTTP port number. This TCP server is able to receive
and respond to requests from different clients, for example web browsers. The ESP-01 module replies
“OK”, as shown in Figure 11.12.

460

A Beginner’s Guide to Designing Embedded System Applications

AT+CIPSERVER=1,80

OK

Figure 11.12 The “AT+CIPSERVER=1,80” command (creates a TCP server) is sent to the ESP-01 module.

NOTE: The TCP server can only be created if multiple connections were first
activated (AT+CIPMUX=1).

At this point, the TCP server is already running on the ESP-01 module. Therefore, whenever a client
sends a request to the server IP address (in this case 192.168.43.53), the TCP server will keep a
record that a TCP connection request has been received and will also keep some details of the request
content.

To assess if a request has been received by the TCP server, the command AT+CIPSTATUS must be sent
to the ESP-01 module. Figure 11.13 shows the response when no request has been received yet. All
the possible values of STATUS are shown in Table 11.3. When the ESP-01 module has an assigned IP
address and has received a TCP connection request, it will return “STATUS:3”. In this way, it can be
confirmed that a request has been received by the TCP server that is embedded in the ESP-01 module.

AT+CIPSTATUS

STATUS:2

OK

Figure 11.13 The “AT+CIPSTATUS” command shows the connection status of the ESP-01 module.

Table 11.3 Summary of the AT+CIPSTATUS return values.

STaTUS value Meaning

0 The ESP-01 module is not initialized

1 The ESP-01 module is initialized, but Wi-Fi connection has not been started yet

2 The ESP-01 module is connected to an access point and has an assigned IP address

3 The ESP-01 module has an assigned IP address and has received a TCP connection request

4 All of the TCP/UDP/SSL connections of the ESP device station are disconnected

5 The ESP-01 module is not connected to an access point

To show how the process works, the next step is to connect a PC or a smartphone to the same Wi-Fi
access point as the ESP-01 module. The IP address assigned to the ESP-01 module (i.e., 192.168.43.53
in this case, as shown in Figure 11.10) should be entered into the address bar of a web browser on the
PC or smartphone, as shown in Figure 11.14.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

461

Figure 11.14 A request to the ESP-01 module is sent by a web browser.

The TCP server that is running on the ESP-01 module receives this request and informs the NUCLEO
board that it has received a request by means of sending the messages that are shown in Figure 11.15.

0,CONNECT

+IPD,0,479:GET / HTTP/1.1
Host: 192.168.43.53
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,
 image/webp,image/apng,/;q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,es-AR;q=0.8,es;q=0.7

Figure 11.15 The ESP-01 module indicates that a network connection with ID of 0 has been established.

NOTE: The messages shown in Figure 11.15 are sent to the NUCLEO board by the
ESP-01 module using a UART (as in Figure 11.4) and are then displayed on the serial
terminal. This is only because the program that is running on the NUCLEO board
forwards every character that it receives from the ESP-01 module to the PC by means
of another UART (again, recall Figure 11.4).

In the first line of Figure 11.15, the ESP-01 module indicates that a TCP connection with ID 0 has been
established. The other lines between +IPD and q=0.7 are details about the connection that has been
established and are not discussed here in order to keep this explanation as short as possible. For more
information, please refer to [4].

At this point, if the command AT+CIPSTATUS is sent to the ESP-01 module, the response shown in
Figure 11.16 is obtained. By means of “STATUS: 3”, it is indicated that a TCP connection request
has been received by the TCP server (recall Table 11.3). The details in Figure 11.16 follow the next
sequence: +CIPSTATUS:<link ID>,<“type”>,<“remote IP”>,<remote port>,<local port>,<tetype>, as
shown in [5].

462

A Beginner’s Guide to Designing Embedded System Applications

AT+CIPSTATUS

STATUS:3
+CIPSTATUS:0,"TCP","192.168.77.198",60297,80,1.1

OK

Figure 11.16 The “AT+CIPSTATUS” command shows the connection status of the ESP-01 module.

The way in which the NUCLEO board indicates to the ESP-01 module how to respond to the web
browser request is by loading the answer into the TCP server. In this case, the response will be an
HTML document that must be loaded into the TCP server. In this step-by-step example, this is done by
means of AT+CIPSEND=0,52, where “0” is the ID (identifier) of the connection with the TCP server and
“52” is the length of the message in bytes that will be sent to the TCP server. Then, the ESP-01 module
replies “OK” and sends the prompt symbol, “>”, to the NUCLEO board in order to indicate that it is
waiting for the HTML document, as shown in Figure 11.17.

AT+CIPSEND=0,52

OK
>

Figure 11.17 The “AT+CIPSEND=0,52” command (sends data) is sent to the ESP-01 module, and it responds “>”.

The next step is to load the HTML document into the TCP server. In this particular example, the
program that is loaded on the NUCLEO board will sequentially send the 52 bytes of the HTML
document to the TCP server. The characters these bytes represent are shown in Code 11.1 and are
sent when the “h” key is pressed on the PC keyboard.

<!doctype html> <html> <body> Hello! </body> </html>

Code 11.1 The code of the HTML document that is loaded in the TCP server when the “h” key is pressed.

The first part of the code, <!doctype html>, is used to indicate that it is an HTML document. Then, the
tag <html> is used to indicate the beginning of the HTML code, and the <body> tag is used to indicate
the beginning of the body of the HTML code. This is the part of the HTML document that the web
browser renders on the screen. In this case, the body is just “Hello!” The last tags, (</body> and </
html>), are used to close the previous tags.

Once the “h” key has been pressed on the PC keyboard, the 52 bytes are sent from the NUCLEO board
to the ESP-01 module. The response of the ESP-01 module will be forwarded to the serial terminal
using UART3 and, if everything goes well, the response will be as shown in Figure 11.18. This indicates
that the 52 bytes were received correctly by the TCP server that is running on the ESP-01 module.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

463

Recv 52 bytes

SEND OK

OK

Figure 11.18 The “AT+CIPSEND=0,52” command (sends data) is sent to the ESP-01 module.

Finally, the TCP connection between the ESP-01 module and the NUCLEO board should be closed
by means of typing AT+CIPCLOSE=0, as shown in Figure 11.19. This is done in order to close the TCP
connection with the web browser. In this way, the TCP server knows that no more data will be sent as
a response to the web browser request.

AT+CIPCLOSE=0

0,CLOSED

OK

Figure 11.19 The “AT+CIPCLOSE=0” command (close a TCP connection) is sent to the ESP-01 module.

Now the TCP server has the response that should be sent to the web browser (i.e., the HTML
document that has just been loaded to it) and sends the 52 bytes to the web browser. As a
consequence, the web browser receives the 52 bytes, identifies it as an HTML document (because of
the tag <!doctype html>), and displays the text “Hello!” as shown in Figure 11.20.

Figure 11.20 Web page served by the ESP-01 module.

NOTE: By means of using more complex HTML code, together with other resources
such as JavaScript and CSS, more appealing and meaningful web pages can be
created. These topics are beyond the scope of this book.

464

A Beginner’s Guide to Designing Embedded System Applications

WaRNiNg: Do not worry if a “Not secure” message is indicated by the web browser.
The web page has no harmful elements. This message can be avoided if a TLS
(Transport Layer Security) connection is provided, which is beyond the scope of this
book.

In the following examples, all the steps that were followed in this section are automated by means of a
new software module that is gradually incorporated into the smart home system program.

Example 11.1: implement the aT Command to Detect the Wi-Fi Module

Objective

Introduce the Finite-State Machine (FSM) that is used to control the ESP-01 module using AT
commands.

Summary of the Expected Behavior

The NUCLEO board will send the command “AT” to the ESP-01 module and will wait five seconds to
receive the reply “OK”. If this reply is received correctly by the NUCLEO board, then “AT command
responded correctly” will be shown on the serial terminal. If this message is not received within
10 seconds, then “AT command not responded correctly” will be shown on the serial terminal.

Test the Proposed Solution on the Board

Import the project “Example 11.1” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. If the ESP-01 module is working correctly, the message “AT command
responded correctly” should appear on the serial terminal after 10 seconds. If this does not happen,
check the connections, the ESP-01 module, and the access point and try again by pressing “a” on the
PC keyboard.

Discussion of the Proposed Solution

The proposed solution is based on a new module named wifi_com. This module will manage all the
communications with the ESP-01 module.

Implementation of the Proposed Solution

Code 11.2 shows the new implementation of smartHomeSystemInit() and smartHomeSystemUpdate().
On line 14, the wifi_com module is initialized by means of wifiComInit(). On line 15, the non-blocking
delay is initialized using SYSTEM_TIME_INCREMENT_MS, which is equal to 10 milliseconds, as in
Example 10.4.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

465

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void smartHomeSystemInit()
{
 tickInit();
 audioInit();
 userInterfaceInit();
 alarmInit();
 fireAlarmInit();
 intruderAlarmInit();
 pcSerialComInit();
 motorControlInit();
 gateInit();
 lightSystemInit();
 sdCardInit();
 wifiComInit();
 nonBlockingDelayInit(&smartHomeSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void smartHomeSystemUpdate()
{
 if(nonBlockingDelayRead(&smartHomeSystemDelay)) {
 userInterfaceUpdate();
 fireAlarmUpdate();
 intruderAlarmUpdate();
 alarmUpdate();
 eventLogUpdate();
 pcSerialComUpdate();
 motorControlUpdate();
 lightSystemUpdate();
 bleComUpdate();
 }
 wifiComUpdate();
}

Code 11.2 New implementation of the functions smartHomeSystemInit() and smartHomeSystemUpdate().

Given that the communication with the ESP-01 module will be established using a UART at a relatively
high speed (115,200 bps) and there will be a relatively large number of bytes, the ESP-01 module must
be read as fast as possible. For this purpose, the function wifiComUpdate() is called on line 31 outside
the if statement that checks the non-blocking delay. In this way, smartHomeSystemUpdate() will call the
functions from line 21 to line 29 every 10 milliseconds, while wifiComUpdate() will be called at a much
higher rate. The reader is encouraged to compare how smartHomeSystemUpdate() is implemented in
Code 11.2 and in Example 10.4.

In Table 11.4, the new library wifi_com.h that was added to smart_home_system.cpp is shown. The
implementation of wifi_com.h is shown in Code 11.3. It can be seen that the public functions
wifiComRestart(), wifiComInit(), and wifiComUpdate() are declared from line 8 to line 10.

Table 11.4 Sections in which lines were added to smart_home_system.cpp.

Section Lines that were added

Libraries #include "wifi_com.h"

466

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _WIFI_COM_
#define _WIFI_COM_

//=====[Declarations (prototypes) of public functions]=========================

void wifiComRestart();
void wifiComInit();
void wifiComUpdate();

//=====[#include guards - end]===

#endif /* _WIFI_COM_ */

Code 11.3 Implementation of wifi_com.h.

The library wifi_com.h was added to pc_serial_com.cpp, as shown in Table 11.5. The table also shows
that the private function commandRestartWifiCom() was declared in pc_serial_com.cpp. In order to
implement this function, the lines shown in Table 11.6 were added in pcSerialComCommandUpdate()
and availableCommands(). In this way, the command “a” is incorporated into the pc_serial_com module.
This command calls the function commandRestartWifiCom().

The implementation of commandRestartWifiCom() is shown in Code 11.4. This function sends “Wi-Fi
communication restarted” to uartUsb (line 3) and calls the function wifiComRestart() of the wifi_com
module (line 4).

Table 11.5 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Libraries #include "wifi_com.h"

Declarations (prototypes) of private
functions

static void commandRestartWifiCom();

Table 11.6 Functions in which lines were added in pc_serial_com.cpp.

Function Lines that were added

static void
pcSerialComCommandUpdate(char
receivedChar)

case 'a': case 'A': commandRestartWifiCom(); break;

static void availableCommands() pcSerialComStringWrite("Press 'a' or 'A' to restart the Wi-Fi

 communication\r\n");

1
2
3
4
5

static void commandRestartWifiCom()
{
 pcSerialComStringWrite("Wi-Fi communication restarted \r\n");
 wifiComRestart();
}

Code 11.4 Implementation of commandRestartWifiCom().

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

467

From Code 11.5 to Code 11.7, the implementation of wifi_com.cpp is shown. On lines 3 to 8 of
Code 11.5, the libraries used by the wifi_com module are included. On line 12, DELAY_5_SECONDS is
defined as 5000. A data type named wifiComState_t is declared in lines 16 to 22. This data type is used
to implement an FSM that is used to control the ESP-01 module. A serial object is declared on line 27
in order to implement the communication with the ESP-01 module.

Line 30 declares a private array of char named responseOk. Because it is declared using the reserved
word const, its content cannot be modified later in the program. Line 32 declares a pointer to a char
type named wifiComExpectedResponse, which will be used to point to a string holding the expected
response.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

//=====[Libraries]===

#include "arm_book_lib.h"

#include "wifi_com.h"

#include "non_blocking_delay.h"
#include "pc_serial_com.h"

//=====[Declaration of private defines]==

#define DELAY_5_SECONDS 5000

//=====[Declaration of private data types]=====================================

typedef enum {
 WIFI_STATE_INIT,
 WIFI_STATE_SEND_AT,
 WIFI_STATE_WAIT_AT,
 WIFI_STATE_IDLE,
 WIFI_STATE_ERROR
} wifiComState_t;

//=====[Declaration and initialization of public global objects]===============

UnbufferedSerial uartWifi(PE_8, PE_7, 115200);

//=====[Declaration and initialization of private global variables]============

static const char responseOk[] = "OK";

static const char* wifiComExpectedResponse;
static wifiComState_t wifiComState;

static nonBlockingDelay_t wifiComDelay;

//=====[Declarations (prototypes) of private functions]========================

static bool isExpectedResponse();
bool wifiComCharRead(char* receivedChar);
void wifiComStringWrite(const char* str);

Code 11.5 Details of the implementation of the file wifi_com.cpp (Part 1/3).

468

A Beginner’s Guide to Designing Embedded System Applications

NOTE: The UART communication with the ESP-01 module uses the default
configuration, which is 8 bits, no parity, and one stop bit. For this reason, these
parameters are not configured.

On line 33, the variable wifiComState of type wifiComState_t, is declared, while on line 35, the variable
wifiComDelay of type nonBlockingDelay_t is declared. The prototypes of the private functions
isExpectedResponse(), wifiComCharRead(), and wifiComStringWrite() are declared from line 39 to line 41.

In Code 11.6, the implementation of wifiComInit() is shown on line 3. This function sets wifiComState
to WIFI_STATE_INIT. On line 8, the implementation of wifiComRestart() can be seen, which only sets
wifiComState to WIFI_STATE_INIT.

Line 13 shows the implementation of wifiComUpdate(). On line 15, receivedCharWifiCom is declared,
which is a char variable that preserves its value between one call and another of wifiComUpdate()
because it is declared as static. The FSM starts on line 17, with a switch over wifiComState. If its value
is WIFI_STATE_INIT, then a non-blocking delay of five seconds is configured, and wifiComState is
assigned with the value WIFI_STATE_SEND_AT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

//=====[Implementations of public functions]===================================

void wifiComInit()
{
 wifiComState = WIFI_STATE_INIT;
}

void wifiComRestart()
{
 wifiComState = WIFI_STATE_INIT;
}

void wifiComUpdate()
{
 switch (wifiComState) {

 case WIFI_STATE_INIT:
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_AT;
 break;

 case WIFI_STATE_SEND_AT:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT\r\n");
 wifiComExpectedResponse = responseOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_AT;
 }
 break;

 case WIFI_STATE_WAIT_AT:

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

469

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 pcSerialComStringWrite("AT command responded ");
 pcSerialComStringWrite("correctly\r\n");
 wifiComState = WIFI_STATE_IDLE;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT command not responded ");
 pcSerialComStringWrite("correctly\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_IDLE:
 case WIFI_STATE_ERROR:
 break;
 }
}

Code 11.6 Details of the implementation of the file wifi_com.cpp (Part 2/3).

On line 22, the state WIFI_STATE_SEND_AT is implemented. If the non-blocking delay of
five seconds has elapsed, then the command AT is written (line 24) and “OK” is assigned to
wifiComExpectedResponse (line 25). A non-blocking delay of five seconds is initialized on line 26, and
wifiComState is set to WIFI_STATE_WAIT_AT on line 27.

The implementation of WIFI_STATE_WAIT_AT is shown from line 31 to line 43. First, it is assessed
whether there is a response and whether it is the expected response (line 32). If so, in lines 33 to 36
a new five-second non-blocking delay is started, the corresponding message is sent to the PC, and
wifiComState is assigned to WIFI_STATE_IDLE. Otherwise, it is checked on line 38 if the five-second
delay has expired. If so, the corresponding message is sent to the PC, and wifiComState is set to
WIFI_STATE_ERROR. On lines 45 and 46, it can be seen that no actions are assigned to the
WIFI_STATE_IDLE or WIFI_STATE_ERROR states.

Code 11.7 shows the implementation of some of the remaining functions of wifi_com.cpp. On line 3, it
can be seen that wifiComCharRead() first checks if a character was received on uartWifi (connected to
the ESP8266) (line 6), and if so, it writes the corresponding content on the memory address pointed
by receivedChar (line 8). The returned value of wifiComCharRead() depends on whether there was a
character available to be read (line 9) or not (line 11).

The function wifiComStringWrite() on line 14 is used to write the string pointed by its parameter str to
the uartWifi object.

The implementation of isExpectedResponse() is shown between lines 19 and 37. First, three variables
are declared: responseStringPositionIndex, to track the index of the position in the string corresponding
to the response (note that it is declared as static); charReceived, to store the received char; and the
Boolean variable moduleResponse, which is assigned the false state.

470

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//=====[Implementations of private functions]==================================

bool wifiComCharRead(char* receivedChar)
{
 char receivedCharLocal = '\0';
 if(uartWifi.readable()) {
 uartWifi.read(&receivedCharLocal,1);
 *receivedChar = receivedCharLocal;
 return true;
 }
 return false;
}

void wifiComStringWrite(const char* str)
{
 uartWifi.write(str, strlen(str));
}

static bool isExpectedResponse()
{
 static int responseStringPositionIndex = 0;
 char charReceived;
 bool moduleResponse = false;

 if(wifiComCharRead(&charReceived)){
 if (charReceived == wifiComExpectedResponse[responseStringPositionIndex]) {
 responseStringPositionIndex++;
 if (wifiComExpectedResponse[responseStringPositionIndex] == '\0') {
 responseStringPositionIndex = 0;
 moduleResponse = true;
 }
 } else {
 responseStringPositionIndex = 0;
 }
 }
 return moduleResponse;
}

Code 11.7 Details of the implementation of the file wifi_com.cpp (Part 3/3).

Line 25 assesses whether there is a char available to be read on the uartWifi object. If so, line 26
assesses whether the received char is equal to the char that is expected at the corresponding position
of the string wifiComExpectedResponse, and on line 27, responseStringPositionIndex is incremented by
one. Line 28 assesses whether the current position of wifiComExpectedResponse is the null character. If
so, responseStringPositionIndex is set to zero, and moduleResponse is set to the true state. If the received
char is not the expected char (line 32), responseStringPositionIndex is set to zero. Finally, on line 36,
moduleResponse is returned. Its value will be true if the expected response was received (recall line
30), and false otherwise.

Proposed Exercise

1. How can more AT commands be added to the wifi_com module?

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

471

Answer to the Exercise

1. In order to add more AT commands, the corresponding states should be added to wifiComState_t
(line 16 of Code 11.5), and the corresponding state should be incorporated into wifiComUpdate().
This is shown in Example 11.2.

Example 11.2: Configure the Credentials to Connect to the Wi-Fi access Point

Objective

Include AT commands in the FSM in order to implement the connection with the Wi-Fi access point.

Summary of the Expected Behavior

The NUCLEO board will send the commands “AT”, “AT+CWMODE=1”, “AT+CWJAP”, and “AT+CIFSR” to
the ESP-01 module (recall Section 11.2.2). It will be indicated on the serial terminal if the expected
responses are received correctly by the NUCLEO board or not.

Test the Proposed Solution on the Board

Import the project “Example 11.2” using the URL available in [3], build the project, and drag the
.bin file onto the NUCLEO board. Press “d” on the PC keyboard to set the Wi-Fi SSID of the access
point that is to be used, and press “r” to set the Wi-Fi password. Then, press “a” to restart the Wi-Fi
communication. If everything has worked correctly, after a few seconds the message “IP address
assigned correctly” should appear on the serial terminal, and by pressing “p”, the assigned IP address
will be shown on the serial terminal. If this does not happen, check the connections, the access point,
and the Wi-Fi credentials, and press “a” again to retry.

Discussion of the Proposed Solution

The proposed solution is based on new states that are incorporated into the FSM of the wifi_com
module. These new states implement the steps shown in Figure 11.8 to Figure 11.10.

Implementation of the Proposed Solution

Table 11.7 shows the lines that were added to pc_serial_com.cpp. It can be seen that the private
variables numberOfCharsInApCredentials, ApSsid, and ApPassword are created to manage the access
point (AP) credentials. AP_SSID_MAX_LENGTH and AP_PASSWORD_MAX_LENGTH are defined
in wifi.h, as shown below. Also, five new prototypes of private functions are declared in order to
configure the SSID and the password and to get the assigned IP address.

In Table 11.8, the new lines that were added to pcSerialComCommandUpdate() and availableCommands()
are shown. These lines are used to inform the user how to set the AP credentials and get the assigned
IP address.

472

A Beginner’s Guide to Designing Embedded System Applications

Table 11.7 Sections in which lines were added to pc_serial_com.cpp.

Section Lines that were added

Declaration and initialization of
private global variables

static int numberOfCharsInApCredentials = 0;

static char ApSsid[AP_SSID_MAX_LENGTH] = "";

static char ApPassword[AP_PASSWORD_MAX_LENGTH] = "";

Declarations (prototypes) of private
functions

static void pcSerialComGetWiFiComApSsid(char receivedChar);

static void pcSerialComGetWiFiComApPassword(char receivedChar);

static void commandSetWifiComApSsid();

static void commandSetWifiComApPassword();

static void commandGetWifiComAssignedIp();

Table 11.8 Functions in which lines were added in pc_serial_com.cpp.

Function Lines that were added

static void
pcSerialComCommandUpdate(char
receivedChar)

case ‘d’: case ‘D’: commandSetWifiComApSsid(); break;

case ‘r’: case ‘R’: commandSetWifiComApPassword(); break;

case ‘p’: case ‘P’: commandGetWifiComAssignedIp(); break;

static void availableCommands() pcSerialComStringWrite("Press ‘d’ or ‘D’ to set Wi-Fi AP SSID\

r\n");

pcSerialComStringWrite("Press ‘r’ or ‘R’ to set Wi-Fi AP

Password\r\n");

pcSerialComStringWrite("Press ‘p’ or ‘P’ to get Wi-Fi assigned

IP\r\n");

The new declaration of the user-defined type pcSerialComMode_t is shown in Code 11.8. Two new valid
values are incorporated: PC_SERIAL_GET_WIFI_AP_CREDENTIALS_SSID and PC_SERIAL_GET_WIFI_
AP_CREDENTIALS_PASSWORD.

1
2
3
4
5
6
7
8

typedef enum{
 PC_SERIAL_GET_FILE_NAME,
 PC_SERIAL_COMMANDS,
 PC_SERIAL_GET_CODE,
 PC_SERIAL_SAVE_NEW_CODE,
 PC_SERIAL_GET_WIFI_AP_CREDENTIALS_SSID,
 PC_SERIAL_GET_WIFI_AP_CREDENTIALS_PASSWORD,
} pcSerialComMode_t;

Code 11.8 New declaration of the type definition pcSerialComMode_t.

The new implementation of pcSerialComUpdate() is shown in Code 11.9. The new program
code is between lines 18 and 23. It is used to get the AP credentials using the functions
pcSerialComGetWiFiComApSsid() and pcSerialComGetWiFiComApPassword(), which are discussed below.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

473

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

void pcSerialComUpdate()
{
 char receivedChar = pcSerialComCharRead();
 if(receivedChar != '\0') {
 switch (pcSerialComMode) {
 case PC_SERIAL_GET_FILE_NAME:
 pcSerialComGetFileName(receivedChar);
 break;
 case PC_SERIAL_COMMANDS:
 pcSerialComCommandUpdate(receivedChar);
 break;
 case PC_SERIAL_GET_CODE:
 pcSerialComGetCodeUpdate(receivedChar);
 break;
 case PC_SERIAL_SAVE_NEW_CODE:
 pcSerialComSaveNewCodeUpdate(receivedChar);
 break;
 case PC_SERIAL_GET_WIFI_AP_CREDENTIALS_SSID:
 pcSerialComGetWiFiComApSsid(receivedChar);
 break;
 case PC_SERIAL_GET_WIFI_AP_CREDENTIALS_PASSWORD:
 pcSerialComGetWiFiComApPassword(receivedChar);
 break;
 default:
 pcSerialComMode = PC_SERIAL_COMMANDS;
 break;
 }
 }
}

Code 11.9 Implementation of new cases in Serial_com pcSerialComUpdate().

In Code 11.10, the new functions that are incorporated into pc_serial_com.cpp are shown. The
functions pcSerialComGetWiFiComApSsid() and pcSerialComGetWiFiComApPassword() are both called
from pcSerialComUpdate(), as was shown in Code 11.9. These functions are used to ask the user for the
AP credentials, which are stored in ApSsid and ApPassword. The credentials are configured into the
ESP-01 module using the functions wifiComSetWiFiComApSsid() and wifiComSetWiFiComApPassword(),
which are discussed below. The number of characters is stored in numberOfCharsInApCredentials.

The implementation of the functions that were mentioned in Table 11.8 are shown in Code 11.10.
These functions are used to ask the user for the SSID and the password of the AP, and also to report
the assigned IP address. To get the assigned IP address, the function wifiComGetIpAddress() is used,
which is discussed below. Notice that pcSerialComMode is set in commandSetWifiComApSsid() and
commandSetWifiComApPassword(), and numberOfCharsInApCredentials is set to zero in both functions.

474

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

static void commandSetWifiComApSsid()
{
 pcSerialComStringWrite("\r\nPlease provide the SSID of the Wi-Fi ");
 pcSerialComStringWrite("Access Point and press the Enter key\r\n");
 pcSerialComStringWrite("> ");
 pcSerialComMode = PC_SERIAL_GET_WIFI_AP_CREDENTIALS_SSID;
 numberOfCharsInApCredentials = 0;
}

static void commandSetWifiComApPassword()
{
 pcSerialComStringWrite("\r\nPlease provide the Password of the Wi-Fi ");
 pcSerialComStringWrite("Access Point and press the Enter key\r\n");
 pcSerialComStringWrite("> ");
 pcSerialComMode = PC_SERIAL_GET_WIFI_AP_CREDENTIALS_PASSWORD;
 numberOfCharsInApCredentials = 0;
}

static void commandGetWifiComAssignedIp()
{
 pcSerialComStringWrite("The assigned IP is: ");
 pcSerialComStringWrite(wifiComGetIpAddress());
 pcSerialComStringWrite("\r\n");
}

static void pcSerialComGetWiFiComApSsid(char receivedChar)
{
 if ((receivedChar == '\r') &&
 (numberOfCharsInApCredentials < AP_SSID_MAX_LENGTH)) {
 pcSerialComMode = PC_SERIAL_COMMANDS;
 ApSsid[numberOfCharsInApCredentials] = '\0';
 wifiComSetWiFiComApSsid(ApSsid);
 pcSerialComStringWrite("\r\nWi-Fi Access Point SSID configured\r\n\r\n");
 } else {
 ApSsid[numberOfCharsInApCredentials] = receivedChar;
 pcSerialComCharWrite(receivedChar);
 numberOfCharsInApCredentials++;
 }
}

static void pcSerialComGetWiFiComApPassword(char receivedChar)
{
 if ((receivedChar == '\r') &&
 (numberOfCharsInApCredentials < AP_PASSWORD_MAX_LENGTH)) {
 pcSerialComMode = PC_SERIAL_COMMANDS;
 ApPassword[numberOfCharsInApCredentials] = '\0';
 wifiComSetWiFiComApPassword(ApPassword);
 pcSerialComStringWrite("\r\nWi-Fi Access Point password configured\r\n\r\n");
 } else {
 ApPassword[numberOfCharsInApCredentials] = receivedChar;
 pcSerialComStringWrite("*");
 numberOfCharsInApCredentials++;
 }
}

Code 11.10 Implementation of new private functions in pc_serial_com.cpp.

In Code 11.11 the new implementation of wifi_com.h is shown. The definitions that were used in
Table 11.7 are shown on lines 8 and 9. It can be seen that the three public functions that were
introduced in Code 11.10 are declared in lines 13 to 15. The implementation of these three functions

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

475

is in the file wifi_com.cpp and is shown in Code 11.12. It can be seen that wifiComSetWiFiComApSsid()
uses the function strcnpy() to copy the content of the string ApSsid into the string wifiComApSsid in
order to avoid the user input causing buffer overflow issues, as discussed in Chapter 4. The function
wifiComSetWiFiComApPassword() makes a copy of ApPassword into wifiComApPassword. Finally,
wifiComGetIpAddress() returns a pointer to the string wifiComIpAddress, which is introduced below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

//=====[#include guards - begin]===

#ifndef _WIFI_COM_
#define _WIFI_COM_

//=====[Declaration of public defines]===

#define AP_SSID_MAX_LENGTH (32 + 1)
#define AP_PASSWORD_MAX_LENGTH (63 + 1)

//=====[Declarations (prototypes) of public functions]=========================

void wifiComSetWiFiComApSsid(char * ApSsid);
void wifiComSetWiFiComApPassword(char * ApPassword);
char * wifiComGetIpAddress();

void wifiComRestart();
void wifiComInit();
void wifiComUpdate();

//=====[#include guards - end]===

#endif /* _WIFI_COM_ */

Code 11.11 New implementation of wifi_com.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void wifiComSetWiFiComApSsid(char * ApSsid)
{
 strncpy(wifiComApSsid, ApSsid, AP_SSID_MAX_LENGTH);
}

void wifiComSetWiFiComApPassword(char * ApPassword)
{
 strncpy(wifiComApPassword, ApPassword, AP_PASSWORD_MAX_LENGTH);
}

char * wifiComGetIpAddress()
{
 return wifiComIpAddress;
}

Code 11.12 Implementation of the public functions of the wifi_com module.

The lines that were added to wifi_com.cpp are shown in Table 11.9. A definition of DELAY_10_
SECONDS as 10000 is added, as well as a definition of IP_MAX_LENGTH. Also seven private global
strings are declared. Four of them are used to implement specific steps of the FSM, as discussed
below. The other three are used to store information regarding the AP, also discussed below.

476

A Beginner’s Guide to Designing Embedded System Applications

Table 11.9 Sections in which lines were added to wifi_com.cpp.

Section Lines that were added

Declaration of private
defines

#define DELAY_10_SECONDS 10000

#define IP_MAX_LENGTH (15 + 1)

Declaration and
initialization of private
global variables

static const char responseCwjapOk[] = "+CWJAP:";

static const char responseCwjap1[] = "WIFI CONNECTED";

static const char responseCwjap2[] = "WIFI GOT IP";

static const char responseCifsr[] = "+CIFSR:STAIP,\"";

static char wifiComApSsid[AP_SSID_MAX_LENGTH] = "";

static char wifiComApPassword[AP_PASSWORD_MAX_LENGTH] = "";

static char wifiComIpAddress[IP_MAX_LENGTH];

As was mentioned in the section “Summary of the Expected Behavior,” in this example the NUCLEO
board sends the commands “AT”, “AT+CWMODE=1”, “AT+CWJAP”, and “AT+CIFSR” to the ESP-01
module. To handle this functionality, new states are incorporated into the FSM, as shown in
Code 11.13 (lines 5 to 14).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

typedef enum {
 WIFI_STATE_INIT,
 WIFI_STATE_SEND_AT,
 WIFI_STATE_WAIT_AT,
 WIFI_STATE_SEND_CWMODE,
 WIFI_STATE_WAIT_CWMODE,
 WIFI_STATE_SEND_CWJAP_IS_SET,
 WIFI_STATE_WAIT_CWJAP_IS_SET,
 WIFI_STATE_SEND_CWJAP_SET,
 WIFI_STATE_WAIT_CWJAP_SET_1,
 WIFI_STATE_WAIT_CWJAP_SET_2,
 WIFI_STATE_SEND_CIFSR,
 WIFI_STATE_WAIT_CIFSR,
 WIFI_STATE_LOAD_IP,
 WIFI_STATE_IDLE,
 WIFI_STATE_ERROR
} wifiComState_t;

Code 11.13 New declaration of the user-defined type wifiComState_t.

The new implementation of the FSM is shown in Code 11.14 to Code 11.16. On lines 3 and 4 of
Code 11.14, two new static variables are declared: receivedCharWifiCom and IpStringPositionIndex.
Lines 6 to 32 of Code 11.14 are the same as in Example 11.1 (Code 11.6). The “AT+CWMODE=1”
command is implemented from lines 34 to 41. The corresponding response is expected using the FSM
that is implemented from lines 43 to 53. Note that the program code that is used to implement the
“AT+CWMODE=1” command is very similar to the program code used to implement the “AT” command
that was discussed in Example 11.1. For this reason, lines 34 to 53 are not further discussed here.

The implementation of the “AT+CWJAP” command is shown between lines 55 and 62 of Code 11.14
and in lines 1 to 51 of Code 11.15. Firstly, the state WIFI_STATE_SEND_CWJAP_IS_SET sends
“AT+CWJAP?” to the ESP-01 module in order to determine if the AP credentials are configured. Next,
the WIFI_STATE_WAIT_CWJAP_IS_SET state assesses if the response is “OK”. If so, the next state
is WIFI_STATE_SEND_CIFSR. Otherwise, the next state is WIFI_STATE_SEND_CWJAP_SET, where

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

477

the AP credentials are sent to the ESP-01, the expected response is set in line 20 of Code 11.15
to responseCwjap1, which is “WIFI CONNECTED”, and the next state is set to WIFI_STATE_WAIT_
CWJAP_SET_1. The WIFI_STATE_WAIT_CWJAP_SET_1 state assesses if “WIFI CONNECTED” is
received. If so, the expected response is set to responseCwjap2, which is “WIFI GOT IP”, and the next
state is set to WIFI_STATE_WAIT_CWJAP_SET_2. Finally, the WIFI_STATE_WAIT_CWJAP_SET_2 state
assesses if “WIFI GOT IP” is received. If so, the next state is set to WIFI_STATE_SEND_CIFSR.

The implementation of the “AT+CIFSR” command is shown between lines 53 and 60 of Code 11.15 and
in lines 1 to 24 of Code 11.16. First, the state WIFI_STATE_SEND_CIFSR sends “AT+CIFSR”
to the ESP-01 module in order to receive the assigned IP address. The expected response is set in
line 56 to responseCifsr, which is “+CIFSR:STAIP,\”, and the next state is set to WIFI_STATE_WAIT_CIFSR.
Next, the WIFI_STATE_WAIT_CIFSR state assesses if “+CIFSR:STAIP,\” is received. If so, the
next state is set to WIFI_STATE_LOAD_IP, and IpStringPositionIndex is set to zero. In the state
WIFI_STATE_LOAD_IP, the assigned IP address is read and loaded into wifiComIpAddress. The
assessment “IpStringPositionIndex < IP_MAX_LENGTH” is used to avoid buffer overflow issues, as
discussed in Chapter 4, if for any reason the ESP-01 module sends more IP characters than expected.
Then, the message “IP address assigned correctly” is sent to the serial terminal (line 20).

Lastly, lines 26 to 28 of Code 11.16 are the same as in the previous implementation of wifiComUpdate()
in Example 11.1. In this way, the FSM will remain in WIFI_STATE_IDLE or case WIFI_STATE_ERROR
if those states are reached. Note that no specific message is displayed in these situations, in order to
simplify the implementation of this example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void wifiComUpdate()
{
 static char receivedCharWifiCom;
 static int IpStringPositionIndex;

 switch (wifiComState) {

 case WIFI_STATE_INIT:
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_AT;
 break;

 case WIFI_STATE_SEND_AT:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT\r\n");
 wifiComExpectedResponse = responseOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_AT;
 }
 break;

 case WIFI_STATE_WAIT_AT:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CWMODE;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT command not responded ");

478

A Beginner’s Guide to Designing Embedded System Applications

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 pcSerialComStringWrite("correctly\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_SEND_CWMODE:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CWMODE=1\r\n");
 wifiComExpectedResponse = responseOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CWMODE;
 }
 break;

 case WIFI_STATE_WAIT_CWMODE:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CWJAP_IS_SET;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT+CWMODE=1 command not ");
 pcSerialComStringWrite("responded correctly\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_SEND_CWJAP_IS_SET:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CWJAP?\r\n");
 wifiComExpectedResponse = responseCwjapOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CWJAP_IS_SET;
 }
 break;

Code 11.14 New implementation of wifiComUpdate() (Part 1/3).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 case WIFI_STATE_WAIT_CWJAP_IS_SET:
 if (isExpectedResponse()) {
 wifiComExpectedResponse = responseOk;
 wifiComState = WIFI_STATE_SEND_CIFSR;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CWJAP_SET;
 }
 break;

 case WIFI_STATE_SEND_CWJAP_SET:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CWJAP=\"");
 wifiComStringWrite(wifiComApSsid);
 wifiComStringWrite("\",\"");
 wifiComStringWrite(wifiComApPassword);
 wifiComStringWrite("\"");
 wifiComStringWrite("\r\n");
 wifiComExpectedResponse = responseCwjap1;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_10_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CWJAP_SET_1;
 }

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

479

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 break;

 case WIFI_STATE_WAIT_CWJAP_SET_1:
 if (isExpectedResponse()) {
 wifiComExpectedResponse = responseCwjap2;
 wifiComState = WIFI_STATE_WAIT_CWJAP_SET_2;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("Error in state: ");
 pcSerialComStringWrite("WIFI_STATE_WAIT_CWJAP_SET_1\r\n");
 pcSerialComStringWrite("Check Wi-Fi AP credentials ");
 pcSerialComStringWrite("and restart\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_WAIT_CWJAP_SET_2:
 if (isExpectedResponse()) {
 wifiComState = WIFI_STATE_SEND_CIFSR;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("Error in state: ");
 pcSerialComStringWrite("WIFI_STATE_WAIT_CWJAP_SET_2\r\n");
 pcSerialComStringWrite("Check Wi-Fi AP credentials ");
 pcSerialComStringWrite("and restart\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_SEND_CIFSR:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CIFSR\r\n");
 wifiComExpectedResponse = responseCifsr;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CIFSR;
 }
 break;

Code 11.15 New implementation of wifiComUpdate() (Part 2/3).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 case WIFI_STATE_WAIT_CIFSR:
 if (isExpectedResponse()) {
 wifiComState = WIFI_STATE_LOAD_IP;
 IpStringPositionIndex = 0;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT+CIFSR command not responded ");
 pcSerialComStringWrite("correctly\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_LOAD_IP:
 if (wifiComCharRead(&receivedCharWifiCom)) {
 if ((receivedCharWifiCom != '"') &&
 (IpStringPositionIndex < IP_MAX_LENGTH)) {
 wifiComIpAddress[IpStringPositionIndex] = receivedCharWifiCom;
 IpStringPositionIndex++;
 } else {
 wifiComIpAddress[IpStringPositionIndex] = '\0';
 pcSerialComStringWrite("IP address assigned correctly\r\n\r\n");

480

A Beginner’s Guide to Designing Embedded System Applications

22
23
24
25
26
27
28
29
30
31

 wifiComState = WIFI_STATE_IDLE;
 }
 }
 break;

 case WIFI_STATE_IDLE:
 case WIFI_STATE_ERROR:
 break;
 }
}

Code 11.16 New implementation of wifiComUpdate() (Part 3/3).

Proposed Exercise

1. Once the ESP-01 module is connected to the AP, what should be done in order to serve a web page?

Answer to the Exercise

1. The AT commands shown from Figure 11.11 to Figure 11.19 must be implemented. This is shown in
Example 11.3.

Example 11.3: Serve a Simple Web Page using the Wi-Fi Connection

Objective

Include AT commands in the FSM in order to serve a web page using the Wi-Fi access point.

Summary of the Expected Behavior

The NUCLEO board will send the commands “AT”, “AT+CWMODE=1”, “AT+CWJAP”, “AT+CIFSR”,
“AT+CIPMUX=1”, “AT+CIPSERVER=1,80”, “AT+CIPSTATUS”, “AT+CIPSEND”, the HTML document, and
the command “AT+CIPCLOSE” to the ESP-01 module (recall Section 11.2.2). It will be indicated on
the serial terminal if the expected responses are received correctly by the NUCLEO board or not. If
everything works as expected, the web page that was shown in Figure 11.20 should be displayed on
the web browser.

Test the Proposed Solution on the Board

Import the project “Example 11.3” using the URL available in [3], build the project, and drag the .bin
file onto the NUCLEO board. Repeat the same steps as in Example 11.2. Press “p” to get the IP address
assigned to the ESP-01 module. Enter this IP in a web browser. The web page that was shown in
Figure 11.20 should be displayed in the web browser. If this does not happen, check the connections
and press “a” to retry.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

481

Discussion of the Proposed Solution

The proposed solution is based on new states that are incorporated into the FSM of the wifi_com
module. These new states implement the steps shown in Figure 11.11 to Figure 11.19.

Implementation of the Proposed Solution

In this example, the wifi_com module incorporates many AT commands. To handle this functionality,
new states are incorporated into the FSM as shown in Code 11.17 (lines 15 to 29).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

typedef enum {
 WIFI_STATE_INIT,
 WIFI_STATE_SEND_AT,
 WIFI_STATE_WAIT_AT,
 WIFI_STATE_SEND_CWMODE,
 WIFI_STATE_WAIT_CWMODE,
 WIFI_STATE_SEND_CWJAP_IS_SET,
 WIFI_STATE_WAIT_CWJAP_IS_SET,
 WIFI_STATE_SEND_CWJAP_SET,
 WIFI_STATE_WAIT_CWJAP_SET_1,
 WIFI_STATE_WAIT_CWJAP_SET_2,
 WIFI_STATE_SEND_CIFSR,
 WIFI_STATE_WAIT_CIFSR,
 WIFI_STATE_LOAD_IP,
 WIFI_STATE_SEND_CIPMUX,
 WIFI_STATE_WAIT_CIPMUX,
 WIFI_STATE_SEND_CIPSERVER,
 WIFI_STATE_WAIT_CIPSERVER,
 WIFI_STATE_SEND_CIPSTATUS,
 WIFI_STATE_WAIT_CIPSTATUS_STATUS_3,
 WIFI_STATE_WAIT_CIPSTATUS,
 WIFI_STATE_WAIT_GET_ID,
 WIFI_STATE_WAIT_CIPSTATUS_OK,
 WIFI_STATE_SEND_CIPSEND,
 WIFI_STATE_WAIT_CIPSEND,
 WIFI_STATE_SEND_HTML,
 WIFI_STATE_WAIT_HTML,
 WIFI_STATE_SEND_CIPCLOSE,
 WIFI_STATE_WAIT_CIPCLOSE
 WIFI_STATE_IDLE,
 WIFI_STATE_ERROR
} wifiComState_t;

Code 11.17 New declaration of the user-defined type wifiComState_t.

Two new variables are declared in wifiComUpdate(), as shown in Table 11.10. The variable
lengthOfHtmlCode is used together with the “AT+CIPSEND” command in order to indicate the length
in bytes of the HTTP that is being sent to the web browser (recall Figure 11.17). The array strToSend
is used as a string where the message to be sent is stored in the cases of the “AT+CIPSEND” and
“AT+CIPCLOSE” commands, because these commands require some parameters (recall Figure 11.17
and Figure 11.19).

482

A Beginner’s Guide to Designing Embedded System Applications

Table 11.10 Functions in which lines were added in wifi_com.cpp.

Function Lines that were added

void wifiComUpdate() int lengthOfHtmlCode;

char strToSend[50] = "";

In Table 11.11, the new private global variables that are declared in wifi_com.cpp are shown. The
strings stored in responseStatus3 and responseCipstatus are used to implement the command
“AT+CIPSTATUS”. The string responseSendOk is used to implement the command “AT+CIPSEND”, while
the string responseCipclose is used to implement the “AT+CIPCLOSE=0” command. The integer variable
currentConnectionId is used to get the identifier (ID) of the connection that is established. Lastly, the
HTML code that is used to implement the web page that is shown in the web browser is stored in the
string htmlCode (recall Code 11.1, where this HTML is introduced).

Table 11.11 Sections in which lines were added to wifi_com.cpp.

Section Lines that were added

Declaration and
initialization of private
global variables

static const char responseStatus3[] = "STATUS:3";

static const char responseCipstatus[] = "+CIPSTATUS:";

static const char responseSendOk[] = "SEND OK";

static const char responseCipclose[] = "CLOSED";

static int currentConnectionId;

static const char htmlCode [] =

 "<!doctype html> <html> <body> Hello! </body> </html>"

The implementation of the new states of the FSM in wifiComUpdate() is shown in Code 11.18 to
Code 11.20. In Code 11.18, the implementation of “AT+CIPMUX=1” and “AT+CIPSERVER=1,80” is
shown. The implementation of these commands is not further discussed because it is very similar to
the implementation of “AT+CWMODE=1”, which was explained in Example 11.2.

Code 11.19 shows the implementation of the “AT+CIPSTATUS” command. The sequence is as shown in
Figure 11.16: first, “AT+CIPSTATUS” is sent to the ESP-01 module (line 3), then it is assessed whether
the expected response “STATUS:3” is obtained (line 11). After this, it is assessed if the ESP-01 module
sends the message “+CIPSTATUS:” (line 23), then the current connection ID is read (line 34), and,
finally, it is checked if “OK” has been sent by the ESP-01 module.

Code 11.20 shows the implementation of the “AT+CIPSEND” and “AT+CIPCLOSE” commands. On line 3,
the “AT+CIPSEND” command is prepared with the corresponding parameters (recall Figure 11.17). For
this purpose, the current connection ID and the length in bytes of the HTML web page code, which is
obtained in line 2 using strlen(), are used. The “AT+CIPSEND” command is sent on line 5. Line 11 checks
if the ESP-01 module response is “OK”. If so, the FSM moves to the WIFI_STATE_SEND_HTML state
(line 13). Otherwise, it returns to the WIFI_STATE_SEND_CIPSTATUS state (line 17).

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

483

The HTML document is sent on line 22, and the “SEND OK” response is checked on line 28. If this
response is obtained, it moves to the state WIFI_STATE_SEND_CIPCLOSE (line 30). If it is not obtained,
the FSM moves back to the WIFI_STATE_SEND_CIPSEND state (line 34). The “AT+CIPCLOSE”
command is implemented between lines 38 and 57. It is important to note that if everything works as
expected (i.e., “OK” is received), the next state is set to WIFI_STATE_SEND_CIPSTATUS (line 51); if not,
the next state is also set to WIFI_STATE_SEND_CIPSTATUS (line 55). This is done this way because in
either scenario the next step is to wait for a new web page request, and this is done in WIFI_STATE_
SEND_CIPSTATUS by means of asking the ESP-01 module about the CIPSTATUS.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 case WIFI_STATE_SEND_CIPMUX:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CIPMUX=1\r\n");
 wifiComExpectedResponse = responseOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CIPMUX;
 }
 break;

 case WIFI_STATE_WAIT_CIPMUX:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSERVER;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT+CIPMUX=1 command not responded ");
 pcSerialComStringWrite("correctly\r\n\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

 case WIFI_STATE_SEND_CIPSERVER:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CIPSERVER=1,80\r\n");
 wifiComExpectedResponse = responseOk;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CIPSERVER;
 }
 break;

 case WIFI_STATE_WAIT_CIPSERVER:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 pcSerialComStringWrite("AT+CIPSERVER=1,80 command not responded ");
 pcSerialComStringWrite("correctly\r\n\r\n");
 wifiComState = WIFI_STATE_ERROR;
 }
 break;

Code 11.18 Implementation of the new states in wifiComUpdate() (Part 1/3).

484

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

 case WIFI_STATE_SEND_CIPSTATUS:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 wifiComStringWrite("AT+CIPSTATUS\r\n");
 wifiComExpectedResponse = responseStatus3;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CIPSTATUS_STATUS_3;
 }
 break;

 case WIFI_STATE_WAIT_CIPSTATUS_STATUS_3:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComExpectedResponse = responseCipstatus;
 wifiComState = WIFI_STATE_WAIT_CIPSTATUS;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 break;

 case WIFI_STATE_WAIT_CIPSTATUS:
 if (isExpectedResponse()) {
 wifiComState = WIFI_STATE_WAIT_GET_ID;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 break;

 case WIFI_STATE_WAIT_GET_ID:
 if(wifiComCharRead(&receivedCharWifiCom)){
 currentConnectionId = receivedCharWifiCom;
 wifiComExpectedResponse = responseOk;
 wifiComState = WIFI_STATE_WAIT_CIPSTATUS_OK;
 }
 break;

 case WIFI_STATE_WAIT_CIPSTATUS_OK:
 if (isExpectedResponse()) {
 wifiComState = WIFI_STATE_SEND_CIPSEND;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 break;

Code 11.19 Implementation of the new states in wifiComUpdate() (Part 2/3).

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

485

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

 case WIFI_STATE_SEND_CIPSEND:
 lengthOfHtmlCode = (strlen(htmlCode));
 sprintf(strToSend, "AT+CIPSEND=%c,%d\r\n", currentConnectionId,
 lengthOfHtmlCode);
 wifiComStringWrite(strToSend);
 wifiComState = WIFI_STATE_WAIT_CIPSEND;
 wifiComExpectedResponse = responseOk;
 break;

 case WIFI_STATE_WAIT_CIPSEND:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_HTML;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 break;

 case WIFI_STATE_SEND_HTML:
 wifiComStringWrite(htmlCode);
 wifiComState = WIFI_STATE_WAIT_HTML;
 wifiComExpectedResponse = responseSendOk;
 break;

 case WIFI_STATE_WAIT_HTML:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPCLOSE;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSEND;
 }
 break;

 case WIFI_STATE_SEND_CIPCLOSE:
 if (nonBlockingDelayRead(&wifiComDelay)) {
 sprintf(strToSend, "AT+CIPCLOSE=%c\r\n", currentConnectionId);
 wifiComStringWrite(strToSend);
 wifiComExpectedResponse = responseCipclose;
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_WAIT_CIPCLOSE;
 }
 break;

 case WIFI_STATE_WAIT_CIPCLOSE:
 if (isExpectedResponse()) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 if (nonBlockingDelayRead(&wifiComDelay)) {
 nonBlockingDelayWrite(&wifiComDelay, DELAY_5_SECONDS);
 wifiComState = WIFI_STATE_SEND_CIPSTATUS;
 }
 break;

 case WIFI_STATE_IDLE:
 case WIFI_STATE_ERROR:
 break;
 }
}

Code 11.20 Implementation of the new states in wifiComUpdate() (Part 3/3).

486

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. How can the web page be configured in order to show some relevant data about the smart home
system?

Answer to the Exercise

1. The HTML document that is served must be modified in order to include some information about
the smart home system. This is shown in Example 11.4.

Example 11.4: Serve a Web Page that Shows the Smart Home System information

Objective

Include in the web page the status of different elements of the smart home system.

Summary of the Expected Behavior

The NUCLEO board will serve a web page, as in Example 11.3, but in this case the web page will
contain relevant information about the smart home system: the temperature expressed in degrees
Celsius; the status of the over temperature, gas, and motion detectors; and the status of the alarm,
Incorrect code LED, and System blocked LED, as shown in Figure 11.6.

Test the Proposed Solution on the Board

Import the project “Example 11.4” using the URL available in [3], build the project, and drag the .bin file
onto the NUCLEO board. Follow the same steps as in Example 11.3. If everything worked correctly,
the web page that was introduced in Figure 11.6 should be displayed in the web browser. Otherwise,
check the connections and the access point credentials, and press “a” to retry.

Discussion of the Proposed Solution

The proposed solution is based on the same states of the FSM that were introduced in previous
examples. The difference is that in this example more information is shown in the web page served by
the smart home system.

Implementation of the Proposed Solution

In order to show more information in the web page served by the smart home system, some lines were
added in different sections of wifi_com.cpp, as shown in Table 11.12. It can be seen that the libraries
regarding the temperature sensor, siren, fire alarm, motion sensor, and user interface were included.
Two new definitions are also made: BEGIN_USER_LINE and END_USER_LINE. The former is used to
indicate the beginning of a paragraph by means of <p>. The latter is used to indicate the ending of the
paragraph by means of </p>.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

487

Table 11.12 Sections in which lines were added to wifi_com.cpp.

Section Lines that were added

Libraries #include "temperature_sensor.h"

#include "siren.h"

#include "fire_alarm.h"

#include "motion_sensor.h"

#include "user_interface.h"

Declaration of private
defines

#define BEGIN_USER_LINE "<p>"

#define END_USER_LINE "</p>"

Declaration and
initialization of private
global variables

static char stateString[4] = "";

static const char htmlCodeHeader [] =

 "<!doctype html>"

 "<html> <head> <title>Smart Home System</title> </head>"

 "<body style=\"text-align: center;\">"

 "<h1 style=\"color: #0000ff;\">Smart Home System</h1>"

 "<div style=\"font-weight: bold\">";

static const char htmlCodeFooter [] = "</div> </body> </html>";

static char htmlCodeBody[450] = "";

Declarations (prototypes)
of private functions

void wifiComWebPageDataUpdate();

char * stateToString(bool state);

Table 11.12 shows that some new private variables were declared. stateString will be used to store a
string that will indicate the status of the different elements of the smart home system (i.e., “ON” or
“OFF”). htmlCodeHeader is used to store the header of the HTML code. Its first lines (“<!doctype html>
<html> <head>”) are the same as in Example 11.3. Next, “<title>Smart Home System</title>” is used to
assign a title to the web page. Then, center-aligned text is configured for the body of the document.
After this, “Smart Home System” is printed using heading size 1 (i.e., h1) and blue color (#0000ff). A
division or section in the HTML code is opened where bold font is set. The htmlCodeFooter string is
used to close the <div>, <body>, and <html> tags that were opened in htmlCodeHeader. Finally, the
string htmlCodeBody is used to store the body of the HTML code. The prototypes of the new private
functions wifiComWebPageDataUpdate() and stateToString() are declared in wifi_com.cpp, and are
discussed below.

Table 11.13 shows that the string htmlCode was removed from wifi_com.cpp. In Table 11.14, the
implementation of the FSM states that were modified are shown. In WIFI_STATE_WAIT_CIPSTATUS_
OK, the function wifiComWebPageDataUpdate() is now used to prepare the web page, as discussed
below.

Table 11.13 Sections in which lines were removed from wifi_com.cpp.

Section Lines that were removed

Declaration and
initialization of private
global variables

static const char htmlCode [] =

 "<!doctype html> <html> <body> Hello! </body> </html>"

488

A Beginner’s Guide to Designing Embedded System Applications

Table 11.14 States of the FSM that were modified in wifi_com.cpp.

Previous implementation of the state New implementation of the state

case WIFI_STATE_WAIT_CIPSTATUS_OK:

 if (isExpectedResponse()) {

 wifiComState = WIFI_STATE_SEND_CIPSEND;

 }

 if (nonBlockingDelayRead(&wifiComDelay)) {

 nonBlockingDelayWrite(&wifiComDelay,

 DELAY_5_SECONDS);

 wifiComState = WIFI_STATE_SEND_CIPSTATUS;

 }

 break;

case WIFI_STATE_WAIT_CIPSTATUS_OK:

 if (isExpectedResponse()) {

 wifiComState = WIFI_STATE_SEND_CIPSEND;

 wifiComWebPageDataUpdate();

 }

 if (nonBlockingDelayRead(&wifiComDelay)) {

 nonBlockingDelayWrite(&wifiComDelay,

 DELAY_5_SECONDS);

 wifiComState = WIFI_STATE_SEND_

CIPSTATUS;

 }

 break;

case WIFI_STATE_SEND_CIPSEND:

 lengthOfHtmlCode =

 (strlen(htmlCode));

 sprintf(strToSend,

 "AT+CIPSEND=%c,%d\r\n",

 currentConnectionId,

 lengthOfHtmlCode);

 wifiComStringWrite(strToSend);

 wifiComState = WIFI_STATE_WAIT_CIPSEND;

 wifiComExpectedResponse = responseOk;

 break;

case WIFI_STATE_SEND_CIPSEND:

 lengthOfHtmlCode =

 (strlen(htmlCodeHeader) +

 strlen(htmlCodeBody) +

 strlen(htmlCodeFooter));

 sprintf(strToSend,

 "AT+CIPSEND=%c,%d\r\n",

 currentConnectionId,

 lengthOfHtmlCode);

 wifiComStringWrite(strToSend);

 wifiComState = WIFI_STATE_WAIT_CIPSEND;

 wifiComExpectedResponse = responseOk;

 break;

case WIFI_STATE_SEND_HTML:

 wifiComStringWrite(htmlCode);

 wifiComState = WIFI_STATE_WAIT_HTML;

 wifiComExpectedResponse = responseSendOk;

 break;

case WIFI_STATE_SEND_HTML:

 wifiComStringWrite(htmlCodeHeader);

 wifiComStringWrite(htmlCodeBody);

 wifiComStringWrite(htmlCodeFooter);

 wifiComState = WIFI_STATE_WAIT_HTML;

 wifiComExpectedResponse = responseSendOk;

 break;

In WIFI_STATE_SEND_CIPSEND, the length of the HTML code to send is obtained by summing the
length in bytes of htmlCodeHeader, htmlCodeBody, and htmlCodeFooter.

In WIFI_STATE_SEND_HTML, it can be seen that the HTML code that is sent is composed of
htmlCodeHeader, followed by htmlCodeBody, and finally htmlCodeFooter.

In Code 11.21, it can be seen how htmlCodeBody is structured. One after the other, the different
values to be shown in the web page are appended onto htmlCodeBody. Note that sprintf is used to
append the values, by means of an offset given by + strlen(htmlCodeBody). In order to separate the
information into different lines, BEGIN_USER_LINE and END_USER_LINE are used when appending
the string corresponding to each element. Note that in order to print the degrees symbol “º”, the HTML
predefined character entity “º” is used in line 3. Lastly, note that to append the information
corresponding to different elements as an “ON” or “OFF” string, the function stateToString() is used.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

489

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void wifiComWebPageDataUpdate()
{
 sprintf(htmlCodeBody, "%s Temperature: %.2f ºC %s",
 BEGIN_USER_LINE, temperatureSensorReadCelsius(), END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody),
 "%s Over temperature detected: %s %s", BEGIN_USER_LINE,
 stateToString(overTemperatureDetectorStateRead()), END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody), "%s Gas detected: %s %s",
 BEGIN_USER_LINE, stateToString(gasDetectorStateRead()),
 END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody),
 "%s Motion detected: %s %s", BEGIN_USER_LINE,
 stateToString(motionSensorRead()), END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody), "%s Alarm: %s %s",
 BEGIN_USER_LINE, stateToString(sirenStateRead()), END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody),
 "%s Incorrect code LED: %s %s", BEGIN_USER_LINE,
 stateToString(incorrectCodeStateRead()), END_USER_LINE);

 sprintf(htmlCodeBody + strlen(htmlCodeBody),
 "%s System blocked LED: %s %s", BEGIN_USER_LINE,
 stateToString(systemBlockedStateRead()), END_USER_LINE);
}

Code 11.21 Implementation of wifiComWebPageDataUpdate().

NOTE: Recall Chapter 3, where it was explained that the file mbed_app.json was
introduced in order to enable the %.2f format that is used in Code 11.21. For more
information, please refer to [6].

Code 11.22 shows the implementation of the function stateToString(). It returns “ON” or “OFF”
depending on the value of its only parameter (state).

1
2
3
4
5
6
7
8
9

char * stateToString(bool state)
{
 if (state) {
 strcpy(stateString, "ON");
 } else {
 strcpy(stateString, "OFF");
 }
 return stateString;
}

Code 11.22 Implementation of stateToString().

In this way, the HTML code served by the smart home system looks like the example shown in
Code 11.23.

490

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<!doctype html>
<html>
 <head>
 <title>Smart Home System</title>
 </head>
 <body style="text-align: center;">
 <h1 style="color: #0000ff;">Smart Home System</h1>
 <div style="font-weight: bold">
 <p>Temperature: 10 ºC</p>
 <p>Over temperature detected: OFF</p>
 <p>Gas detected: OFF</p>
 <p>Motion detected: OFF</p>
 <p>Alarm: OFF</p>
 <p>Incorrect code LED: OFF</p>
 <p>System blocked LED: OFF</p>
 </div>
 </body>
</html>

Code 11.23 Example of the HTML code served by the smart home system.

Proposed Exercises

1. What should be modified in order to include more information in the web page served by the smart
home system?

2. How can the HTML code be modified in order to auto refresh the data every ten seconds?

Answers to the Exercises

1. The function wifiComWebPageDataUpdate() should be modified in order to include more information
in htmlCodeBody.

2. Table 11.15 shows how to modify htmlCodeHeader in wifi_com.cpp. The meta tag should be included
with the parameters \“refresh\” and content=\“10\”. In this way, the web browser will automatically
ask the smart home system for the web page every ten seconds.

Table 11.15 Sections in which lines were modified in wifi_com.cpp.

Section Lines that were added

Declaration and
initialization of private
global variables

static const char htmlCodeHeader [] =

 "<!doctype html>"

 "<html> <head> <title>Smart Home System</title>

 "<meta http-equiv=\"refresh\" content=\"10\" /> </head>"

 "<body> <h1 style=\"text-align: center;\">"

 "Smart Home System</h1>"

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

491

11.3 Under the Hood

11.3.1 Basic Principles of Wi-Fi and TCP Connections

In this chapter, a Wi-Fi connection was used to serve a web page. In fact, Wi-Fi is a family of wireless
network protocols based on the IEEE 802.11 family of standards, which are commonly used for local
area networking of devices and sharing internet access. Different versions of Wi-Fi are specified that
use different radio bands and technologies, which determine their maximum ranges and achievable
speeds.

The ESP-01 module used in this chapter uses the same 2.4 GHz band as the HM-10 module that was
introduced in Chapter 3. The 2.4 GHz band is currently the most popular band for Wi-Fi connections,
together with the 5 GHz band. Each Wi-Fi band is divided into multiple channels in the same way
as in Bluetooth communication, as was explained in Chapter 10. Channels can be shared between
networks, but only one transmitter can transmit on a channel at any given moment in time.

The set of channels and techniques used to avoid narrowband interference problems varies
depending on the Wi-Fi version, as does the maximum bit rate that is reachable under optimal
conditions. Wi-Fi equipment frequently supports multiple versions of Wi-Fi. For example, the ESP-01
module supports Wi-Fi 1 (802.11b), Wi-Fi 3 (802.11g), and Wi-Fi 4 (802.11n), as described in [1]. The
main characteristics of each Wi-Fi version are listed in Table 11.16.

Table 11.16 Summary of the main characteristics of the Wi-Fi versions.

generation (Standard) Maximum Link Rate adopted Frequency

Wi-Fi 6E (802.11ax) 600 to 9608 Mbit/s 2019 6 GHz

Wi-Fi 6 (802.11ax) 600 to 9608 Mbit/s 2019 2.4/5 GHz

Wi-Fi 5 (802.11ac) 433 to 6933 Mbit/s 2014 5 GHz

Wi-Fi 4 (802.11n) 72 to 600 Mbit/s 2009 2.4/5 GHz

Wi-Fi 3 (802.11g) 3 to 54 Mbit/s 2003 2.4 GHz

Wi-Fi 2 (802.11a) 1.5 to 54 Mbit/s 1999 5 GHz

Wi-Fi 1 (802.11b) 1 to 11 Mbit/s 1999 2.4 GHz

NOTE: Wi-Fi is a trademark of the non-profit Wi-Fi Alliance, integrated by hundreds
of companies around the world. For more information about Wi-Fi technology and
the Wi-Fi Alliance, please refer to [7].

In the examples in this chapter, a TCP server was used to implement the communications between
the ESP-01 module and the web browser. As mentioned earlier, TCP stands for Transmission Control
Protocol and is one of the main communications protocols used on the internet and similar computer
networks.

492

A Beginner’s Guide to Designing Embedded System Applications

TCP provides reliable, ordered, and error-checked delivery of data between applications running on
devices that communicate using a network, where every device has a unique IP (Internet Protocol)
identifier. Thus, the entire suite is commonly referred to as TCP/IP. Major internet applications such as
the World Wide Web, email, and file transfer all rely on TCP.

TCP is connection-oriented, and a connection between client and server has to be established before
data can be sent, as was shown in subsection 11.2.2. The server must be listening for connection
requests from clients before a connection is established.

TCP includes different techniques in order to improve the reliability of the communication, such as
error-detection, retransmission, etc. However, it has some vulnerabilities that can be exploited by
hackers. For this reason, among others, TCP has been used in the first two versions of the Hypertext
Transfer Protocol (HTTP in 1996 and HTTP/2 in 2015) but is not used by the latest standard (HTTP/3
(2020)).

Proposed Exercise

1. Which technology allows a higher data transfer rate, Bluetooth Low Energy (BLE) or Wi-Fi?

Answer to the Exercise

1. In Chapter 10, it was shown that depending on the BLE version, the maximum achievable bit rate
is between 1 Mbit/s and 2 Mbit/s. Looking at Table 11.16, it can be seen that Wi-Fi allows a higher
data transfer rate.

11.4 Case Study

11.4.1 indoor Environment Monitoring

In this chapter, a web server was incorporated into the smart home system. In this way, the user is
able to access the information of the smart home system by means of a web browser. In [8], an Mbed-
based indoor environment monitoring system is shown that allows facilities managers to measure
environmental factors such as humidity, light levels, CO2, and occupancy, by means of a web service
that offers real-time insights, alerts, and reports relating to building performance. A representation of
the system is shown in Figure 11.21.

Chapter 11 | Embedded Web Server over a Wi-Fi Connection

493

PURR

System Projects Actions

TemperatureRecorded heatmap

50

45

35

30

25

20

15

10

5

0

Tues Wed Thu Fri Sat SunMon

S04

S03

S02

S02

S01

S05

S05

S06

S01 S03 S06

Figure 11.21 Example of an Mbed-based system having a web service with real-time insights, alerts and reports.

There are many similarities between the functionality of the indoor environment monitoring system
and the functionality of the smart home system, such as:

 n Gas detection

 n Alert generation

 n Occupancy monitoring

 n Light level measurement

 n Real-time information

Proposed Exercise

1. How can a plan of the home be added to the web page provided by the smart home system?

Answer to the Exercise

1. The code of the web page must be modified in order to allow the user to upload a home plan.

494

A Beginner’s Guide to Designing Embedded System Applications

 References
[1] “ESP-01/07/12 Series Modules User’s Manual”. Accessed July 9, 2021.

https://docs.ai-thinker.com/_media/esp8266/esp8266_series_modules_user_manual_en.pdf

[2] “esp8266-module-family [ESP8266 Support WIKI]”. Accessed July 9, 2021.
https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family

[3] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory

[4] “AT Command Set — ESP-AT User Guide documentation”. Accessed July 9, 2021.
https://docs.espressif.com/projects/esp-at/en/latest/AT_Command_Set/index.html

[5] “TCP_IP AT Commands — ESP-AT User Guide documentation”. Accessed July 9, 2021.
https://docs.espressif.com/projects/esp-at/en/latest/AT_Command_Set/TCP-IP_AT_Commands.
html#cmd-status

[6] “mbed-os_README.md at master · ARMmbed_mbed-os · GitHub”. Accessed July 9, 2021.
https://github.com/ARMmbed/mbed-os/blob/master/platform/source/minimal-printf/README.
md#usage

[7] “Wi-Fi Alliance”. Accessed July 9, 2021.
https://www.wi-fi.org/

[8] “Indoor Environment Monitoring | Mbed”. Accessed July 9, 2021.
https://os.mbed.com/built-with-mbed/indoor-environment-monitoring/

http://paperpile.com/b/bGTbn5/XKJz
https://docs.ai-thinker.com/_media/esp8266/esp8266_series_modules_user_manual_en.pdf
https://docs.ai-thinker.com/_media/esp8266/esp8266_series_modules_user_manual_en.pdf
http://paperpile.com/b/bGTbn5/XKJz
https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
https://github.com/armBookCodeExamples/Directory
https://github.com/armBookCodeExamples/Directory
http://paperpile.com/b/bGTbn5/XKJz
https://docs.espressif.com/projects/esp-at/en/latest/AT_Command_Set/index.html
https://docs.espressif.com/projects/esp-at/en/latest/AT_Command_Set/index.html
http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
http://paperpile.com/b/bGTbn5/XKJz
https://www.wi-fi.org/
https://www.wi-fi.org/
http://paperpile.com/b/bGTbn5/XKJz
https://os.mbed.com/built-with-mbed/indoor-environment-monitoring/
https://os.mbed.com/built-with-mbed/indoor-environment-monitoring/

Guide to Designing and
Implementing an Embedded
System Project

Chapter 12

496

A Beginner’s Guide to Designing Embedded System Applications

12.1 Roadmap

12.1.1 What You Will Learn

After you have studied the material in this chapter, you will be able to:

 n Describe how an embedded system project can be developed following an ordered process.

 n Design and implement a prototype of an embedded system, including its hardware and software.

 n Summarize the fundamentals of the concepts of verification and validation.

 n Develop the final documentation of an embedded system.

12.1.2 Review of Previous Chapters

Throughout this book, a smart home system provided with a broad variety of functionalities has
been implemented. The NUCLEO board was used as the system core, and many hardware modules
and elements were connected to it. A learn-by-doing approach was used, by means of which several
embedded system programming concepts were introduced.

The smart home system project was started from scratch in Chapter 1, and functionality was gradually
added through the chapters as different hardware modules and elements were incorporated. This
approach led to a single file having hundreds of lines, after which the idea of software modularization
was introduced in Chapter 5. From then on, in Chapters 6 to 11, many software modules were
included as more hardware was incorporated into the system.

The reader may have noticed that, for pedagogical reasons, the features and functionalities of the
smart home system were not established at the beginning. This made it possible to introduce the
topics gradually, but also led to many changes during its implementation. As a consequence, it can
be concluded that it would be more convenient to adopt a structured process to efficiently design
and implement an embedded system. This process should include a step at the beginning where the
features and functionality of the system are defined.

12.1.3 Contents of This Chapter

In this chapter, a structured process will be introduced to efficiently design and implement an
embedded system. The proposed process consists of ten steps, including the selection of the project,
its definition, design, implementation, and final documentation. The hardware and software aspects
are tackled, following an approach that guarantees consistency between the initial objectives and the
obtained results.

In order to illustrate how each of the proposed steps is carried out, a project is implemented within
this chapter. For the sake of brevity, a system with a reduced number of sensors and actuators is used
in the examples, although this does not limit the introduction of the important concepts.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

497

The proposed process benefits from all the concepts that were introduced throughout this book,
while also helping to introduce other important concepts such as requirements, verification, and
validation. This chapter constitutes a summary of the book, while introducing important new concepts.

12.2 Fundamentals of Embedded System Design and
Implementation

12.2.1 Proposed Steps to Design and Implement an Embedded System Project

The proposed process to design and implement embedded systems is summarized in Table 12.1. It can
be seen that it consists of ten steps, ranging from the selection of the project that will be implemented
to its design, implementation, and final documentation, as was mentioned in the previous section.

Table 12.1 Summary of the proposed steps to design and implement an embedded system project.

 Step Outcome

1. Select the project that will be implemented A rationale that leads to an appropriate project to implement

2. Elicit project requirements and use cases A concise and structured description of what will be implemented

3. Design the hardware Diagram of hardware modules, connections, and bill of materials

4. Design the software Diagram of the software design and description of the modules

5. Implement the user interface Software implementation

6. Implement the reading of the sensors Software implementation

7. Implement the driving of the actuators Software implementation

8. Implement the system behavior Software implementation

9. Check the system behavior Assessment of accomplishment of requirements and use cases

10. Develop the final documentation A reference to the most relevant documentation of the project

The proposed steps include a gradual implementation of the software. First, the user interface
is implemented in step 5. The aim is to have a way to read the system information and to enter
commands. In this step, the reading of the sensors is replaced by stub code that temporarily
substitutes the yet-to-be-developed code to read the sensors. In step 6, the reading of the sensors is
implemented and the corresponding values shown on the user interface. In step 7, the actuators are
driven, but stub code is used to trigger their activation. In step 8, the complete system behavior is
implemented, so no more stub code remains in the software.

In the examples below, the ten proposed steps are introduced by means of a given project that is
developed from start to end, following a top-down approach. This starts by formulating an overview
design of the system, and goes on to gradually define and implement each part in detail.

498

A Beginner’s Guide to Designing Embedded System Applications

TIP: Through the examples, the reader is encouraged to think of their own project
and to develop that project as each step is introduced, by adapting each example to
their own requirements. It is recommended that the reader choose a simple project
to avoid complications that will distract from the main aim of this chapter, which is to
understand and adopt the proposed steps.

NOTE: There are many other possible approaches to tackling the design and
implementation of an embedded system, depending on the characteristics of the
project, as well as on the size and skills of the developing team. The proposed steps
correspond to the implementation of an embedded system prototype by a single
developer or a very reduced team. A more complex project may suggest an iterative
approach, where the outcomes of the steps are revised and improved more than once.

Example 12.1: Select the Project that will be Implemented

Objective

Introduce the idea that the project to be implemented should result from a decision process.

Summary of the Expected Outcome

As a result of this step, a rationale about the most appropriate project to be implemented should be
obtained.

NOTE: This step is particularly important because the results can lead to either a
valuable project or a questionable project (in terms of learning, benefits, etc.).

Discussion on How to Implement this Step

In order to select the project, it should first be established which aspects will be analyzed in
the decision process. Those aspects will vary depending on the developer profile and skills, the
organization where the developer is studying or working, and many other aspects. However, a table
summarizing the aspects to be analyzed, as well as the score of each proposed project in each aspect,
seems to be a reasonable way to decide which project to implement.

Implementation of this Proposed Step

First, the aspects that will be considered in the decision process should be determined. For the
sake of brevity, just a few aspects will be considered in this example. However, an important idea is
introduced: different aspects may have different weights in the decision process. To factor all these
ideas into the decision process, a quantitative approach will be followed.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

499

Some aspects that could be considered in the decision process are as follows:

 n Availability of the hardware

 n Utility of the project

 n Implementation time

In the particular context of this book, the hardware availability might be considered an important
aspect, given that it is convenient for the reader to reuse the hardware from previous chapters. The
usefulness of the project could be considered less relevant, because in this context the reader is more
concerned about learning than using the project in a real-life application. Finally, the implementation
time can be considered an important aspect, given that the aim is to choose a simple project that can
be completed in a single chapter.

Some possible projects that could be analyzed include the following:

 n A mobile robot that avoids obstacles

 n A flying drone fitted with a camera

 n A home irrigation system for indoor plants

In this way, Table 12.2 can be obtained, which includes the possible projects and all the proposed
aspects with given weights, as per the above discussion. A weighted score for each project is obtained.

The mobile robot that avoids obstacles will require hardware that was not used in this book (wheels,
structure, motors, obstacle sensors, etc.), and for that reason was awarded a score of three out
of ten points in the hardware availability aspect. The utility of this project is questionable, and for
that reason this project again obtains three out of ten points in the corresponding aspect. Finally,
this project will take a reasonable implementation time and, therefore, obtains five points in that
aspect. Consequently, considering that the aspects are weighted by a factor of ten, five, and eight,
respectively, the weighted scores are obtained (30, 15, and 40), and the sum of weighted scores is 85,
as can be seen in the last column of Table 12.2.

The flying drone fitted with a camera will require even more specific and complex hardware than the
mobile robot, and for that reason it gets two points in the hardware availability aspect. The utility
of this project might be considered higher than the utility of the mobile robot, and therefore it gets
five points in that aspect. Finally, this project will demand a considerable implementation time and,
therefore, this project scores two points in that aspect. As a result, this project gets a sum of weighted
scores of 61.

NOTE: The implementation time aspect gets a lower score when the time demand is
bigger.

500

A Beginner’s Guide to Designing Embedded System Applications

A typical home irrigation system allows the user to set how often and for how long the plants are
irrigated. It can be implemented by means of a few buttons, an LCD display, a moisture sensor, and an
on/off electro-valve, as will be discussed in Example 12.3. Most of this hardware is already available
to the reader or is easy to obtain and use. Therefore, this project gets eight points in the hardware
availability aspect. This project can be useful if the reader has some indoor plants, and therefore it
gets seven points in the utility of the project aspect. Finally, this project can be implemented with
limited effort, and, therefore, it gets eight points in the implementation time aspect. As a result, this
project gets a sum of weighted scores of 179.

The home irrigation system for indoor plants project is chosen, as it gets the highest value in the sum
of weighted scores, as can be seen in the last column of Table 12.2.

Table 12.2 Selection of the project to be implemented.

Project Hardware
availability
(weight: 10)

Utility of the
project
(weight: 5)

Implementation
time (weight: 8)

Sum of
weighted
scores

Mobile robot that avoids
obstacles

Score on each aspect: 3 3 5 –

Weighted score: 30 15 40 85

Flying drone provided with
a camera

Score on each aspect: 2 5 2 –

Weighted score: 20 25 16 61

Home irrigation system for
indoor plants

Score on each aspect: 8 7 8 –

Weighted score: 80 35 64 179

NOTE: The score in each aspect, as well as the weight of each aspect, is an
approximate value only. It should be noted that, in general, a small variation in an
aspect score for a given project, or in an aspect weighting, does not modify which
project obtains the highest sum of weighted scores shown in Table 12.2.

Proposed Exercise

1. How can the reader use the concepts that were introduced in this chapter to select a project to
implement?

Answer to the Exercise

1. The reader should first establish a list of aspects that they would like to consider in the selection of a
project. Then, the weighting of each aspect should be determined, and finally the different projects
should be scored.

TIP: Consider including aspects such as “How fun the project is,” “What will be
learned,” or “Profitability” as a way to guarantee that the selection reflects the
reader’s personal motivations.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

501

Example 12.2: Elicit Project Requirements and Use Cases

Objective

Introduce the concepts of requirements and use cases.

Summary of the Expected Outcome

As a result of this step, the project to be implemented should be clearly defined. This will be done by
means of a list of requirements and use cases.

Discussion of How to Implement this Step

This step is based on the concepts of requirements and use cases.

DEFINITION: In product development, a requirement is a singular documented
physical, functional, or non-functional need that a particular design, product, or
process aims to satisfy.

DEFINITION: In software and systems engineering, a use case is a list of actions or
event steps typically defining the interactions between an actor (for example, a user)
and a system to achieve a goal.

The requirements are the basis on which a project is to be developed. Therefore, there are many
important criteria that a developer should apply when writing the requirements. Some of these
criteria are frequently summarized using the “SMART” mnemonic acronym, as shown in Table 12.3.

Table 12.3 Summary of the SMART mnemonic acronym.

 Letter Term adopted in this book Meaning

S Specific Clearly defined

M Measurable Able to be measured

A Achievable Able to be achieved

R Relevant Targets a significant need

T Time-bound Has a time limit or deadline

NOTE: SMART is sometimes used to refer to other criteria. For example, the letter
“A” is frequently related to the term “agreed,” meaning that the requirements must be
agreed with the client.

WaRNINg: In professional project management, every project should have a due date.
Therefore, the time-bound criterion applies to the whole project and can also be
applied to each requirement. In this example, it is established that the whole project
(all the requirements) should be completed in one week.

502

A Beginner’s Guide to Designing Embedded System Applications

A use case can be defined in multiple ways. In the scope of this book, the elements shown in Table 12.4
will be used. The reader should note that alongside each is a simplified approach that is appropriate
for many projects.

Table 12.4 Elements that will be used to define a use case.

Use case element Meaning

ID A unique number that represents a use case

Title The title that is associated with the use case

Trigger What event triggers this use case

Precondition What must be met before this use case can start

Basic flow The events that occur when there are no errors or exceptions

Alternate flows The most significant alternatives and exceptions

Lastly, in most cases there are already products on the market that implement the same functionality
as the embedded system project that will be designed. Many of those products may be very
successful. Therefore, it is recommended to analyze and summarize those products before writing the
requirements and use cases of a new embedded system project, as per the example below.

Implementation of this Proposed Step

First, some examples of home irrigation systems are analyzed, as was suggested in the previous
paragraph. Table 12.5 summarizes the main characteristics of two products. Based on those
characteristics, the requirements indicated in Table 12.6 are established with consideration of what
can be achieved.

NOTE: The requirements in Table 12.6 are preliminary requirements that may be
modified as the project evolves. If requirements are modified, then the modifications
should be clearly indicated in order to avoid misunderstandings.

Table 12.5 Summary of the main characteristics of two home irrigation systems currently available on the market.

Characteristics Product a Product B

Water-in port ½-inch connector ½-inch connector

Irrigation circuits Controls two independent irrigation circuits Controls one irrigation circuit

Operation modes Continuous: water flow is controlled by a button
Programmed irrigation: irrigation is time-controlled

Continuous: water flow is controlled by a button
Programmed irrigation: irrigation is time-controlled

Configuration The parameters “how often” to irrigate and “how long” to
irrigate can be configured for each circuit

The parameters “how often” to irrigate and
“how long” to irrigate can be configured

User interface A rotary control key, two buttons, and a display A set of buttons and a set of LEDs

Power supply Two AA batteries Four AA batteries

Sensors None None

Price 80 USD 60 USD

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

503

Table 12.6 Initial requirements defined for the home irrigation system.

Req. group Req. ID Description

1. Water 1.1 The system will have one water-in port based on a ½-inch connector

1.2 The system will control one irrigation circuit by means of a solenoid valve

2. Modes 2.1 The system will have a continuous mode in which a button will enable the water flow

2.2 The system will have a programmed irrigation mode based on a set of configurations:

2.2.1 Irrigation will be enabled only if moisture is below the “Minimum moisture level” value

2.2.2 Irrigation will be enabled every H hours with H being the “How often” configuration

2.2.3 Irrigation will be enabled for S seconds, with S being the “How long” configuration

2.2.4 Irrigation will be skipped if “How long” is configured to 0 (zero)

3. Configuration 3.1 The system configuration will be done by means of a set of buttons:

3.1.1 The “Mode” button will change between “Programmed irrigation” and “Continuous irrigation”

3.1.2 The “How often” button will increase the time between irrigations in programmed mode by one hour

3.1.3 The “How long” button will increase the irrigation time in programmed mode by ten seconds

3.1.4 The “Moisture” button will increase the “Minimum moisture level” configuration by 5%

3.1.5 The maximum values will be: “How often”: 24 h; “How long”: 90 s; “Moisture”: 95%

3.1.6 “How long” and “Moisture” will be set to 0 (zero) if the maximum is reached and the button is pressed

3.1.7 “How often” will be set to 1 if the maximum is reached and the button is pressed

4. Display 4.1 The system will have an LCD display:

4.1.1 The LCD display will show the current operation mode: Continuous or Programmed

4.1.2 The LCD display will show the values of “How often”, “How long”, and “Minimum moisture level”

5. Sensor 5.1 The system will measure soil moisture at one point with an accuracy better than 5%

6. Power supply 6.1 The system will be powered using two AA batteries

7. Due date 7.1 The system will be finished one week after starting (this includes buying the parts)

8. Cost 8.1 The components for the prototype should cost less than 60 USD

9. Documents 9.1 The prototype should be accompanied by a list of parts, a connection diagram, the code repository, and
a table indicating the accomplishment of requirements and use cases

Finally, three use cases are defined, as can be seen in Table 12.7, Table 12.8, and Table 12.9.

Table 12.7 Use Case #1 – Title: The user wants to irrigate plants immediately for a couple of minutes.

Use case element Definition

Trigger The user realizes that the plants need irrigation immediately

Precondition The system must be powered on, and the water supply should be connected.
The system is not irrigating the plants.

Basic flow The user presses the “Mode” button to set “Continuous” irrigation. Water starts to flow to the
plants. After a couple of minutes, the user presses the “Mode” button to set “Programmed”
irrigation. Water irrigation stops.

Alternate flows 1.a. There is no water supply. The user presses the “Mode” button to set “Continuous” irrigation. The
solenoid valve is activated, but the plants are not irrigated.
1.b. The user presses the “Mode” button. The user notes that the water is overflowing the plant pot.
The user presses the “Mode” button and irrigation stops.

504

A Beginner’s Guide to Designing Embedded System Applications

Table 12.8 Use Case #2 – Title: The user wants to program irrigation to take place for ten seconds every six hours.

Use case element Definition

Trigger The user wants to establish an irrigation program

Precondition The system must be powered on, and the water supply should be connected.
The system is not irrigating the plants.

Basic flow The user presses the “How often” button until the value “6 hours” is shown on the display. The user
presses the “How long” button until the value “10 seconds” is shown on the display. Irrigation will start
in six hours and will last for ten seconds if the measured moisture is below the “Minimum moisture
level” configured.

Alternate flows 2.a. There is no water supply. The solenoid valve will be activated, but the plants will not be irrigated.

Table 12.9 Use Case #3 – Title: The user wants the plants not to be irrigated.

Use case element Definition

Trigger The user wants the plants to not be irrigated

Precondition The system must be powered on, and water supplied should be connected.
The system is not irrigating the plants.

Basic flow The user presses the “How long” button until “How long” is set to 0 (zero).
Irrigation is skipped, and a legend indicating “Programmed-Skip” is shown.

Alternate flows 3.a. Plants will not be irrigated even if the measured moisture is below the “Minimum moisture level”
configured.

Proposed Exercise

1. Define the requirements and three use cases for the project that was selected in the “Proposed
Exercise” of Example 12.1.

Answer to the Exercise

1. It is strongly recommended to start by analyzing and summarizing some products that are available
on the market. Based on the characteristics of those products and the reader’s own ideas, the initial
requirements may be established following the format shown in Table 12.6. The use cases can be
defined following the format shown in Table 12.7.

TIP: When defining the requirements, keep in mind the SMART criteria discussed
above. In particular, consider the time available to implement the project and the
relevancy and achievability of each requirement. Moreover, try to clearly define each
requirement, and use measurable quantities if possible.

Example 12.3: Design the Hardware

Objective

Design hardware that fulfills the requirements and can be used to implement the software
functionality.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

505

Summary of the Expected Outcome

The outcomes of this step are expected to include:

 n a diagram of the hardware modules showing all of their interconnections,

 n a rationale that argues the most appropriate components with which to implement the hardware
modules,

 n a connection diagram of the selected components and tables summarizing their interconnections,
and

 n a bill of materials that includes all the necessary elements to implement the prototype.

Discussion of How to Implement this Step

A reasonable approach for this step might be to start by analyzing designs made by other developers
to implement similar requirements; this also includes the previous chapters of this book. A diagram
following the ideas shown in Chapter 1 will be the starting point. After this diagram is created, the
parts can be selected and their interconnections defined. The final step will be to create the bill of
materials.

Implementation of this Proposed Step

Figure 12.1 shows a first proposal for the hardware modules of the irrigation system prototype.
It is based on the elements introduced in previous chapters, as well as the assumption that it will
be possible to find an appropriate moisture sensor and a suitable solenoid valve, which converts
electrical energy into mechanical energy and, in turn, opens or closes the valve mechanically.

Figure 12.1 First proposal of the hardware modules of the irrigation system.

In the prototype implementation, it is reasonable to use the NUCLEO board for the microcontroller
module. The reader already owns this board and knows that it is capable of implementing all the
software functionality.

506

A Beginner’s Guide to Designing Embedded System Applications

For the display, any of the options introduced in Chapter 6 can be used. For the sake of simplicity, and
considering the hardware costs, the character-based LCD display is selected using 4-bit mode.

The buttons will be implemented using a breadboard and tactile switches, as in Chapter 1. Therefore,
all that is needed is to define how to implement the moisture sensor, the solenoid valve, and the
battery power supply.

In Table 12.10, three moisture sensor modules are shown. After this comparison, it seems reasonable
to use the HL-69 in this first prototype due to its price. It also seems very difficult to accomplish
Requirement 5.1, related to having an accuracy of better than 5%, as accuracy is not specified for any
of the sensors.

Table 12.10 Comparison of moisture sensors.

Sensor name Technology accuracy Interface Unit price [USD]

HL-69 Resistive Not specified VCC, GND, Digital Output, Analog Output 2

SEN-13322 Resistive Not specified VCC, GND, Analog Output 5

Moisture v1.2 Capacitive Not specified VCC, GND, Analog Output 2

In Table 12.11, three solenoid valves are shown. After this comparison, it seems reasonable to use an
FPD-270A in the first prototype. Given that the solenoid valve must be powered using 12 V, a relay
module will need to be used to control its activation. In order to keep this first design simple, a 12 V
power supply can be included in the system. Consequently, in this prototype, the NUCLEO board can
be supplied using the USB connection, as it has throughout this book.

NOTE: In a future version of the system, it might be considered to use a switching
step-up power supply connected to two AA batteries to provide 12 V for the solenoid
and 5 V for the NUCLEO board.

Table 12.11 Comparison of solenoid valves.

Solenoid name Water-in connector activation method Unit price [USD]

FPD-270A ½-inch 12 V / 0.25 A 9

USS-NSV00003 ½-inch 12 V / 1 A 35

VA-8H ½-inch 12 V / 0.5 A 45

The resulting final version of the hardware modules of the irrigation system is shown in Figure 12.2.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

507

Figure 12.2 Final version of the hardware modules of the irrigation system.

NOTE: In the hardware design shown in Figure 12.2, an MB102 module is not used
because the 300 mA maximum current consumption from the 5 V USB supply
discussed in Chapter 4 is not reached.

The proposed connection diagram of all the hardware elements is shown in Figure 12.3. From
Table 12.12 to Table 12.17, the corresponding connections are summarized. For the pin assignments,
the diagram available in [1] has been used, while the connections used in previous chapters were kept
whenever possible.

Table 12.12 Summary of the connections between the NUCLEO board and the character-based LCD display.

 NUCLEO board Character LCD display

D4 D4

D5 D5

D6 D6

D7 D7

D8 RS

D9 E

Table 12.13 Summary of other connections that should be made to the character-based LCD display.

 Character LCD display Voltage/Element

VSS GND

VDD 5 V

VO 10 kΩ potentiometer

R/W GND

A 1 kΩ resistor to 5 V

K GND

508

A Beginner’s Guide to Designing Embedded System Applications

Table 12.14 Summary of the connections between the NUCLEO board and the buttons.

NUCLEO board Button

PG_1 “Mode”

PF_9 “How Often”

PF_7 “How Long”

PF_8 “Moisture”

Table 12.15 Summary of connections that should be made to the HL-69 moisture sensor.

HL-69 moisture sensor Voltage/Element

GND GND

VCC 3.3 V

DO Unconnected

AO A3 pin - NUCLEO board

Table 12.16 Summary of connections that should be made to the relay module.

Relay module Voltage/Element

VCC 5 V

GND GND

IN1 PF_2

NO1 FPD-270A (Terminal 1)

COM1 12 V

NC1 Unconnected

IN2 Unconnected

NO2 Unconnected

COM2 Unconnected

NC2 Unconnected

Table 12.17 Summary of connections that should be made to the FPD-270A.

FPD-270a Voltage/Element

Terminal 1 Relay module (NO1)

Terminal 2 GND12

NOTE: The GND terminal of the 12 V power supply (named GND12) was intentionally
kept isolated from the GND of the 5 V USB power supply. This is done to prevent
any potential damage to the microcontroller caused by the 12 V voltage, and also
to diminish the electrical noise interference over the microcontroller that could be
generated when the load is activated, as was explained in Chapter 7.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

509

10A 250VAC 10A 125VAC

C US

10A 0VDC 10A VDC3 28

SRD-05VDC-SL-C

CQC

R
SONGLE

10A 250VAC 10A 125VAC

C US

10A 0VDC 10A VDC3 28

SRD-05VDC-SL-C

CQC

R
SONGLE

2 Relay Module

K
2

K
1

J
D

-V
C

C

V

C
C

G

N
D

G
N

D
 I

N
1
 I

N
2
 V

C
C

R
3

R
2

D
2

D
2

Q
2

Q
1

IN
2

IN
1

R
4

R
1

+

+

B1
81

0
81

7C G

B1
81

0
81

7C G

1
9

8
2

A
1

2
3

8
1

H
2

FPD-270A
Solenoid valve External 12V

Power source

G
N

D
12

12
V

A
C

 P
O

W
E

R
A

d
ap

ter

In
p
u
t 2

4
0

V
C

A
O

u
tp

u
r 1

2
V

C
C

 2
A

E
rP

A
ri

HL-69
Moisture
sensor

EPARI

D
O

-L
E
D

AO DO GND VCC

P
W

R
-L

E
D

++

++

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

f
g

h
i

j

f
g

h
i

j
a

b
c

d
e

a
b

c
d

e

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

(Relay IN1)
d

PF 2_ 5VGND

5V
GND

N
U

C
L

E
O

-F
4

2
9

Z
I

3
2
F
4
2
9
Z
I
T
6
U

A
R

M
7
B
7
7
6

V
Q

P
H
L

7
B

7
2
1

3
e

4

1
2

0
0

0

K
6

2
0

Y

12000

K620 Y

12000

K620 YD
G

K
Y

D
K

M
S

-1
1
0
2
N

L

17
06

C STM32
F103CBT6

e3

93
701

GH218
CHN

ST890C

GK717

3.3V
GND

D4 to D7

D8,D9

CN9 CN8

CN7CN10

Relay module

CN9

P
F

9

_

P
F

7

_

P
F

8

_

P
G

1_

(M
o
d
e
)

(H
o
w

 O
ft
e
n
)

(H
o
w

 L
o
n
g
)

(M
o
is

tu
re

)

COM1

1NO

A3

VDDVSS VO RS RW E D0 D1 D2 D3 D4 D5 D6 D7 A K

1 16

 Figure 12.3 Connection diagram of all the hardware elements of the irrigation system.

510

A Beginner’s Guide to Designing Embedded System Applications

NOTE: The connections used in previous chapters have been kept whenever possible.
In this way, the setup shown in Figure 12.3 can be promptly implemented from the
setup used in previous chapters.

TIP: In order to be able to use the program codes of Chapters 6 to 11 again without
delay, the elements connected in those chapters can be left connected to the
NUCLEO board and to the breadboard (they will not cause any interference in this
chapter). In that case, disconnect the wire that connects the 3.3 V output of the
NUCLEO board with the breadboard, and use the MB102 module to supply 3.3 V to
the system.

Finally, in Table 12.18, the bill of materials is shown. It can be seen that the estimated cost is below 60
USD, and therefore requirement 8.1, which was established in Table 12.6, is fulfilled. Note that if this
prototype were to be produced in quantity, a redesign would have to be done. This would lower some
costs (e.g., a bespoke design of the microcontroller board will save cost), while it would increase other
costs (e.g., container, printed circuit board, time required).

Table 12.18 Bill of materials.

Item Quantity Price [USD]

NUCLEO Board F429ZI 1 25

Moisture sensor HL-69 1 2

FPD-270A solenoid valve 1 9

Character display 4 × 20 1 15

Relay module 1 5

Tactile switches 4 0.1

Total: 56.4

Proposed Exercise

1. Design the hardware of the project that was selected in the “Proposed Exercise” of Example 12.1.
Create a diagram of the connections and tables indicating all the details. A bill of materials will also
be very useful.

Answer to the Exercise

1. It is strongly recommended to start by reusing as much as possible from the previous chapters of
this book. A search of the internet may help to find appropriate components and circuits for the
remaining parts of the project.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

511

Example 12.4: Design the Software

Objective

Design software that fulfills the functionality described in the requirements and the use cases.

Summary of the Expected Outcome

The results of this step are expected to include:

 n a diagram of the software modules indicating all their interconnections,

 n a table indicating the variables and objects of each of the software modules,

 n a table indicating the functions of each of the software modules that will be used, and

 n a diagram of the finite-state machine (FSM) that will be used to implement the functionality.

Discussion of How to Implement this Step

Given the set of requirements, the software design is not necessarily unique. The design will depend
on the developer’s experience and preferences. A reasonable approach to this step might be to
start by analyzing designs made by other developers to implement similar requirements. This also
includes the previous chapters of this book. A diagram using the ideas shown in Chapter 5 can be the
starting point. After this, a set of tables showing the variables, objects, and functions of each of the
software modules can be prepared. Finally, a diagram of the FSM that will be used to implement the
functionality can be drawn, as well as a sketch of the proposed layout for the display.

Implementation of this Proposed Step

Since the functionality of the system does not require any high-speed reactions, a very simple
approach such as the one shown in Figure 12.4 can be followed. It can be seen that there is an
initialization of all the modules and then an update every 100 milliseconds. The reader might notice
that it is very similar to the approach followed in Chapter 5 of this book. However, a non-blocking
delay will be used to obtain more accurate timing behavior.

Figure 12.4 Software design of the irrigation system program.

The next step will be to determine the software modules. Figure 12.5 shows a proposal based on

512

A Beginner’s Guide to Designing Embedded System Applications

software modules introduced in previous chapters (display, relay, etc.), as well as the assumption that
it will be possible to implement a Moisture sensor module. An Irrigation timer module has been included
to account for the waiting time between irrigations, and to account for the irrigation time during the
irrigation. Finally, an Irrigation control module has been included to implement an FSM to control the
irrigation.

Figure 12.5 Software modules of the irrigation system program.

The proposed organization of folders and files to implement the software is shown in Figure 12.6. It
can be appreciated that it is very similar to the organization introduced in Chapter 5.

Figure 12.6 Diagram of the .cpp and .h files of the irrigation system software.

In Table 12.19, there is a brief description of each of the modules shown in Figure 12.5. Note that the
proposed implementation is very simple, with the aim of keeping the attention on the proposed steps
to implement a project. For this reason, there is only one driver that is used to manage the display,
which uses the same files introduced in Chapter 6 and will be used without any modification.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

513

Table 12.19 Functionalities and roles of the home irrigation system modules.

Module Description of its functionality Role

irrigation_system Calls initialization and update functions of other modules System

moisture_sensor Reads the HL-69 moisture sensor and processes the readings Subsystem

buttons Detects buttons pressed and accounts for the configurations Subsystem

irrigation_timer Accounts for waiting and irrigation time in programmed mode Subsystem

irrigation_control Controls irrigation based on the mode and the timer Subsystem

relay Controls relay activation Subsystem

user_interface Sends information to be printed to the display driver Subsystem

display Receives commands from the user_interface module Driver

NOTE: In the proposed implementation, the buttons module detects the buttons that
are pressed by the user. It also processes the information to determine the current
value of the configurations that were detailed in Table 12.6: “How often”, “How
long”, and “Minimum moisture level”. In addition, it detects when the Mode button
is pressed and informs the irrigation_control module, which determines the current
operation mode.

The proposed next step is to define the private variables and objects of each of the subsystem
modules. These are shown in Table 12.20 to Table 12.25.

Table 12.20 Private objects and variables of the moisture_sensor module.

Name of the element Type Description of its functionality

hl69 AnalogIn
object

Is used to read the A3 analog input of the NUCLEO board where the HL-69 is
connected.

hl69AveragedValue Float variable Is used to process the reading to avoid noise problems. It is the average of the last
ten readings.

hl69ReadingsArray Float variable Is used to store the last ten readings of the HL-69 moisture sensor.

Table 12.21 Private objects and variables of the buttons module.

Name of the element Type Description of its functionality

changeModeButton DigitalIn
object

Is used to read the PG_1 digital input of the NUCLEO board, which indicates when
the current mode has to be changed.

howOftenButton DigitalIn
object

Is used to read the PF_9 digital input of the NUCLEO board, by means of which the
“how often” configuration is changed.

howLongButton DigitalIn
object

Is used to read the PF_7 digital input of the NUCLEO board, by means of which the
“how long” configuration is changed.

moistureButton DigitalIn
object

Is used to read the PF_8 digital input of the NUCLEO board, by means of which the
“minimum moisture level” is changed.

buttonsStatus Typedef Is used to store the configuration status. Its members are changeMode, howOften,
howLong, and moisture.

514

A Beginner’s Guide to Designing Embedded System Applications

Table 12.22 Private objects and variables of the irrigation_timer module.

Name of the element Type Description of its functionality

irrigationTimer Typedef Used to track the status of the timers. Its members are waitedTime and
irrigatedTime, both integer variables.

Table 12.23 Private objects and variables of the irrigation_control module.

Name of the element Type Description of its functionality

irrigationControlStatus Typedef Used to inform the state of the FSM that is implemented in this module and also
used to indicate when to reset the timers of the irrigation_timer module. Its
members are:
•	 irrigationState: Enum type defined, with valid states: INITIAL_MODE_

ASSESSMENT, CONTINUOUS_MODE_IRRIGATING, PROGRAMMED_
MODE_WAITING_TO_IRRIGATE, PROGRAMMED_MODE_IRRIGATION_
SKIPPED, and PROGRAMMED_MODE_IRRIGATING.

•	 waitedTimeMustBeReset: a Boolean variable.
•	 irrigatedTimeMustBeReset: a Boolean variable.

Table 12.24 Private objects and variables of the user_interface module.

Name of the element Type Description of its functionality

– – This module has no private objects or variables.

Table 12.25 Private objects and variables of the relay module.

Name of the element Type Description of its functionality

relayControlPin DigitalInOut object Used to write the PF_2 pin of the NUCLEO board. When it is 0, the relay is
activated.

From Table 12.26 to Table 12.32, the proposed public functions for each of the modules are detailed.

Table 12.26 Public functions of the irrigation_system module.

Name of the function Description of its functionality File that uses it

irrigationSystemInit() Initializes the subsystems of the irrigation system and the non-
blocking delay.

main.cpp

irrigationSystemUpdate() Calls the functions that update the modules when the corresponding
time of non-blocking delay has elapsed.

main.cpp

Table 12.27 Public functions of the moisture_sensor module.

Name of the function Description of its functionality Modules that use it

moistureSensorInit() Has no functionality. –

moistureSensorUpdate() Updates the value of hl69ProcessedValue. irrigation_system

moistureSensorRead() Returns hl69ProcessedValue. irrigation_control
user_interface

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

515

Table 12.28 Public functions of the buttons module.

Name of the function Description of its functionality Modules that use it

buttonsInit() Configures all buttons in pull-up mode and sets initial configuration of
the system after power on.

irrigation_system

buttonsUpdate() Updates the values of buttonsStatus. irrigation_system

buttonsRead() Returns the values of buttonsStatus. irrigation_control
user_interface

Table 12.29 Public functions of the irrigation_timer module.

Name of the function Description of its functionality Modules that use it

irrigationTimerInit() Sets initial values of irrigationTimer. irrigation_system

irrigationTimerUpdate() Updates the values of irrigationTimer. irrigation_system

irrigationTimerRead() Returns the values of irrigationTimer. irrigation_control

Table 12.30 Public functions of the irrigation_control module.

Name of the function Description of its functionality Modules that use it

irrigationControlInit() IrrigationState is set to “INITIAL_MODE_ASSESSMENT”;
waitedTimeMustBeReset and waitedTimeMustBeReset are set to true.

irrigation_system

irrigationControlUpdate() Updates the FSM of the irrigation_control module. irrigation_system

irrigationControlRead() Returns the values of irrigationControlStatus. user_interface
irrigation_timer
relay

Table 12.31 Public functions of the display module.

Name of the function Description of its functionality Modules that use it

userInterfaceInit() Calls displayInit() and prints the text that does not change over time on
the display.

irrigation_system

userInterfaceUpdate() Updates the current values of mode and configurations in the display by
means of the display driver.

irrigation_system

userInterfaceRead() Has no functionality. -

Table 12.32 Public functions of the relay module.

Name of the function Description of its functionality Modules that use it

relayInit() Initializes the value of relayControlPin. irrigation_system

relayUpdate() Updates the value of relayControlPin. irrigation_system

relayRead() Has no functionality. -

516

A Beginner’s Guide to Designing Embedded System Applications

In Figure 12.7, the proposed FSM is shown. After the start, the first state is INITIAL_MODE_
ASSESSMENT. In this mode, the state of the Mode button is read (it is indicated as the changeMode
variable in Figure 12.7). If it is pressed (changeMode is true), irrigationControlStatus.irrigationState
(introduced in Table 12.23) is set to CONTINUOUS_MODE_IRRIGATING. If the Mode button
is not being pressed (changeMode is false), then irrigationControlStatus.irrigationState is set to
PROGRAMMED_MODE_WAITING_TO_IRRIGATE, and irrigationControlStatus.waitedTimeMustBeReset
(Table 12.23) is set to true.

In the CONTINUOUS_MODE_IRRIGATING state, the Mode button is checked. If it is not pressed
(changeMode is false), then irrigationControlStatus.irrigationState is not modified, and the FSM remains
in the CONTINUOUS_MODE_IRRIGATING state. If the Mode button is pressed (changeMode is true),
irrigationControlStatus.irrigationState is set to PROGRAMMED_MODE_WAITING_TO_IRRIGATE, and
irrigationControlStatus.waitedTimeMustBeReset is set to true.

NOTE: The relay is controlled by the relay module based on the return value of
irrigationControlRead(). If the read state is CONTINUOUS_MODE_IRRIGATING or
PROGRAMMED_MODE_IRRIGATING, the relay will be activated, and it will be
deactivated if the read state is INITIAL_MODE_ASSESSMENT, PROGRAMMED_
MODE_WAITING_TO_IRRIGATE, or PROGRAMMED_MODE_IRRIGATION_
SKIPPED.

Figure 12.7 Diagram of the proposed FSM.

In the state PROGRAMMED_MODE_WAITING_TO_IRRIGATE, the first step is to set
irrigationControlStatus.waitedTimeMustBeReset to false, because once in this state
irrigationTimer.waitedTime (introduced in Table 12.22) has already been reset by the
irrigation_timer module (see the Note below). Next, it is assessed whether the Mode button is pressed.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

517

If it is (changeMode is true), irrigationControlStatus.irrigationState is set to CONTINUOUS_MODE_
IRRIGATING. If the Mode button is not pressed, it is checked if irrigationTimer.waitedTime is smaller
than howOften. If so, the FSM remains in PROGRAMMED_MODE_WAITING_TO_IRRIGATE. If
irrigationTimer.waitedTime is equal to or greater than howOften, then the other conditions are checked.

NOTE: In the code to be implemented, if the FSM is in PROGRAMMED_MODE_
WAITING _TO_IRRIGATE, the value of irrigationTimer.waitedTime will be increased
by the irrigation_timer module each time irrigationTimerUpdate() is executed, and will
be reset by the irrigation_timer module when it detects, by means of the return value
of irrigationControlRead(), that irrigationControlStatus.waitedTimeMustBeReset is true.
If the current state is PROGRAMMED_MODE_IRRIGATING, the irrigation_timer
module will increase irrigationTimer.irrigatedTime (introduced in Table 12.22) each time
irrigationTimerUpdate() is executed and will reset irrigationTimer.irrigatedTime if it detects
that irrigationControlStatus.irrigatedTimeMustBeReset is true, by means of the return value
of irrigationControlRead(). In this way, the modularization principle will not be violated,
because only the irrigation_timer module will modify the irrigation and waiting timers.

If hl69AveragedValue is greater than or equal to the minimum moisture level configuration (moisture)
or irrigationtimer.howLong is zero, then irrigationControlStatus.irrigationState is set to PROGRAMMED_
MODE_IRRIGATION_SKIPPED. If howLong is not zero and hl69AveragedValue is smaller than the
minimum moisture level configuration (moisture), then irrigationControlStatus.irrigationState is set to
PROGRAMMED_MODE_IRRIGATING, and irrigationControlStatus.irrigatedTimeMustBeReset is set to
true.

The state PROGRAMMED_MODE_IRRIGATION_SKIPPED is only used to show on the display
that the irrigation was skipped. This is done by the user_interface module, which reads the value of
irrigationControlStatus.irrigationState using irrigationControlRead(). In this state, irrigationControlStatus.
waitedTimeMustBeReset is set to true, and irrigationControlStatus.irrigationState is set to
PROGRAMMED_MODE_WAITING_TO_IRRIGATE.

In the state PROGRAMMED_MODE_IRRIGATING, irrigationControlStatus.irrigatedTimeMustBeReset
is first set to false. Then, it assesses if irrigationTimer.irrigatedTime is smaller than howLong. After
the irrigation is completed, it sets irrigationControlStatus.waitedTimeMustBeReset to true and
irrigationControlStatus.IrrigationState to PROGRAMMED_MODE_WAITING_TO_IRRIGATE.

To conclude this step, in Figures 12.8 to 12.11 some sketches of the proposed layout of the LCD
display are shown. On the first line of the display, the current irrigation mode is shown. It is also
indicated whether the system is irrigating or not in the case of the Programmed irrigation mode. On
the second and third lines of the display, the values of the “How Often” and “How Long” configurations
are shown. On the fourth line, the minimum moisture level below which irrigation will be activated
in the Programmed irrigation mode is shown on the left, and the current moisture measurement is
shown on the right.

518

A Beginner’s Guide to Designing Embedded System Applications

Figure 12.8 Layout of the LCD for the Programmed irrigation mode when the system is waiting to irrigate.

Figure 12.9 Layout of the LCD for the Programmed irrigation mode when the system is irrigating.

Figure 12.10 Layout of the LCD for the Programmed irrigation mode when irrigation is skipped.

Figure 12.11 Layout of the LCD for the Continuous irrigation mode.

Proposed Exercise

1. Design the software for the project that was selected in the “Proposed Exercise” of Example 12.1.
Produce a diagram of the module interconnections and tables indicating all of the details. Include a
diagram of the FSM designed to implement the functionality.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

519

Answer to the Exercise

1. It is strongly recommended to start by reusing as much as possible from the previous chapters of
this book. Using the internet may help to find more ideas for the remaining parts of the software.

Example 12.5: Implement the User Interface

Objective

Implement the system’s user interfaces, as designed in step 4.

Summary of the Expected Outcome

The result of this step is expected to be a set of folders and .h and .cpp files that implement the user
interface.

Discussion on how to Implement this Step

In this step, the software should be implemented as a set of .h and .cpp files. The layout of the software
should follow the design that was created previously unless there are strong rationales to introduce
changes. In the irrigation system, the user interface consists of four buttons and a character-based
LCD display. Therefore, only the corresponding functionality is implemented in this step.

Implementation of this Proposed Step

In Code 12.1, main.cpp is shown. On line 3, the library irrigation_system.h is included. The main()
function is presented on lines 7 to 14. On line 9, the function irrigationSystemInit() is called, and on
lines 10 to 13 the superloop is implemented. The function irrigationSystemUpdate() is called inside the
superloop.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[Libraries]===

#include "irrigation_system.h"

//=====[Main function, the program entry point after power on or reset]========

int main()
{
 irrigationSystemInit();
 while (true) {
 irrigationSystemUpdate();
 }
}

Code 12.1 Implementation of main.cpp.

In Code 12.2, the implementation of irrigation_system.h is shown. On line 8, SYSTEM_TIME_
INCREMENT_MS is defined, and the public functions irrigationSystemInit() and irrigationSystemUpdate()
are declared.

520

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//=====[#include guards - begin]===

#ifndef _IRRIGATION_SYSTEM_H_
#define _IRRIGATION_SYSTEM_H_

//=====[Declaration of public defines]===

#define SYSTEM_TIME_INCREMENT_MS 100

//=====[Declarations (prototypes) of public functions]=========================

void irrigationSystemInit();
void irrigationSystemUpdate();

//=====[#include guards - end]===

#endif // _IRRIGATION_SYSTEM_H_

Code 12.2 Implementation of irrigation_system.h.

In Code 12.3, the implementation of irrigation_system.cpp is shown. From lines 3 to 7, libraries
are included. On line 11, the private variable irrigationSystemDelay of type nonBlockingDelay_t is
declared. This variable will be used to implement the non-blocking delay. On line 15, the function
irrigationSystemInit() is implemented. First, tickInit() is called. Then, buttonsInit() and userInterfaceInit()
are called. Finally, on line 20, the non-blocking delay is initialized to SYSTEM_TIME_INCREMENT_MS.

On line 23, irrigationSystemUpdate() is implemented. Line 25 assesses whether irrigationSystemDelay
has reached the value set by nonBlockingDelayInit(). In that case, buttonsUpdate() and
userInterfaceUpdate() are called.

NOTE: For the sake of brevity, only the file sections that have some content are shown
in the Codes. The full versions of the files are available in [2].

1
2
3
4
5
6
7
8
9
10
11
12
13

//=====[Libraries]===

#include "irrigation_system.h"

#include "buttons.h"
#include "user_interface.h"
#include "non_blocking_delay.h"

//=====[Declaration and initialization of public global variables]=============

static nonBlockingDelay_t irrigationSystemDelay;

//=====[Implementations of public functions]===================================

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

521

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

void irrigationSystemInit()
{
 tickInit();
 buttonsInit();
 userInterfaceInit();
 nonBlockingDelayInit(&irrigationSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void irrigationSystemUpdate()
{
 if(nonBlockingDelayRead(&irrigationSystemDelay)) {
 buttonsUpdate();
 userInterfaceUpdate();
 }
}

Code 12.3 Implementation of irrigation_system.cpp.

In Code 12.4, the implementation of buttons.h is shown. From line 8 to line 16, nine definitions are
introduced. They are used to implement requirements 3.1.2 to 3.1.7, as shown in Table 12.33. On line
20, the type definition of the struct named buttonsStatus_t is shown. This struct has four members:
changeMode, which is used to keep track of the mode; howOften, which is used to keep track of the
value of the “How often” configuration; howLong, which is used to keep track of the value of the “How
long” configuration; and moisture, which used to keep track of the value of the “Minimum moisture
level” configuration. On lines 29 to 31, the three public functions of this module are declared:
buttonsInit(), buttonsUpdate(), and buttonsRead(). The latter is the only one that has a return value,
which is of type buttonsStatus_t.

In Code 12.5, the implementation of buttons.cpp is shown. On lines 10 to 13, the private DigitalIn
objects changeModeButton, howOftenButton, howLongButton, and moistureButton are declared and
assigned to PG_1, PF_9, PF_7, and PF_8, respectively. On line 17, the private variable buttonsStatus of
the type buttonsStatus_t is declared. On line 21, buttonsInit() is implemented. First, all of the buttons
are configured with pull-up resistors (lines 23 to 26) and then the members of buttonsStatus are set to
an initial value (lines 28 to 31).

NOTE: In previous chapters, objects were declared public in order to simplify the
software implementation. In this chapter, objects are declared private to improve the
software modularity.

1
2
3
4
5
6
7
8
9
10
11

//=====[#include guards - begin]===

#ifndef _BUTTONS_H_
#define _BUTTONS_H_

//=====[Declaration of public defines]===

#define HOW_OFTEN_INCREMENT 1
#define HOW_OFTEN_MIN 1
#define HOW_OFTEN_MAX 24
#define HOW_LONG_INCREMENT 10

522

A Beginner’s Guide to Designing Embedded System Applications

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#define HOW_LONG_MIN 0
#define HOW_LONG_MAX 90
#define MOISTURE_INCREMENT 5
#define MOISTURE_MIN 0
#define MOISTURE_MAX 95

//=====[Declaration of public data types]======================================

typedef struct buttonsStatus {
 bool changeMode;
 int howOften;
 int howLong;
 int moisture;
} buttonsStatus_t;

//=====[Declarations (prototypes) of public functions]=========================

void buttonsInit();
void buttonsUpdate();
buttonsStatus_t buttonsRead();

//=====[#include guards - end]===

#endif // _BUTTONS_H_

Code 12.4 Implementation of buttons.h.

Table 12.33 Some of the initial requirements defined for the home irrigation system.

Req. group Req. ID Description

3. Configuration 3.1 The system configuration will be done by means of a set of buttons:

3.1.1 The “Mode” button will change between “Programmed irrigation” and “Continuous irrigation”.

3.1.2 The “How often” button will increase the time between irrigations in programmed mode by one
hour.

3.1.3 The “How long” button will increase the irrigation time in programmed mode by ten seconds.

3.1.4 The “Moisture” button will increase the “Minimum moisture level” configuration by 5%.

3.1.5 The maximum values are: “How often”: 24 h; “How long”: 90 s; “Moisture”: 95%.

3.1.6 “How long” and “Moisture” will be set to 0 (zero) if they reach the maximum and the button is
pressed.

3.1.7 “How often” will be set to 1 if it reaches its maximum value and the button is pressed.

On line 34, the function buttonsUpdate() is implemented. First, buttonsStatus.changeMode is assigned
the value of !changeModeButton because changeModeButton is configured with a pull-up resistor.
On line 38, howOftenButton is assessed. If it is pressed (howOftenButton is false), then buttonsStatus.
howOften is incremented by HOW_OFTEN_INCREMENT in line 39. On line 40, it is assessed if
buttonsStatus.howOften is greater than or equal to HOW_OFTEN_MAX + HOW_OFTEN_INCREMENT.
If so, it is assigned HOW_OFTEN_MIN on line 41.

The code on lines 45 to 50, and the code on lines 52 to 57, are very similar to the code from lines 38 to
43 and, therefore, are not discussed line by line.

Finally, on lines 60 to 63, the function buttonsRead() is implemented. This function returns the
value of the private variable buttonsStatus. In this way, other modules can get the values of the

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

523

buttonsStatus members changeMode, howOften, howLong, and moisture without violating the principle
of modularization.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "buttons.h"

//=====[Declaration and initialization of private global objects]===============

static DigitalIn changeModeButton(PG_1);
static DigitalIn howOftenButton(PF_9);
static DigitalIn howLongButton(PF_7);
static DigitalIn moistureButton(PF_8);

//=====[Declaration and initialization of private global variables]============

static buttonsStatus_t buttonsStatus;

//=====[Implementations of public functions]===================================

void buttonsInit()
{
 changeModeButton.mode(PullUp);
 howOftenButton.mode(PullUp);
 howLongButton.mode(PullUp);
 moistureButton.mode(PullUp);

 buttonsStatus.changeMode = OFF;
 buttonsStatus.howOften = HOW_OFTEN_MIN;
 buttonsStatus.howLong = HOW_LONG_MIN;
 buttonsStatus.moisture = MOISTURE_MIN;
}

void buttonsUpdate()
{
 buttonsStatus.changeMode = !changeModeButton;

 if (!howOftenButton) {
 buttonsStatus.howOften = buttonsStatus.howOften + HOW_OFTEN_INCREMENT;
 if (buttonsStatus.howOften >= HOW_OFTEN_MAX + HOW_OFTEN_INCREMENT) {
 buttonsStatus.howOften = HOW_OFTEN_MIN;
 }
 }

 if (!howLongButton) {
 buttonsStatus.howLong = buttonsStatus.howLong + HOW_LONG_INCREMENT;
 if (buttonsStatus.howLong >= HOW_LONG_MAX + HOW_LONG_INCREMENT) {
 buttonsStatus.howLong = HOW_LONG_MIN;
 }
 }

 if (!moistureButton) {
 buttonsStatus.moisture = buttonsStatus.moisture + MOISTURE_INCREMENT;
 if (buttonsStatus.moisture >= MOISTURE_MAX + MOISTURE_INCREMENT) {
 buttonsStatus.moisture = MOISTURE_MIN;
 }
 }
}

buttonsStatus_t buttonsRead()
{
 return buttonsStatus;
}

Code 12.5 Implementation of buttons.cpp.

524

A Beginner’s Guide to Designing Embedded System Applications

In Code 12.6, the implementation of user_interface.h is shown. The private functions userInterfaceInit(),
userInterfaceUpdate(), and userInterfaceRead() are declared on lines 8 to 10.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _USER_INTERFACE_H_
#define _USER_INTERFACE_H_

//=====[Declarations (prototypes) of public functions]=========================

void userInterfaceInit();
void userInterfaceUpdate();
void userInterfaceRead();

//=====[#include guards - end]===

#endif // _USER_INTERFACE_H_

Code 12.6 Implementation of user_interface.h.

In Code 12.7, the first part of the implementation of user_interface.cpp is shown. On lines 3 to 9, the
libraries are included. From lines 13 to 27, the function userInterfaceInit() is implemented. On line
15, displayInit() is used to establish that a character-based display in 4-bit mode is used. On line 17,
displayClear() is used to clear the display. Lines 19 to 25 are used to write some text on the display
following the design introduced in Figure 12.8. This text does not change in this example, even if the
buttons are pressed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "user_interface.h"

#include "display.h"
#include "buttons.h"

//=====[Implementations of public functions]===================================

void userInterfaceInit()
{
 displayInit(DISPLAY_TYPE_LCD_HD44780,DISPLAY_CONNECTION_GPIO_4BITS);

 displayClear();
 displayCharPositionWrite(0, 0);
 displayStringWrite("Mode:Programmed-Wait");
 displayCharPositionWrite(0, 1);
 displayStringWrite("HowOften: hours");
 displayCharPositionWrite(0, 2);
 displayStringWrite("HowLong: seconds");
 displayCharPositionWrite(0, 3);
 displayStringWrite("MinMois: %-Curr:15%");
}

Code 12.7 Implementation of user_interface.cpp (Part 1/2).

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

525

From lines 1 to 20 of Code 12.8, the function userInterfaceUpdate() is implemented. On line 3, an
array of char named number is declared. On line 5, a variable named buttonsStatusLocalCopy of
type buttonsStatus_t is declared. On line 7, buttonsStatusLocalCopy is assigned the return value of
buttonsRead(). Lines 9 to 11 are used to write the value of buttonsStatusLocalCopy.howOften to location
(9,1) of the display. The format tag prototype “%02d” is used to indicate that two characters should
be used for the value. If the value to be written has less than two characters, the result is padded
with leading zeros. A very similar approach is used to write buttonsStatusLocalCopy.howLong (lines
13 to 15) and buttonsStatusLocalCopy.moisture (lines 17 to 19). Lastly, on line 22, it can be seen that
userInterfaceRead() has no functionality.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void userInterfaceUpdate()
{
 char number[3];

 buttonsStatus_t buttonsStatusLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();

 displayCharPositionWrite(9, 1);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howOften);
 displayStringWrite(number);

 displayCharPositionWrite(8, 2);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howLong);
 displayStringWrite(number);

 displayCharPositionWrite(8, 3);
 sprintf(number, "%02d", buttonsStatusLocalCopy.moisture);
 displayStringWrite(number);
}

void userInterfaceRead()
{
}

Code 12.8 Implementation of user_interface.cpp (Part 2/2).

Finally, given that the pins used to connect the display (Table 12.12) are the same pins used in Chapter
6, it is not necessary to modify the pins assignment used in display.cpp. If the display were to be
connected to other pins, then displayEN, displayRS, displayD4, displayD5, displayD6, and displayD7
would have to be assigned with the corresponding pins.

Proposed Exercise

1. Implement the system’s user interface for the project that was selected in the “Proposed Exercise”
of Example 12.1. Write all the corresponding .h and .cpp files.

Answer to the Exercise

1. It is strongly recommended to start by reusing as much as possible from the previous chapters of
this book, or even from this example.

526

A Beginner’s Guide to Designing Embedded System Applications

Example 12.6: Implement the Reading of the Sensors

Objective

Implement the reading of the sensors, as designed in step 4.

Summary of the Expected Outcome

As a result of this step, it is expected to have a set of .h and .cpp files that implement the user interface
and the reading of the sensors.

Discussion on How to Implement this Step

As was previously mentioned, the layout of the software should follow the design that was done in
step 4 unless there are strong rationales to introduce changes. The irrigation system has only one
sensor, the moisture sensor. Therefore, only the corresponding functionality is implemented in this
step.

Implementation of this Proposed Step

For the sake of brevity, in this example only new files or files that have changes are shown. The full set
of files for this example are available in [2]. In particular, new lines are introduced in irrigation_system.
cpp, as can be seen in Code 12.9. The library moisture_sensor.h is included on line 8, and the functions
moistureSensorInit() and moistureSensorUpdate() are called on lines 21 and 30, respectively.

There are also a few new lines in user_interface.cpp, as can be seen in Code 12.10. On line 10, the
library moisture_sensor.h is included. On line 26, “MinMois: %-Curr: %” is written. On line 34, the
float variable hl69AveragedValueLocalCopy is declared, and on line 37 it is assigned the return value of
moistureSensorRead(). Lines 51 to 53 are included in order to write the reading of the moisture sensor.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

//=====[Libraries]===

#include "irrigation_system.h"

#include "buttons.h"
#include "user_interface.h"
#include "non_blocking_delay.h"
#include "moisture_sensor.h"

//=====[Declaration and initialization of public global variables]=============

static nonBlockingDelay_t irrigationSystemDelay;

//=====[Implementations of public functions]===================================

void irrigationSystemInit()
{
 tickInit();
 buttonsInit();
 userInterfaceInit();

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

527

21
22
23
24
25
26
27
28
29
30
31
32

 moistureSensorInit();
 nonBlockingDelayInit(&irrigationSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void irrigationSystemUpdate()
{
 if(nonBlockingDelayRead(&irrigationSystemDelay)) {
 buttonsUpdate();
 userInterfaceUpdate();
 moistureSensorUpdate();
 }
}

Code 12.9 New implementation of irrigation_system.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "user_interface.h"

#include "display.h"
#include "buttons.h"
#include "moisture_sensor.h"

//=====[Implementations of public functions]===================================

void userInterfaceInit()
{
 displayInit(DISPLAY_TYPE_LCD_HD44780,DISPLAY_CONNECTION_GPIO_4BITS);

 displayClear();
 displayCharPositionWrite(0, 0);
 displayStringWrite("Mode:Programmed-Wait");
 displayCharPositionWrite(0, 1);
 displayStringWrite("HowOften: hours");
 displayCharPositionWrite(0, 2);
 displayStringWrite("HowLong: seconds");
 displayCharPositionWrite(0, 3);
 displayStringWrite("MinMois: %-Curr: %");
}

void userInterfaceUpdate()
{
 char number[3];

 buttonsStatus_t buttonsStatusLocalCopy;
 float hl69AveragedValueLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();
 hl69AveragedValueLocalCopy = moistureSensorRead();

 displayCharPositionWrite(9, 1);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howOften);
 displayStringWrite(number);

 displayCharPositionWrite(8, 2);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howLong);
 displayStringWrite(number);

528

A Beginner’s Guide to Designing Embedded System Applications

47
48
49
50
51
52
53
54
55
56
57
58

 displayCharPositionWrite(8, 3);
 sprintf(number, "%02d", buttonsStatusLocalCopy.moisture);
 displayStringWrite(number);

 displayCharPositionWrite(17, 3);
 sprintf(number, "%2.0f", 100*hl69AveragedValueLocalCopy);
 displayStringWrite(number);
}

void userInterfaceRead()
{
}

Code 12.10 New implementation of user_interface.cpp.

In Code 12.11, the implementation of moisture_sensor.h is shown. It can be seen that the public
functions moistureSensorInit(), moistureSensorUpdate(), and moistureSensorRead() are declared.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _MOISTURE_SENSOR_H_
#define _MOISTURE_SENSOR_H_

//=====[Declarations (prototypes) of public functions]=========================

void moistureSensorInit();
void moistureSensorUpdate();
float moistureSensorRead();

//=====[#include guards - end]===

#endif // _MOISTURE_SENSOR_H_

Code 12.11 Implementation of moisture_sensor.h.

In Code 12.12, the first part of the implementation of moisture_sensor.cpp is shown. From lines
3 to 6, the libraries are included. On line 10, NUMBER_OF_AVERAGED_SAMPLES is defined
as 10. On line 14, the AnalogIn object hl69 is declared and assigned to the A3 pin. On line 18,
the private float variable hl69AveragedValue, which will be used to store the average of the last
NUMBER_OF_AVERAGED_ SAMPLES, is declared and initialized. The private array of float
variable hl69ReadingsArray is declared on line 19. On line 23, the implementation of the function
moistureSensorInit() is shown. As can be seen, it has no functionality.

In Code 12.13, the implementation of the function moistureSensorUpdate() is shown on lines 1 to 18.
Note that it is very similar to the way in which the LM35 sensor was read earlier in this book. On
line 3, a static integer variable named hl69SampleIndex is declared. On line 4, an integer variable
i is declared. On line 6, the result of 1 minus the reading of the HL-69 sensor is assigned to the
corresponding position of hl69ReadingsArray. The assignment is done this way because the sensor
retrieves 1 when the moisture is 0%. On lines 8 to 12, hl69AveragedValue is computed. On lines 14 to
17, the value of hl69SampleIndex is updated. Finally, the function moistureSensorRead() is implemented
on lines 20 to 23.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

529

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

//=====[Libraries]==

#include "mbed.h"
#include "arm_book_lib.h"

#include "moisture_sensor.h"

//=====[Declaration of private defines]===

#define NUMBER_OF_AVERAGED_SAMPLES 10

//=====[Declaration and initialization of private global objects]===============

static AnalogIn hl69(A3);

//=====[Declaration and initialization of private global variables]============

static float hl69AveragedValue = 0.0;
static float hl69ReadingsArray[NUMBER_OF_AVERAGED_SAMPLES];

//=====[Implementations of public functions]===================================

void moistureSensorInit()
{
}

Code 12.12 Implementation of moisture_sensor.cpp (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

void moistureSensorUpdate()
{
 static int hl69SampleIndex = 0;
 int i;

 hl69ReadingsArray[hl69SampleIndex] = 1 - hl69.read();

 hl69AveragedValue = 0.0;
 for (i = 0; i < NUMBER_OF_AVERAGED_SAMPLES; i++) {
 hl69AveragedValue = hl69AveragedValue + hl69ReadingsArray[i];
 }
 hl69AveragedValue = hl69AveragedValue / NUMBER_OF_AVERAGED_SAMPLES;

 hl69SampleIndex++;
 if (hl69SampleIndex >= NUMBER_OF_AVERAGED_SAMPLES) {
 hl69SampleIndex = 0;
 }
}

float moistureSensorRead()
{
 return hl69AveragedValue;
}

Code 12.13 Implementation of moisture_sensor.cpp (Part 2/2).

NOTE: The fact that the positions of the hl69ReadingsArray are not initialized
and hl69AveragedValue is calculated using those values does not lead to incorrect
behavior, as this situation lasts for only the first second after power on, during which
the Programmed mode is still waiting to irrigate.

530

A Beginner’s Guide to Designing Embedded System Applications

Proposed Exercise

1. Implement the reading of the sensors for the project that was selected in the “Proposed Exercise” of
Example 12.1. Write all the corresponding .h and .cpp files.

Answer to the Exercise

1. It is strongly recommended to start by reusing as much as possible from the previous chapters of
this book, or even from this example.

Example 12.7: Implement the Driving of the actuators

Objective

Implement the drivers for the actuators, as designed in step 4.

Summary of the Expected Outcome

As a result of this step, it is expected to have a set of .h and .cpp files that implement the user interface,
the reading of the sensors, and the drivers for the actuators.

Discussion of How to Implement this Step

The irrigation system has only one actuator, the solenoid valve, which is activated by means of a relay
module. In this example, the activation of this relay module is implemented.

Implementation of this Proposed Step

New lines are introduced in irrigation_system.cpp, as can be seen on lines 9, 23, and 33 of Code 12.14.
The other files that were introduced in previous examples are not changed.

In Code 12.15, the implementation of relay.h is shown. It can be seen that the public functions
relayInit(), relayUpdate(), and relayRead() are declared.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[Libraries]===

#include "irrigation_system.h"

#include "buttons.h"
#include "user_interface.h"
#include "non_blocking_delay.h"
#include "moisture_sensor.h"
#include "relay.h"

//=====[Declaration and initialization of public global variables]=============

static nonBlockingDelay_t irrigationSystemDelay;

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

531

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//=====[Implementations of public functions]===================================

void irrigationSystemInit()
{
 tickInit();
 buttonsInit();
 userInterfaceInit();
 moistureSensorInit();
 relayInit();
 nonBlockingDelayInit(&irrigationSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void irrigationSystemUpdate()
{
 if(nonBlockingDelayRead(&irrigationSystemDelay)) {
 buttonsUpdate();
 userInterfaceUpdate();
 moistureSensorUpdate();
 relayUpdate();
 }
}

Code 12.14 New implementation of irrigation_system.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _RELAY_H_
#define _RELAY_H_

//=====[Declarations (prototypes) of public functions]=========================

void relayInit();
void relayUpdate();
float relayRead();

//=====[#include guards - end]===

#endif // _RELAY_H_

Code 12.15 Implementation of relay.h.

In Code 12.16, the Implementation of relay.cpp is shown. On lines 3 to 8, the libraries are included.
On line 12, a private DigitalInOut object named relayControlPin is declared and assigned PF_2. The
function relayInit() initializes relayControlPin as an input, which turns off the relay.

NOTE: This same type of initialization and use was implemented in previous chapters
to control the buzzer using the relay, given that buzzers are 5 V devices, and it is not
advised to turn them on directly using a digitalOut object.

532

A Beginner’s Guide to Designing Embedded System Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "relay.h"

#include "buttons.h"

//=====[Declaration and initialization of private global objects]===============

static DigitalInOut relayControlPin(PF_2);

//=====[Implementations of public functions]===================================

void relayInit()
{
 relayControlPin.mode(OpenDrain);
 relayControlPin.input();
}

void relayUpdate()
{
 buttonsStatus_t buttonsStatusLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();

 if(buttonsStatusLocalCopy.changeMode) {
 relayControlPin.output();
 relayControlPin = LOW;
 } else {
 relayControlPin.input();
 }
}

void relayRead()
{
}

Code 12.16 Implementation of relay.cpp.

The implementation of the function relayUpdate() is shown from lines 22 to 34. On line 24,
buttonsStatusLocalCopy, a variable of type buttonsStatus_t, is declared. On line 26, buttonsRead() is used
to load the status of the buttons into this variable. On line 28, buttonsStatusLocalCopy.changeMode
is assessed. If it is true, then the relay is turned on by means of the statements on lines 29 and 30.
Otherwise, the relay is turned off on line 32. In this way, the relay should become active each time the
Mode button is pressed.

The function relayRead(), which has no functionality, is shown on lines 36 to 38.

NOTE: The behavior implemented in this example only has the purpose of testing
the activation of the relay. The behavior will be changed in the next example as the
remaining modules of the software are incorporated in the system implementation.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

533

Proposed Exercise

1. Implement the drivers of the actuators for the project that was selected in the “Proposed Exercise”
of Example 12.1. Write all the corresponding .h and .cpp files.

Answer to the Exercise

1. It is strongly recommended to start by reusing as much as possible from the previous chapters of
this book, or even from this example. Remember that a quick look on the internet may help to find
more ideas for the remaining parts of the software.

Example 12.8: Implement the Behavior of the System

Objective

Implement the behavior of the system as established in previous steps (Table 12.6 and Figure 12.7).

Summary of the Expected Outcome

As a result of this step, it is expected to have a set of .h and .cpp files that implement the complete
behavior of the system.

Discussion on How to Implement this Step

In this step, the last two remaining modules, irrigation_timer and irrigation_control, are included in the
system, and all the functionality described in the requirements is implemented.

Implementation of this Proposed Step

New lines are introduced in irrigation_system.cpp, as can be seen on lines 10, 11, 25, 26, 37, and 38 of
Code 12.17. In this new implementation, userInterfaceInit() and userInterfaceUpdate() are called after
all the other initialization and update function calls to properly implement the logic introduced in
Example 12.4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[Libraries]===

#include "irrigation_system.h"

#include "buttons.h"
#include "user_interface.h"
#include "non_blocking_delay.h"
#include "moisture_sensor.h"
#include "relay.h"
#include "irrigation_control.h"
#include "irrigation_timer.h"

//=====[Declaration of private defines]==

534

A Beginner’s Guide to Designing Embedded System Applications

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

static nonBlockingDelay_t irrigationSystemDelay;

//=====[Implementations of public functions]===================================

void irrigationSystemInit()
{
 tickInit();
 buttonsInit();
 moistureSensorInit();
 relayInit();
 irrigationControlInit();
 irrigationTimerInit();
 userInterfaceInit();
 nonBlockingDelayInit(&irrigationSystemDelay, SYSTEM_TIME_INCREMENT_MS);
}

void irrigationSystemUpdate()
{
 if(nonBlockingDelayRead(&irrigationSystemDelay)) {
 buttonsUpdate();
 moistureSensorUpdate();
 relayUpdate();
 irrigationControlUpdate();
 irrigationTimerUpdate();
 userInterfaceUpdate();
 }
}

Code 12.17 New implementation of irrigation_system.cpp.

In Code 12.18, the implementation of irrigation_control.h is shown. On line 8, TO_SECONDS is defined
as 10. This #define will be used to convert from a number of counts of 100 milliseconds to seconds. On
line 9, TO_HOURS is defined as 36000. This #define will be used to convert from a number of counts
of 100 milliseconds to hours.

On line 13, the public data type irrigationState_t is declared. As can be seen on lines 14 to 18, it can
have five possible values. On line 21, the public data type irrigationControlStatus_t is declared. Its first
member is irrigationState, of type irrigationState_t. The other two members are the Boolean variables,
waitedTimeMustBeReset and irrigatedTimeMustBeReset. On lines 29 to 31, the prototypes of the public
functions irrigationControlInit(), irrigationControlUpdate(), and irrigationControlRead() are declared.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//=====[#include guards - begin]===

#ifndef _IRRIGATION_CONTROL_H_
#define _IRRIGATION_CONTROL_H_

//=====[Declaration of public defines]===

#define TO_SECONDS 10
#define TO_HOURS 36000

//=====[Declaration of public data types]======================================

typedef enum {
 INITIAL_MODE_ASSESSMENT,

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

535

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 CONTINUOUS_MODE_IRRIGATING,
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE,
 PROGRAMMED_MODE_IRRIGATION_SKIPPED,
 PROGRAMMED_MODE_IRRIGATING
} irrigationState_t;

typedef struct irrigationControlStatus {
 irrigationState_t irrigationState;
 bool waitedTimeMustBeReset;
 bool irrigatedTimeMustBeReset;
} irrigationControlStatus_t;

//=====[Declarations (prototypes) of public functions]=========================

void irrigationControlInit();
void irrigationControlUpdate();
irrigationControlStatus_t irrigationControlRead();

//=====[#include guards - end]===

#endif // _IRRIGATION_CONTROL_H_

Code 12.18 Implementation of irrigation_control.h.

In Code 12.19 and Code 12.20, the implementation of irrigation_control.cpp is shown. The libraries
are included on lines 3 to 10 of Code 12.19. A private global variable named irrigationControlStatus
is declared on line 14. The function irrigationControlInit(), declared on line 18, is used to initialize
the members of irrigationControlStatus. The function irrigationControlUpdate(), shown from lines 25
to 65 of Code 12.19 and 1 to 40 of Code 12.20, implements the FSM discussed in Example 12.4.
It is, therefore, not discussed here. Finally, in Code 12.20, the function irrigationControlRead() is
implemented on lines 42 to 45 of Code 12.20.

NOTE: FSM transitions corresponding to waitedTime < howOften, irrigatedTime <
howLong, changeMode == false (see Figure 12.7) are to the same state, so there is no
need to include code to implement them. Lines 8 to 10 of Code 12.20 are included
only to improve code clarity but can be replaced by else irrigationControlStatus.
irrigationState = PROGRAMMED_MODE_IRRIGATION_SKIPPED.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "irrigation_control.h"

#include "buttons.h"
#include "irrigation_timer.h"
#include "moisture_sensor.h"

//=====[Declaration and initialization of private global variables]============

static irrigationControlStatus_t irrigationControlStatus;

536

A Beginner’s Guide to Designing Embedded System Applications

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

//=====[Implementations of public functions]===================================

void irrigationControlInit()
{
 irrigationControlStatus.irrigationState = INITIAL_MODE_ASSESSMENT;
 irrigationControlStatus.waitedTimeMustBeReset = true;
 irrigationControlStatus.irrigatedTimeMustBeReset = true;
}

void irrigationControlUpdate()
{
 buttonsStatus_t buttonsStatusLocalCopy;
 irrigationTimer_t irrigationTimerLocalCopy;
 float hl69AveragedValueLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();
 irrigationTimerLocalCopy = irrigationTimerRead();
 hl69AveragedValueLocalCopy = moistureSensorRead();

 switch(irrigationControlStatus.irrigationState) {

 case INITIAL_MODE_ASSESSMENT:

 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState = CONTINUOUS_MODE_IRRIGATING;
 } else {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;
 irrigationControlStatus.waitedTimeMustBeReset = true;
 }
 break;

 case CONTINUOUS_MODE_IRRIGATING:

 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;
 irrigationControlStatus.waitedTimeMustBeReset = true;
 }
 break;

 case PROGRAMMED_MODE_WAITING_TO_IRRIGATE:

 irrigationControlStatus.waitedTimeMustBeReset = false;
 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState =
 CONTINUOUS_MODE_IRRIGATING;
 }
 else if(irrigationTimerLocalCopy.waitedTime >= (
 buttonsStatusLocalCopy.howOften * TO_HOURS)) {

Code 12.19 Implementation of irrigation_control.cpp (Part 1/2).

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

537

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 if((buttonsStatusLocalCopy.howLong != 0) &&
 ((int) (100*hl69AveragedValueLocalCopy) <
 buttonsStatusLocalCopy.moisture)) {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_IRRIGATING;
 irrigationControlStatus.irrigatedTimeMustBeReset = true;
 }
 else if ((buttonsStatusLocalCopy.howLong == 0) ||
 ((int) (100*hl69AveragedValueLocalCopy) >=
 buttonsStatusLocalCopy.moisture)) {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_IRRIGATION_SKIPPED;
 }
 }

 case PROGRAMMED_MODE_IRRIGATION_SKIPPED:

 irrigationControlStatus.waitedTimeMustBeReset = true;
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;

 break;

 case PROGRAMMED_MODE_IRRIGATING:

 irrigationControlStatus.waitedTimeMustBeReset = false;

 if(irrigationTimerLocalCopy.irrigatedTime >= (
 buttonsStatusLocalCopy.howLong * TO_SECONDS)) {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;
 irrigationControlStatus.waitedTimeMustBeReset = true;
 }
 break;

 default:
 irrigationControlInit();
 break;
 }
}

irrigationControlStatus_t irrigationControlRead()
{
 return irrigationControlStatus;
}

Code 12.20 Implementation of irrigation_control.cpp (Part 2/2).

In Code 12.21, the implementation of irrigation_timer.h is shown. On line 8, the defined type
irrigationTimer_t is declared. It has two members, waitedTime and irrigatedTime, used to account for
the time elapsed while waiting to irrigate and the time elapsed while irrigating. On lines 15 to 17, the
public functions are declared.

In Code 12.22, the implementation of irrigation_timer.cpp is shown. Libraries are included on
lines 3 to 8. On line 12, the defined type variable irrigationTimer is declared. On lines 16 to 20,
irrigationTimerInit() is implemented. It can be seen that irrigationTimer.waitedTime and irrigationTimer.
irrigatedTime are both set to 0. On lines 22 to 45, irrigationTimerUpdate() is implemented. The
variable irrigationControlStatusLocalCopy is declared on line 24, and it is assigned the return value of

538

A Beginner’s Guide to Designing Embedded System Applications

irrigationControlRead() on line 26. Line 28 assesses whether irrigationTimer.waitedTime must be reset
by evaluating irrigationControlStatusLocalCopy.waitedTimeMustBeReset. Line 32 assesses whether
irrigationTimer.irrigatedTime must be reset.

Line 36 assesses whether irrigationTimer.waitedTime must be incremented, which is true if
irrigationControlStatusLocalCopy.irrigationState is equal to PROGRAMMED_MODE_WAITING_TO_
IRRIGATE. Line 41 assesses whether irrigationTimer.irrigatedTime must be incremented, which is true
if irrigationControlStatusLocalCopy.irrigationState is equal to PROGRAMMED_MODE_IRRIGATING.
Finally, on lines 47 to 50, irrigationTimerRead() is implemented.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//=====[#include guards - begin]===

#ifndef _IRRIGATION_TIMER_H_
#define _IRRIGATION_TIMER_H_

//=====[Declaration of public data types]======================================

typedef struct irrigationTimer {
 int waitedTime;
 int irrigatedTime;
} irrigationTimer_t;

//=====[Declarations (prototypes) of public functions]=========================

void irrigationTimerInit();
void irrigationTimerUpdate();
irrigationTimer_t irrigationTimerRead();

//=====[#include guards - end]===

#endif // _IRRIGATION_TIMER_H_

Code 12.21 Implementation of irrigation_timer.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "irrigation_timer.h"

#include "buttons.h"

//=====[Declaration and initialization of private global variables]============

static irrigationTimer_t irrigationTimer;

//=====[Implementations of public functions]===================================

void irrigationTimerInit()
{
 irrigationTimer.waitedTime = 0;
 irrigationTimer.irrigatedTime = 0;
}

void irrigationTimerUpdate()
{
 irrigationControlStatus_t irrigationControlStatusLocalCopy;

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

539

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 irrigationControlStatusLocalCopy = irrigationControlRead();

 if (irrigationControlStatusLocalCopy.waitedTimeMustBeReset) {
 irrigationTimer.waitedTime = 0;
 }

 if (irrigationControlStatusLocalCopy.irrigatedTimeMustBeReset) {
 irrigationTimer.irrigatedTime = 0;
 }

 if (irrigationControlStatusLocalCopy.irrigationState ==
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE) {
 irrigationTimer.waitedTime++;
 }

 if (irrigationControlStatusLocalCopy.irrigationState ==
 PROGRAMMED_MODE_IRRIGATING) {
 irrigationTimer.irrigatedTime++;
 }
}

irrigationTimer_t irrigationTimerRead()
{
 return irrigationTimer;
}

Code 12.22 Implementation of irrigation_timer.cpp.

In Code 12.23 and Code 12.24, the new implementation of user_interface.cpp is shown. In Code 12.23,
libraries are included on lines 3 to 11, and line 21 is modified to only write “Mode:”. On line 9 of
Code 12.24, the display position after “Mode:” is written (i.e., “5,0”). Then, a switch statement is used
on irrigationControlStatusLocalCopy.irrigationState to write the corresponding text on the display.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "user_interface.h"

#include "display.h"
#include "buttons.h"
#include "moisture_sensor.h"
#include "irrigation_control.h"

//=====[Implementations of public functions]===================================

void userInterfaceInit()
{
 displayInit(DISPLAY_TYPE_LCD_HD44780,DISPLAY_CONNECTION_GPIO_4BITS);

 displayClear();
 displayCharPositionWrite(0, 0);
 displayStringWrite("Mode:");
 displayCharPositionWrite(0, 1);
 displayStringWrite("HowOften: hours");
 displayCharPositionWrite(0, 2);

540

A Beginner’s Guide to Designing Embedded System Applications

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

 displayStringWrite("HowLong: seconds");
 displayCharPositionWrite(0, 3);
 displayStringWrite("MinMois: %-Curr: %");
}

void userInterfaceUpdate()
{
 char number[3];

 buttonsStatus_t buttonsStatusLocalCopy;
 float hl69AveragedValueLocalCopy;
 irrigationControlStatus_t irrigationControlStatusLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();
 hl69AveragedValueLocalCopy = moistureSensorRead();
 irrigationControlStatusLocalCopy = irrigationControlRead();

 displayCharPositionWrite(9, 1);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howOften);
 displayStringWrite(number);

 displayCharPositionWrite(8, 2);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howLong);
 displayStringWrite(number);

Code 12.23 New implementation of user_interface.cpp (Part 1/2).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 displayCharPositionWrite(8, 3);
 sprintf(number, "%02d", buttonsStatusLocalCopy.moisture);
 displayStringWrite(number);

 displayCharPositionWrite(17, 3);
 sprintf(number, "%2.0f", 100*hl69AveragedValueLocalCopy);
 displayStringWrite(number);

 displayCharPositionWrite(5, 0);

 switch(irrigationControlStatusLocalCopy.irrigationState) {

 case INITIAL_MODE_ASSESSMENT:
 displayStringWrite("Initializing...");
 break;

 case CONTINUOUS_MODE_IRRIGATING:
 displayStringWrite("Continuous-ON ");
 break;

 case PROGRAMMED_MODE_WAITING_TO_IRRIGATE:
 displayStringWrite("Programmed-Wait");
 break;

 case PROGRAMMED_MODE_IRRIGATION_SKIPPED:
 displayStringWrite("Programmed-Skip");
 break;

 case PROGRAMMED_MODE_IRRIGATING:
 displayStringWrite("Programmed-ON ");
 break;

 default:
 displayStringWrite("Non-supported ");
 break;
 }

void userInterfaceRead()
{
}

Code 12.24 New implementation of user_interface.cpp (Part 2/2).

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

541

In Code 12.25, the new implementation of relay.cpp is shown. Libraries are included on lines 3 to
8. Note that buttons.h is not included anymore. The private DigitalInOut object relayControlPin is
declared on line 12 and assigned to pin PF_2. The function relayInit() is declared on line 16. This
function turns off the relay by configuring relayControlPin as an input, so no energy is supplied to the
relay.

On lines 22 to 56, the implementation of relayUpdate() is shown. On line 24,
irrigationControlStatusLocalCopy is declared and assigned the return value of irrigationControlRead() on
line 26. On line 28, there is a switch over irrigationControlStatusLocalCopy.irrigationState. Depending on
the value of irrigationControlStatusLocalCopy.irrigationState, the relay is turned on or off. For example,
in the irrigation state CONTINUOUS_MODE_IRRIGATING, the relay should be turned on, and,
therefore, relayControlPin is configured as output and LOW is assigned to the pin (remember that the
relay is turned on by assigning 0 V to the pin PF_2).

Finally, the function relayRead() is shown on lines 57 to 61.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

//=====[Libraries]===

#include "mbed.h"
#include "arm_book_lib.h"

#include "relay.h"

#include "irrigation_control.h"

//=====[Declaration and initialization of public global objects]===============

static DigitalInOut relayControlPin(PF_2);

//=====[Implementations of public functions]===================================

void relayInit()
{
 relayControlPin.mode(OpenDrain);
 relayControlPin.input();
}

void relayUpdate()
{
 irrigationControlStatus_t irrigationControlStatusLocalCopy;

 irrigationControlStatusLocalCopy = irrigationControlRead();

 switch(irrigationControlStatusLocalCopy.irrigationState) {

 case INITIAL_MODE_ASSESSMENT:
 relayControlPin.input();
 break;

 case CONTINUOUS_MODE_IRRIGATING:
 relayControlPin.output();
 relayControlPin = LOW;
 break;

 case PROGRAMMED_MODE_WAITING_TO_IRRIGATE:
 relayControlPin.input();

542

A Beginner’s Guide to Designing Embedded System Applications

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 break;

 case PROGRAMMED_MODE_IRRIGATION_SKIPPED:
 relayControlPin.input();
 break;

 case PROGRAMMED_MODE_IRRIGATING:
 relayControlPin.output();
 relayControlPin = LOW;
 break;

 default:
 relayControlPin.input();
 break;
 }
}

void relayRead()
{
}

Code 12.25 New implementation of relay.cpp.

Proposed Exercise

1. Implement the behavior for the project that was selected in the “Proposed Exercise” of Example
12.1. Write all the corresponding .h and .cpp files.

Answer to the Exercise

1. The implementation of the behavior might be a difficult task. For that reason, some tips are
presented below.

TIP: It is strongly recommended to start by implementing a reduced set of the
system functionality. In this way, the code is easier to revise and test. For example,
in Code 12.26, it is shown how a first version of irrigationControlUpdate() could be
written to include only three of the states.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

void irrigationControlUpdate()
{
 buttonsStatus_t buttonsStatusLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();

 switch(irrigationControlStatus.irrigationState) {

 case INITIAL_MODE_ASSESSMENT:

 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState = CONTINUOUS_MODE_IRRIGATING;
 } else {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;
 }

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

543

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 break;

 case CONTINUOUS_MODE_IRRIGATING:

 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState =
 PROGRAMMED_MODE_WAITING_TO_IRRIGATE;
 }
 break;

 case PROGRAMMED_MODE_WAITING_TO_IRRIGATE:
 if(buttonsStatusLocalCopy.changeMode) {
 irrigationControlStatus.irrigationState =
 CONTINUOUS_MODE_IRRIGATING;
 }
 break;

 default:
 irrigationControlInit();
 break;
 }
}

Code 12.26 Simplified implementation of irrigation_control.cpp.

TIP: It is also recommended to consider showing some additional information on the
user interface to have a better understanding of what is going on. For example, lines
59 to 65 of Code 12.27 are used to print on the display the values of waitedTime and
irrigatedTime. By means of these lines, as well as the values of TO_SECONDS and
TO_HOUR shown in Table 12.34, the behavior of the system can be tested in a shorter
amount of time by having more information on hand.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void userInterfaceUpdate()
{
 char number[3];

 buttonsStatus_t buttonsStatusLocalCopy;
 float hl69AveragedValueLocalCopy;
 irrigationControlStatus_t irrigationControlStatusLocalCopy;
 irrigationTimer_t irrigationTimerLocalCopy;

 buttonsStatusLocalCopy = buttonsRead();
 hl69AveragedValueLocalCopy = moistureSensorRead();
 irrigationControlStatusLocalCopy = irrigationControlRead();
 irrigationTimerLocalCopy = irrigationTimerRead();

 displayCharPositionWrite(9, 1);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howOften);
 displayStringWrite(number);

 displayCharPositionWrite(8, 2);
 sprintf(number, "%02d", buttonsStatusLocalCopy.howLong);
 displayStringWrite(number);

 displayCharPositionWrite(8, 3);
 sprintf(number, "%02d", buttonsStatusLocalCopy.moisture);
 displayStringWrite(number);

544

A Beginner’s Guide to Designing Embedded System Applications

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

 displayCharPositionWrite(17, 3);
 sprintf(number, "%2.0f", 100*hl69AveragedValueLocalCopy);
 displayStringWrite(number);

 displayCharPositionWrite(5, 0);
 switch(irrigationControlStatusLocalCopy.irrigationState) {

 case INITIAL_MODE_ASSESSMENT:
 displayStringWrite("Initializing...");
 break;

 case CONTINUOUS_MODE_IRRIGATING:
 displayStringWrite("Continuous-ON ");
 break;

 case PROGRAMMED_MODE_WAITING_TO_IRRIGATE:
 displayStringWrite("Programmed-Wait");
 break;

 case PROGRAMMED_MODE_IRRIGATION_SKIPPED:
 displayStringWrite("Programmed-Skip");
 break;

 case PROGRAMMED_MODE_IRRIGATING:
 displayStringWrite("Programmed-ON ");
 break;

 default:
 displayStringWrite("Non-supported ");
 break;
 }

 displayCharPositionWrite(18, 1);
 sprintf(number, "%02d", irrigationTimerLocalCopy.waitedTime);
 displayStringWrite(number);

 displayCharPositionWrite(18, 2);
 sprintf(number, "%02d", irrigationTimerLocalCopy.irrigatedTime);
 displayStringWrite(number);
}

Code 12.27 Alternative version of the implementation of user_interface.cpp, where more information is shown.

Table 12.34 Sections in which lines were modified in irrigation_control.h.

Section Lines that were added

Declaration of public defines #define TO_SECONDS 1

#define TO_HOURS 1

WaRNINg: The UART connection with the PC over USB can be used to print the
values of waitedTime and irrigatedTime on the serial terminal. In this case, it should be
remembered that there is a delay for each character that is sent to the PC (recall the
Under the Hood section of Chapter 2), and this may alter the system behavior.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

545

Example 12.9: Check the System Behavior

Objective

Check the behavior of the system against the requirements and use cases defined in step 2.

Summary of the Expected Outcome

The results of this step are expected to be:

 n a table listing all the requirements, indicating whether they were accomplished or not, and

 n a table listing all the use cases, indicating whether the system behaves as expected or not.

Discussion of How to Implement this Step

In step 2 (Example 12.2), the requirements were established, as well as the use cases. In this step, the
accomplishment of each requirement and use case will be analyzed. In the case of non-compliance,
it will be explained why it was not possible to accomplish the requirement and what the proposed
solution is.

Implementation of this Proposed Step

In Table 12.35, the accomplishment of the requirements is assessed. It can be seen that out of 24
requirements, only 2 were not accomplished (Req. 5.1 and 6.1). In the case of Req. 5.1, the moisture
sensor that was used is not, and cannot be, calibrated. Perhaps in a future version of the system the
sensor can be changed or calibrated. Regarding Req. 6.1, it was noticed that the available solenoid
valves operate with 12 V, and for the sake of simplicity in this version it was decided not to use an
extra circuit (e.g., a step-up DC/DC converter) to obtain 12 V out of two AA batteries.

Table 12.35 Accomplishment of the requirements defined for the home irrigation system.

Req. ID Description accomplished?

1.1 The system will have one water-in port based on a ½-inch connector.

1.2 The system will control one irrigation circuit by means of a solenoid valve.

2.1 The system will have a continuous mode in which a button will enable the water flow.

2.2 The system will have a programmed irrigation mode based on a set of configurations:

2.2.1 Irrigation will be enabled only if moisture is below the “Minimum moisture level” value.

2.2.2 Irrigation will be enabled every H hours, with H being the “How often” configuration.

2.2.3 Irrigation will be enabled for S seconds, with S being the “How long” configuration.

2.2.4 Irrigation will be skipped if “How long” is configured to 0 (zero).

3.1 The system configuration will be done by means of a set of buttons:

3.1.1 The “Mode” button will change between “Programmed irrigation” and “Continuous irrigation”.

3.1.2 The “How often” button will increase the time between irrigations in programmed mode by one hour.

3.1.3 The “How long” button will increase the irrigation time in programmed mode by ten seconds.

546

A Beginner’s Guide to Designing Embedded System Applications

Req. ID Description accomplished?

3.1.4 The “Moisture” button will increase the “Minimum moisture level” configuration by 5%.

3.1.5 The maximum values are: “How often”: 24 h; “How long”: 90 s; “Moisture”: 95%.

3.1.6 “How long” and “Moisture” will be set to 0 (zero) if they reach the maximum and the button is
pressed.

3.1.7 “How often” will be set to 1 if it reaches its maximum value and the button is pressed.

4.1 The system will have an LCD display:

4.1.1 The LCD display will show the current operation mode: Continuous or Programmed.

4.1.2 The LCD display will show the value of “How often”, “How long”, and “Moisture”.

5.1 The system will measure soil moisture with an accuracy better than 5%.

6.1 The system will be powered using two AA batteries.

7.1 The system should be finished one week after starting (this includes buying the parts).

8.1 The components for the prototype should cost less than 60 USD.

9.1 The prototype should be accompanied with a list of parts, a connection diagram, the code repository,
a table indicating the accomplishment of requirements, and use cases.

NOTE: Req. 7.1 is considered accomplished based on an estimation of the time that it
will take the reader to complete this project, considering the skills acquired through
this book and six hours/day of work.

In Table 12.36, the set of use cases that were established in Example 12.2 are shown, as is an
assessment of whether they have been accomplished. It can be seen that the three use cases were
fully accomplished.

Table 12.36 Accomplishment of the use cases defined for the home irrigation system.

Use case Title accomplished?

#1 The user wants to irrigate plants immediately for a couple of minutes.

#2 The user wants to program irrigation to take place for ten seconds every six hours.

#3 The user wants the plants not to be irrigated.

Considering that 92% of the requirements and 100% of the use cases were accomplished, it can be
considered that the project was successfully developed.

Lastly, this helps to introduce two important concepts, which are frequently confused with each
other: verification and validation [3].

DEFINITION: Verification asks the question, “Are we building the product right?”
That is, does the software conform to its specifications? (As a house conforms to its
blueprints.)

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

547

DEFINITION: Validation asks the question, “Are we building the right product?” That
is, does the software do what the user really requires? (As a house conforms to what
the owner wants.)

After these definitions, and given the accomplishment results shown above, it can be stated that:

 n It was verified that the system that was developed accomplished almost all of its specifications.

 n Given that users were not asked about their needs, at this point validation cannot be assessed.

It can be concluded that it is of capital importance to involve the users at an early stage of the system
development process in order to be able to adjust the system specifications to their actual needs.
Otherwise, a product can be built that works as expected but is not useful for the users.

Proposed Exercise

1. Analyze the accomplishment of the requirements and use cases of the project that was selected in
the “Proposed Exercise” of Example 12.1. Document them by means of tables, as has been shown in
this example.

Answer to the Exercise

1. Table 12.35 and Table 12.36 can be used as templates to list all the requirements and use cases and
the corresponding assessment of their accomplishment.

Example 12.10: Develop the Documentation of the System

Objective

Provide a set of documents that summarize the final outcome of the project.

Summary of the Expected Outcome

The results of this step are expected to be:

 n a set of tables, drawings, and rationales summarizing the results of the project, and

 n a list of proposed steps that could be followed in order to continue and improve the project.

Discussion of How to Implement this Step

Throughout the examples, many tables, drawings, and rationales about the project were shown. In this
final step, all those documents can be presented as a final summary of the project. Additionally, based
on the experience obtained during the project implementation, proposals can be made about how to
continue and improve the project.

548

A Beginner’s Guide to Designing Embedded System Applications

Implementation of this Proposed Step

In Table 12.37, a set of elements that summarize the most important information about the home
irrigation system design and implementation are presented. It can be seen that by analyzing
this information, a developer can understand most of the project details. A user manual and
complementary documents can be added to this list, depending on the specific characteristics of the
project.

Table 12.37 Elements that summarize the most important information about the home irrigation system.

Element Reference

Rationale explaining why the project was selected Example 12.1

Requirements of the project Table 12.6

Use cases of the project Table 12.7

Diagram of the hardware modules of the system Figure 12.2

Connection diagram of all the hardware elements Figure 12.3

Bill of materials Table 12.18

Diagram of the software design Figure 12.4,
Figure 12.5

Definition of the software modules (public functions, variables, etc.) Table 12.19
to Table 12.32

Diagram of the proposed finite-state machine Figure 12.7

Software implementation [2]

Assessment of the accomplishment of the requirements Table 12.35

Assessment of the accomplishment of the use cases Table 12.36

Proposal for next steps Example 12.10

Final conclusions Example 12.10

Based on the experience obtained during the project design and implementation, the following next
steps can be addressed:

 n A step-up module might be included in the design in order to provide the 5 V supply for the
NUCLEO board and the 12 V supply for the solenoid using two AA batteries.

 n A calibration process can be implemented to determine the correspondence between the output
signal of the HL-69 sensor and the moisture level.

Moreover, in order to achieve a commercial version of the design, the following items can be
considered:

 n The development board might be replaced by a bespoke design on a printed circuit board (PCB),
which should reduce the cost and size of the system.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

549

 n A case can be designed for the irrigation system in order to make it portable and usable for final
users.

 n The reliability of the system can be tested in order to determine if more improvements are
required.

As a final conclusion for this project, it can be seen that the software design proved to be appropriate
for implementing a project with a certain complexity. Therefore, the approach can be reused in future
projects, such as the mobile robot that avoids obstacles or the flying drone equipped with a camera,
which were mentioned in Example 12.1.

Proposed Exercise

1. Develop a list of the relevant documentation regarding the project which was selected in the
“Proposed Exercise” of Example 12.1. Document the project by means of tables, as has been
shown in this example. Recommend a set of future steps for the project, and finally develop a brief
conclusion.

Answer to the Exercise

1. Table 12.37 can be used as a template to list all of the relevant documentation. The next steps and
the final conclusion can be similar to the ones presented in this example.

12.3 Final Words

12.3.1 The Projects to Come

Throughout this book, many concepts have been introduced. At this point, the reader is capable of
implementing a broad set of embedded systems. Moreover, the reader now has many keys that will
open the doors to “projects to come.” Those projects will include some technologies and techniques
that were introduced and discussed in this book, and probably some other elements that are beyond
the scope of this book. In any case, the reader now has a solid basis into which new knowledge can be
incorporated.

For example, the HC-SR04 ultrasonic module shown in Figure 12.12 is very popular. It uses the
principle of sonar (sound navigation ranging) to determine the distance to an object in the same way
that bats do. It has four pins: VCC, Trig, Echo, and GND. The Trig pin is used to trigger a high-frequency
sound. When the signal is reflected, the echo pin changes its state. The time between the transmission
and reception of the signal allows us to calculate the distance to an object, which is useful, for
example, in parking systems or in autonomous vehicles. Note that the knowledge to implement the
appropriate software module to use this sensor was introduced within this book (i.e., look at the Tip
on Example 10.4).

550

A Beginner’s Guide to Designing Embedded System Applications

Figure 12.12 Image of the HC-SR04 ultrasonic module.

A microphone module, as shown in Figure 12.13, can be easily used by applying the concepts
introduced in this book. The module has a digital output pin (DO) and analog output pin (AO). The
digital output sends a high signal when the sound intensity reaches a certain threshold, which is
adjusted using the potentiometer on the sensor. The analog output can be sampled and stored in
an array using an appropriate sampling rate, in order to be reproduced later, for example in a public
address system. The procedure is similar to that applied to the temperature sensor.

Figure 12.13 Image of a microphone module.

In Figure 12.14, a digital barometric pressure module is shown, used to measure the absolute
pressure of the environment. By converting the pressure measures into altitude, the height of a drone
can be estimated. The sensor also measures temperature and humidity and has an I2C bus interface,
such as the one introduced in Chapter 6.

Figure 12.14 Image of a digital barometric pressure module.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

551

There are many other sensor modules available, as well as many actuators that the reader is ready to
use. For example, the micro servo motor shown in Figure 12.15 has three pins: GND, VCC, and Signal.
The angle of the motor axis angle is controlled in the range 0 to 180° by the duty cycle of the signal
delivered at the Signal pin. The reader is encouraged to explore actuators that allow tiny movements,
such as stepper motors.

Figure 12.15 Image of a micro servo motor.

GPS (global positioning system) modules, such as the one shown in Figure 12.16, are also very popular.
They are commanded using AT commands, in a very similar way to the ESP-01 module introduced in
Chapter 11.

Figure 12.16 Image of a GPS module. Note the GPS antenna on the left.

Finally, in Figure 12.17, an NB-IoT (Narrow Band Internet of Things) cellular module is shown. These
modules are also controlled using AT commands and can be used to implement communications based
on 4G, 5G, LoRa, or SigFox, for example.

552

A Beginner’s Guide to Designing Embedded System Applications

Figure 12.17 Image of an NB-IoT cellular module. Note the SIM card slot on the right.

Given the vast range of modules that are available, the aim of this section is just to give an overview
of how most of them, maybe even all of them, can be used by applying the techniques and concepts
introduced in this book.

Enjoy the projects to come!

TIP: Never forget that good engineering is based on following processes, keeping
things as simple as possible, dividing problems into small pieces, and solving trade-off
situations.

Proposed Exercise

1. How can a micro servo motor be controlled using the techniques introduced in this book?

Answer to the Exercise

1. As explained above, the motor axis angle is controlled by the duty cycle of the signal delivered at
the Signal pin. Thus, the PWM technique that was introduced in Chapter 8 can be used.

Chapter 12 | Guide to Designing and Implementing an Embedded System Project

553

 References
[1] “NUCLEO-F429ZI | Mbed”. Accessed July 9, 2021.

https://os.mbed.com/platforms/ST-Nucleo-F429ZI/#zio-and-arduino-compatible-headers

[2] “GitHub - armBookCodeExamples/Directory”. Accessed July 9, 2021.
https://github.com/armBookCodeExamples/Directory

[3] Pham, H. (1999). Software Reliability. John Wiley & Sons, Inc. p. 567. ISBN 9813083840.

https://github.com/armBookCodeExamples/Directory
https://github.com/armBookCodeExamples/Directory
https://github.com/armBookCodeExamples/Directory

Glossary of Abbreviations

555

 Glossary of Abbreviations

4G Fourth Generation

A Anode

AC Alternating Current

ACK Acknowledge

ACSE Asociación Civil para la Investigación, Promoción y Desarrollo de Sistemas
Electrónicos Embebidos, Civil Association for Research, Promotion and
Development of Embedded Electronic Systems

ADC Analog to Digital Converter

ALT Alternative

AOUT, AO Analog Output

API Application Programming Interface

ASCII American Standard Code For Information Interchange

AT Attention

BLE Bluetooth Low Energy

BRK Break

CADIEEL Cámara Argentina de Industrias Electrónicas, Electromecánicas y
Luminotécnicas, Argentine Chamber of Electronic, Electromechanical and
Lighting Industries

CGRAM Custom Generated Random-Access Memory

CIAA Computadora Industrial Abierta Argentina, Argentine Open Industrial
Computer

CO
2
 Carbon Dioxide

COM Communication

556

A Beginners Guide to Designing Embedded System Applications

CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, National Scientific
and Technical Research Council of Argentina

CPU Central Processing Unit

CR Carriage Return

CS Chip Select

CSS Cascading Style Sheets

DAC Digital to Analog Converter

DB Data Bus

DC Direct Current

DDRAM Display Data Random Access Memory

DL Display Lines

DO-LED Digital Output Light Emitting Diode

DOUT, DO Digital Output

E Enable

ESP Espressif Systems

FAT File Allocation Table

FAT32 File Allocation Table 32

FPU Floating-Point Unit

FSM Finite-State Machine

GB GigaByte

GDRAM Graphic Display RAM

GLCD Graphical Liquid Crystal Display

GND Ground

Glossary of Abbreviations

557

GPIO General Purpose Input Output

GPS Global Positioning System

HAL Hardware Abstraction Layer

HDMI High-Definition Multimedia Interface

HMI Human–Machine Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HV High Voltage

I/D Increment/Decrement

I/O or IO Input/Output

I2C Inter Integrated Circuit

IC Integrated Circuit

ICC Iterative Conversion Controller

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

IR Infrared

ISA Instruction Set Architecture

ISR Interrupt Service Routine

K Cathode

K&R Kernighan & Ritchie

558

A Beginners Guide to Designing Embedded System Applications

kbps Kilobits per second

LCD Liquid Crystal Display

LDR Light-Dependent Resistor

LED Light-Emitting Diode

LF Line Feed

Li-Po Lithium Polymer

LoRa Long Range

LS Limit Switch

LSb Least Significant bit

LV Low Voltage

MAC Media Access Control

Mbps Megabits per second

MCU Microcontroller

MISO Manager Input Subordinate Output

MOSI Manager Output Subordinate Input

MSb Most Significant bit

NB-IoT Narrow Band Internet of Things

NC Normally Closed

NO Normally Opened

OOP Object-Oriented Programming

PC Personal Computer

PCM Pulse-Code Modulation

Glossary of Abbreviations

559

PIR Passive Infrared Sensor

PSB Parallel/Serial Bus

PWM Pulse-Width Modulation

RC Resistor-Capacitor

RGB Red, Green and Blue

RS Register Select

RST Reset

RTC Real-Time Clock

RTOS Real-Time Operating System

RW Read/Write

RxD Received Data

SAR Successive Approximation Register

SCL Serial Clock Line

SCLK Serial Clock

SD Secure Digital

SDA Serial Data Line

SID Serial Input Data

SMART Specific, Measurable, Achievable, Relevant, and Time-bound

SMD Surface-Mount Device

SONAR Sound Navigation Ranging

SPI Serial Peripheral Interface

SS Subordinate Select

560

A Beginners Guide to Designing Embedded System Applications

SSID Service Set IDentifier

SSL Secure Sockets Layer

ST STMicroelectronics

STAMAC Station MAC

TCP Transmission Control Protocol

Trimpot Trimmer Potentiometer

TxD Transmitted Data

UART Universal Asynchronous Receiver Transmitter

UBA Universidad de Buenos Aires, University of Buenos Aires

UDP User Datagram Protocol

UNLa Universidad Nacional de Lanús, National University of Lanus

UNQ Universidad Nacional de Quilmes, National University of Quilmes

URL Uniform Resource Locator

USB Universal Serial Bus

USD United States Dollar

UTC Universal Time Coordinated

UTN-FRBB Universidad Tecnológica Nacional – Facultad Regional Bahía Blanca, National
Technological University – Bahía Blanca Regional School

UTN-FRP Universidad Tecnológica Nacional – Facultad Regional Paraná, National
Technological University Paraná Regional School

VCC Voltage Common Collector

Index

561

 Index

Symbols 1N5819 diode xxxii, 301

A access point 456, 457, 458, 460, 464, 471, 480, 486

acknowledge bit 256, 257, 273, 291

analog signal xxvii, 86, 87, 94, 100, 109, 110, 115, 116, 354, 359, 379

analog to digital

 conversion 86, 88, 93

 converter 86, 93, 115

 input 88, 91–94, 100, 101, 105, 110, 111, 112,

115, 116, 222, 342, 347, 359, 513

SAR ADC 115, 116, 124

Application Programming Interface (API) 64, 84, 171, 392, 449

App Store 425

arithmetic type specifiers 104

array 44, 71, 72, 74–77, 80, 103, 104, 109, 111, 112, 114, 117,

118, 121, 136, 139, 140, 142, 145–147, 149–151, 155,

156, 163, 165, 170, 185, 195, 235, 236, 241, 243, 287,

354, 355, 360–362, 364, 380, 396, 405,

408, 411, 412, 467, 481, 525, 528, 550

assembly language 35

asynchronous communication 255

AT command 452, 458, 464, 469, 470, 471, 477, 480, 481, 551

B BC548C transistor 352

blocking delay 439, 444, 469, 520

Bluetooth Low Energy (BLE) xiv, xxi, xxvi, xxvii, 292, 385, 419–421, 423, 424,

426, 428, 429, 432, 444–448, 452, 492

Boolean variable 2, 15, 20, 21, 28, 29, 96, 135, 136, 158, 180–182,

247, 306, 320, 325, 396, 469, 514, 534

breadboard xxxi, 7, 8, 44, 126, 127, 171, 254, 301, 303, 455, 506, 510

buffer overflow 156, 170, 475, 477

bus xvii, xxvii, 34, 38, 222, 223, 230, 238, 240, 241, 247, 251–258,

260, 261, 264–266, 269, 272–274, 276, 277, 279, 290–293,

388, 389, 391, 399, 550

byte 61, 66, 80, 81, 228, 261, 271, 279, 287–289, 306, 348,

405–407, 411, 412, 462, 463, 465, 481, 482, 488

C C99 standard definitions 105

callback functions 311, 313, 320, 322, 361, 362, 441

562

Fundamentals of System-on-Chip Design

 Cascading Style Sheets (CSS) 457, 463

 C/C++ language 35, 38, 50, 353

 CGRAM 227

 classes 13, 59, 364, 432–434

 code modularization 48

 code refactoring 176

 cohesion 175, 176, 201

 compiler 13, 16, 35, 51, 56, 74, 217, 219, 353, 417

 Cortex

 Cortex-A 34

 Cortex-M xvi, xxi, 33–35, 37, 39, 40, 41, 44, 124

 Cortex-M0 34, 35

 Cortex-M3 34, 35, 124

 Cortex-M4 xvi, 33, 34, 35, 37, 39, 40, 124

 Cortex-M7 35, 41

 Cortex-R 34

D DC motor 296, 299, 300, 301, 336, 338

 DDRAM 229–231, 233, 238, 241, 242, 267–269, 271, 280, 281

 dereference operator 441

 development board xvi, 38, 88, 548

 documentation xxi, 40, 54, 57, 58, 84, 171, 449, 494, 496, 497, 547, 549

 doxygen xxi, 54, 57, 84

E embedded system xiii, xv, xvi, xix, xxiii, xxiv, xxvi, xxvii, xxviii, 2–4, 7, 12, 34, 38, 44,

 52, 104, 127, 156, 174, 175, 299, 342, 496–498, 502, 549

 encapsulation 216, 436

 ESP-01 module 453–465, 467, 468, 471, 473, 476, 477, 480, 482, 483, 491, 551

 ESP8266 453, 458, 469, 494

 extern variable 220

F falling edge interrupt 320, 323, 324

 File Allocation Table (FAT) 393, 394, 399, 400

 filesystem 388, 393, 398, 399, 400, 404, 407

 Finite-State Machine (FSM) 126, 127, 131, 139, 144, 156–160, 162–164, 182, 198,

 201, 210, 464, 467, 468, 471, 475–477, 480–483,

 486–488, 511, 512, 514–518, 535

 fire alarm xiii, 179, 196, 327, 328, 334, 342, 367, 388, 486

 FPD-270A solenoid valve 510

 FPU 35

Index

563

G gas sensor 5, 110, 124, 182, 198, 266

 GDRAM 269, 271, 283, 284, 288, 289

 GitHub 41, 84, 124, 171, 220, 293, 340, 385, 386, 449, 494, 553

 Google Play 425

 GPIO 37, 222–225, 233, 243, 245, 247, 248–251, 253, 258, 261–263,

 265, 275, 276, 278, 279, 281, 350, 351, 455, 524, 527, 539

H HAL xix, 222, 223, 276

 handlers 311, 315, 317, 324, 362

 hardware interrupts 296, 306

 HC-SR501 PIR-based motion sensor 299, 302–304, 340

 HD44780 224, 227, 230, 272, 275, 279, 280,

 281, 293, 524, 527, 539

 high state 14, 240, 253, 256, 349, 352, 367

 HL-69 moisture sensor 508, 513

 HM-10 module 420, 422–424, 426, 429, 432, 444–447, 491

 HTML document 456–458, 462, 463, 480, 483, 486

 HTML server 456, 457

 Hypertext Transfer Protocol (HTTP) 457

I I2C xvii, xxvii, 222, 223, 251–265, 269, 273,

 275–279, 290–293, 550

 IEEE 802.11 491

 inductive spikes 301

 industrial transmitter 82, 83

 infrared radiation 302

 integer types 104–105, 117

 Internet Protocol (IP) 452, 456–461, 471–477, 479–481, 492, 494

 interrupt service routine 296, 305, 306, 353, 439

 ISA 35

K Keil Studio Cloud xxv, 2, 10, 35, 38, 44, 45, 415, 416

 keypad 4, 5, 40, 126, 127, 131, 132, 138–140, 142, 144, 145,

 160–163, 171, 184–186, 188, 190, 198–200,

 210–212, 214, 220, 319, 329, 331, 370

L learn-by-doing xxi, xxv, 127, 496

 LED xiii, xxvi, 2, 6, 8, 10–12, 17, 20, 24, 28–30, 49, 69, 70, 71, 72, 75, 76, 86,

 94–96, 110, 119, 126, 133, 135, 136, 139, 145, 149, 154, 161, 162, 166,

 167, 176, 178, 188, 191, 194, 200, 209, 219, 296, 297, 301, 302, 304,

 305, 307, 314, 325, 336, 342, 345, 348, 349, 350, 352–355, 358–362,

 364, 366, 370–372, 375, 376, 379, 384, 385, 392, 424, 425, 430, 431,

 435, 438, 443, 446, 486, 489, 490, 502

564

Fundamentals of System-on-Chip Design

 light sensor xiv, 4, 339, 342–344, 384

 limit switch 297, 304, 305, 315–317

 LM35 temperature sensor 86–90, 92–94, 100–110, 112, 116, 117, 119, 120, 178, 225,

 254, 255, 303, 342–344, 348, 357–360, 364, 370,

 373–375, 377, 383, 507, 550

 logical operators

 AND 2, 24, 25, 96, 97, 99, 100, 102, 108, 113, 184, 197, 220,

 240, 329, 330

 NOT 24, 25

 OR 2, 17, 19, 20, 238, 261

 loops

 for 44, 71, 72, 74, 76, 77, 118, 120, 141, 142, 148, 151,

 167, 288, 362, 380, 396

 while 13, 241, 406, 407, 412

 low state 14, 112, 114, 240, 253, 256, 311, 320, 349, 352, 367

M matrix keypad 40, 126–133, 137–140, 142–147, 160–164, 167, 175, 178, 180,

 182, 183, 192, 198, 209, 210, 292, 319, 325, 327, 370, 420

 MB102 module 127, 132, 299, 507, 510

 mbed_app.json file 104, 394, 489

 Mbed OS xix, xxv, 2, 3, 14, 20, 39, 40, 57, 61, 84, 92, 95, 104, 150, 151, 153,

 155, 171, 380, 394, 396, 399, 417, 420, 436, 449

 Mbed Studio IDE 2

 mealy machine 159

 microcontroller xiii, xix, xxvii, 2–5, 10, 14, 23, 33, 34, 37–40, 44, 45, 61, 80, 82,

 84, 86, 92, 99, 103, 115, 123, 126, 132, 149, 153, 155,

 167, 177, 230, 251, 291, 299, 305, 336, 342, 353,

 354, 384, 426, 449, 505, 508, 510

 modularity principle 198

 MOSFET transistor 92

 most significant bit 240

 MQ-2 gas sensor 86–88, 91, 93–95, 109, 110, 114, 178

N negative feedback control system 342, 374–377, 383

 non-blocking delay xxv, 420, 438, 439, 441, 443, 464, 465, 468,

 469, 511, 514, 520

 NUCLEO Board - NUCLEO-F429ZI xiii, 2, 6, 10, 37, 38, 40, 41, 123, 226, 293, 346,

 349–351, 510, 553

 null character 63, 103, 104, 139, 140, 142, 143, 144, 145, 151, 155, 163,

 165, 235, 236, 241, 410, 412, 427, 470

Index

565

O Object-Oriented Programming (OOP) 420, 432, 436

 objects 14, 15, 48, 50, 52, 55, 61, 62, 65, 101, 111, 116, 117, 139,

 140, 145, 146, 156, 163, 180, 186, 187, 188, 217, 218,

 239, 247, 250, 260, 275–277, 302, 304, 308, 311,

 314, 316, 322, 326, 333, 351, 358–361, 364–369,

 374, 380, 382, 398–400, 406, 412, 414, 420, 427,

 432–436, 438, 440, 467, 469, 470, 511, 513,

 514, 521, 523, 528, 529, 531, 532, 541, 549

 optocoupler 336, 337

P parameter passing 439

 parity bit 80, 81

 PCF8574 251, 253–264, 275, 277–279, 293

 Photoresistor (LDR) 342–344, 347, 348, 373–379, 383, 385

 pin header 129

 pixel matrix 227

 pointers 126, 151, 155, 156, 164, 167, 191, 192, 195, 196, 241, 400, 406,

 407, 412, 420, 434, 438, 441, 467, 475

 polling cycle 296

 power supply 3, 4, 9, 12, 30, 88, 127, 132, 133, 171, 292, 299, 301, 336,

 337, 388, 455, 506, 508

 preprocessor directive 217

 processor xvi, xxii, xxvi, 33–35, 37, 38, 41, 44, 124, 353, 420, 439

 project management 501

 Proyecto CIAA xiii, xxiii, xxiv, 443

 pull-down resistor 14, 23, 55, 111

 pull-up resistor 14, 15, 92, 253, 255, 521, 522

 Pulse-Code Modulation (PCM) 354

 pulse-width modulation xxvii, 342, 343, 345, 347–351, 353–357, 360–362,

 364–367, 379, 380, 383–385, 552

R Real Time Clock (RTC) 126, 132, 133, 149, 153, 155, 160, 167, 181, 182, 193, 393, 396

 reference operator 151, 153, 156, 261, 311, 439

 relay module 296, 299, 301, 336–339, 506, 508, 510, 514–516, 530

 repository xxv, xxvi, xxvii, 10, 387, 388, 393, 413–415, 416, 417, 503, 546

 requirements 2, 497, 498, 501–506, 510, 511, 521, 522, 533, 545–548

 responsiveness 97

 RGB LED 342–345, 348–350, 356, 357, 360–364, 370, 373, 374, 383–385

 rising edge interrupts 320, 323, 324

566

Fundamentals of System-on-Chip Design

S SD card 388–404, 406–408

 sensor xiii, xxvii, 4, 5, 34, 39, 86, 87, 91, 92, 95, 97, 107, 109, 110,

 123, 124, 176, 178, 182–184, 186, 189–191, 197, 198,

 208, 211, 213, 214, 216, 220, 222, 223, 291, 296–299,

 302–304, 319–327, 331–333, 336, 338–340, 343, 359,

 367, 373–375, 381, 385, 388, 420, 423, 425, 429, 444,

 486, 487, 496, 497, 499, 500, 502, 503, 505, 506, 510,

 512, 513, 514, 526, 527, 528–530, 533, 535, 539,

 545, 548–551

 serial clock lines 255

 serial communication xiv, xxvi, 5, 44–46, 61, 65, 66, 69, 79–82, 86, 123, 164, 170,

 180, 183, 192, 222, 253, 269, 423, 447

 serial data line 255

 serial terminal xvii, 44–46, 60, 61, 63, 66, 68, 69, 76, 80, 82–84, 92–94, 100,

 103, 106, 109, 110, 114, 116, 123, 132, 133, 149, 151,

 155, 185, 222, 319, 320, 323, 325, 345, 348, 376, 378,

 388, 393, 395, 396, 401, 405, 407, 408, 410, 425, 430,

 456, 457, 458, 459, 461, 462, 464, 471, 477, 480, 544

 set point 348, 374, 375, 377, 383

 Simple Application Programming Interface (sAPI) xxiv, 443, 449

 smart city bike lights 384, 386

 smart door locks 3, 39, 41, 160, 161, 171

 smart home system app xxi, 423–426, 429, 432

 software maintainability 48

 SPI

 clock phase 273

 clock polarity 273

 MISO 272, 273, 275, 276, 291, 391, 398, 399, 401

 MOSI 272, 273, 275, 276, 291, 351, 391, 398, 399, 401

 SCLK 269, 272, 273, 276, 291

 SPI xxvii, 4, 222, 223, 265, 266, 269, 272–280, 285,

 290–292, 294, 388, 389, 391, 398, 399, 401

 SS 272, 273, 291, 396

 SSID 456, 458, 471–476

 ST7920 267, 268, 269, 270, 272, 274, 275, 279–281, 285, 293

 statements

 if 11, 15, 17, 30, 77, 98, 108, 121, 137, 247, 279,

 370, 372, 396, 402, 412, 439

 nested ifs 2, 28, 30, 32, 66

 switch 44, 66, 68, 69, 70–72, 77, 78, 136, 247, 250, 279, 427, 539

 STM32CubeIDE 2

Index

567

 STM32F429ZIT6U microcontroller 5, 33, 37, 38

 stop bit 46, 64, 65, 80, 256, 257, 273, 468

 ST Zio connectors xiv, 6, 9, 37, 38, 44, 346

 superloop 13, 519

 synchronous communication 255

T TCP server 456, 457, 459, 460–463, 491

 temperature sensor 4, 5, 87, 106, 123, 182, 220, 233, 334, 486, 550

 time management xvi, 86, 95, 99, 289, 342, 348, 353

 timers xvi, xxvii, 37, 306, 342, 343, 345, 348–350, 353, 354,

 361, 441, 512–517, 533, 535, 537, 538, 539

 tm structure 153

 TO-220 package 89

U UART xvi, xvii, 5, 44, 61, 63, 79, 82, 84, 86, 181, 191, 222, 255, 290, 291,

 306, 350, 420, 423, 447, 455, 461, 465, 468, 544

 USB xiv, xxvii, 4, 9, 37, 44, 45, 63, 79, 82, 88, 132, 449, 506, 507, 508, 544

 USB connection xiv, 44, 506

 use cases 497, 501–504, 511, 545, 546, 547, 548

V validation 496, 497, 546, 547

 verification 81, 92, 496, 497, 546

 vineyard frost prevention 123, 124

 Von Neumann 34

W Wi-Fi xiv, xvii, xix, xxvi, xxvii, 4, 82, 84, 448, 451–453, 456, 458,

 460, 464, 466, 471, 472, 474, 479, 480, 491, 492, 494

 wireless bolt 448

Index

verification reuse, 477
Verilog Change Dump (VCD), 232
vertical gate all around (VGAA), 417
very large-scale integration (VLSI), 405, 412
very long instruction word (VLIW), 35
victim store, 41
virtual channel (VC), 111, 118
virtual clock, 497
virtual machinemonitor (VMM), 209
virtual platform, 16, 220
virtual queueing, 244
virtual-circuit routing, 116
VLSI circuit, 410
voltage transfer characteristic, 88
voltage-controlled oscillator (VCO), 212
vonNeumann bottleneck, 28

W
wafer, 412
wafer yield, 487
WaR hazard, 289
warm-up traffic, 83
watchdog timer (WDT), 70
watchpoint register, 201
water-filling algorithms, 159
WaWhazard, 289
way cache, 41
weakmemory orderingmodel, 96
wear levelling, 62
window lot discipline, 477
wiring or metal limited, 445
wormhole routing, 117
worst negative slack (WNS), 214
write allocate, 42
write buffer, 40
write coalescing, 40
write posting, 84
write-through, 40
writeback, 40
write posting, 109

X
X-propagation checking, 389, 392
Xon/Xoff flow control, 65, 123

Y
yield, 487
yield-based analysis, 506

Z
zapping, 483
Zeno hybrid systemmodel, 437
zero-delaymodel, 433
zero-insertion-force socket, 515

564

The Arm Education Media Story

We are Arm
Education Media:
Unleashing Potential
Discover more at www.arm.com/education

Given the vast reach of Arm’s computer chip
and software designs, our aim at Arm
Education Media is to play a leading role in
addressing the electronics and computing skills
gap; i.e., the disconnect between what
engineering students are taught and the skills
they need in today’s job market.

Launched in October 2016, Arm Education
Media is the culmination of several years of
collaboration with thousands of educational
institutions, industrial partners, students,
recruiters and managers worldwide. We
complement other initiatives and programs
at Arm, including the Arm University Program,
which provides university academics worldwide
with free teaching materials and technologies.

Via our subscription-based digital content hub,
we offer interactive online courses and
textbooks that enable academics and students
to keep up with the latest Arm technologies.

We strive to serve academia and the developer
community at large with low-cost, engaging
educational materials, tools and platforms.

Did you know that
Arm processor design
is at the heart of
technology that touches
70% of the world’s
population - from sensors
to smartphones to super
computers.

ARM_Modern_FINAL_20210608.indb 565 6/9/21 12:04 PM

Unleashing potential with #armeducation

Professional Certificate in Embedded Systems Essentials with Arm (on the edX platform)

Efficient Embedded Systems Design and Programming

Rapid Embedded Systems Design and Programming

Internet of Things

Graphics and Mobile Gaming

Real-Time Operating Systems Design and Programming

Introduction to System-on-Chip Design

Advanced System-on-Chip Design

Embedded Linux

Mechatronics and Robotics

Arm Education Media Online Courses
Our online courses have been developed to help students learn
about state of the art technologies from the Arm partner ecosystem.
Each online course contains 10-14 modules, and each module
comprises lecture slides with notes, interactive quizzes,
hands-on labs and lab solutions.

The courses will give your students an understanding of Arm
architecture and the principles of software and hardware system
design on Arm-based platforms, skills essential for today’s
computer engineering workplace.

For more information, visit www.arm.com/education

Av ailable Now:

ARM_Modern_FINAL_20210608.indb 566 6/9/21 12:04 PM

Index

verification reuse, 477
Verilog Change Dump (VCD), 232
vertical gate all around (VGAA), 417
very large-scale integration (VLSI), 405, 412
very long instruction word (VLIW), 35
victim store, 41
virtual channel (VC), 111, 118
virtual clock, 497
virtual machinemonitor (VMM), 209
virtual platform, 16, 220
virtual queueing, 244
virtual-circuit routing, 116
VLSI circuit, 410
voltage transfer characteristic, 88
voltage-controlled oscillator (VCO), 212
vonNeumann bottleneck, 28

W
wafer, 412
wafer yield, 487
WaR hazard, 289
warm-up traffic, 83
watchdog timer (WDT), 70
watchpoint register, 201
water-filling algorithms, 159
WaWhazard, 289
way cache, 41
weakmemory orderingmodel, 96
wear levelling, 62
window lot discipline, 477
wiring or metal limited, 445
wormhole routing, 117
worst negative slack (WNS), 214
write allocate, 42
write buffer, 40
write coalescing, 40
write posting, 84
write-through, 40
writeback, 40
write posting, 109

X
X-propagation checking, 389, 392
Xon/Xoff flow control, 65, 123

Y
yield, 487
yield-based analysis, 506

Z
zapping, 483
Zeno hybrid systemmodel, 437
zero-delaymodel, 433
zero-insertion-force socket, 515

564

The Arm Education Media Story

We are Arm
Education Media:
Unleashing Potential
Discover more at www.arm.com/education

Given the vast reach of Arm’s computer chip
and software designs, our aim at Arm
Education Media is to play a leading role in
addressing the electronics and computing skills
gap; i.e., the disconnect between what
engineering students are taught and the skills
they need in today’s job market.

Launched in October 2016, Arm Education
Media is the culmination of several years of
collaboration with thousands of educational
institutions, industrial partners, students,
recruiters and managers worldwide. We
complement other initiatives and programs
at Arm, including the Arm University Program,
which provides university academics worldwide
with free teaching materials and technologies.

Via our subscription-based digital content hub,
we offer interactive online courses and
textbooks that enable academics and students
to keep up with the latest Arm technologies.

We strive to serve academia and the developer
community at large with low-cost, engaging
educational materials, tools and platforms.

Did you know that
Arm processor design
is at the heart of
technology that touches
70% of the world’s
population - from sensors
to smartphones to super
computers.

ARM_Modern_FINAL_20210608.indb 565 6/9/21 12:04 PM

Unleashing potential with #armeducation

Professional Certificate in Embedded Systems Essentials with Arm (on the edX platform)

Efficient Embedded Systems Design and Programming

Rapid Embedded Systems Design and Programming

Internet of Things

Graphics and Mobile Gaming

Real-Time Operating Systems Design and Programming

Introduction to System-on-Chip Design

Advanced System-on-Chip Design

Embedded Linux

Mechatronics and Robotics

Arm Education Media Online Courses
Our online courses have been developed to help students learn
about state of the art technologies from the Arm partner ecosystem.
Each online course contains 10-14 modules, and each module
comprises lecture slides with notes, interactive quizzes,
hands-on labs and lab solutions.

The courses will give your students an understanding of Arm
architecture and the principles of software and hardware system
design on Arm-based platforms, skills essential for today’s
computer engineering workplace.

For more information, visit www.arm.com/education

Av ailable Now:

ARM_Modern_FINAL_20210608.indb 566 6/9/21 12:04 PM

Arm Education Media Books

The Arm Education books program aims to take learners from foundational knowledge and
skills covered by its textbooks to expert-level mastery of Arm-based technologies through
its reference books. Textbooks are suitable for classroom adoption in Electrical Engineering,
Computer Engineering and related areas. Reference books are suitable for graduate students,
researchers, aspiring and practising engineers.

For more information, visit www.arm.com/education

Available now, in print and ePub formats:

Embedded Systems Fundamentals with Arm
Cortex-M based Microcontrollers:
A Practical Approach, FRDM-KL25Z EDITION
by Dr Alexander G. Dean
ISBN 978-1-911531-03-6

Embedded Systems Fundamentals with Arm
Cortex-M based Microcontrollers:
A Practical Approach, NUCLEO-F09IRC EDITION
by Dr Alexander G. Dean
ISBN 978-1-911531-26-5

Digital Signal Processing using Arm Cortex-M based
Microcontrollers: Theory and Practice
by Cem Ünsalan, M. Erkin Yücel and H. Deniz Gürhan
ISBN 978-1911531-16-6

Operating Systems Foundations with Linux
on the Raspberry Pi
by Wim Vanderbauwhede and Jeremy Singer
ISBN 978-1-911531-20-3

Fundamentals of System-on-Chip Design on Arm Cortex-M
Microcontrollers
by René Beuchat, Florian Depraz, Sahand Kashani and
Andrea Guerrieri
ISBN 978-1-911531-33-3

Modern System-on-Chip Design on Arm
by David J. Greaves
ISBN 978-1-911531-36-4

System-on-Chip with Arm Cortex-M Processors
by Joseph Yiu, Distinguished Engineer at Arm
ISBN 978-1-911531-19-7

Arm Helium Technology
M-Profile Vector Extension (MVE) for Arm
Cortex-M Processors
by Jon Marsh
ISBN: 978-1-911531-23-4

ARM_Modern_FINAL_20210608.indb 567 6/9/21 12:05 PM

A Beginner’s Guide to Designing
Embedded System Applications on
Arm Cortex-M Microcontrollers
This textbook is the perfect introduction for the beginner looking to enter the exciting world of
embedded devices and IoT. Over the course of twelve chapters, readers will gain the practical skills
needed to build a fully functional smart home system featuring a fire alarm, motion detector and
security sensor. No prior knowledge of programming or electronics is assumed as the authors have
adopted a “learn-by-doing” approach. Basic ideas are explained and then demonstrated by means of
examples that progressively introduce the fundamental concepts, techniques, and tools of embedded
system design. All exercises are based on the ST Nucleo-F429ZI board, so readers can gain experience
in implementing these key concepts on an industry-relevant Arm-based microcontroller.

For educators looking to adopt this textbook, the authors have conveniently organized the book to
align with a typical twelve-week semester, the idea being that one chapter can be addressed each week.
This textbook also takes a blended learning approach with a set of pre-lesson activities for the students
which are designed to develop the reader’s curiosity and enthusiasm for embedded system design.

Contents

1 Introduction to Embedded Systems

2 Fundamentals of Serial Communication

3 Time Management and Analog Signals

4 Finite-State Machines and the Real-Time Clock

5 Modularization Applied to Embedded Systems
Programming

6 LCD Displays and Communication between
Integrated Circuits

7 DC Motor Driving using Relays and Interrupts

8 Advanced Time Management, Pulse-Width
Modulation, Negative Feedback Control, and
Audio Message Playback

9 File Storage on SD Cards and Usage of Software
Repositories

10 Bluetooth Low Energy Communication with a
Smartphone

11 Embedded Web Server over a Wi-Fi Connection

12 Guide to Designing and Implementing an
Embedded System Project

Arm Education Media is a publishing operation within Arm Ltd, providing a range of educational materials
for aspiring and practicing engineers. For more information, visit: arm.com/resources/education

Ariel Lutenberg is currently a Professor at the School of
Engineering, and Director of the master’s degrees on IoT
and Embedded Artificial Intelligence at the University of
Buenos Aires. He is also Researcher at the National Council
of Scientific and Technical Research. He established and led
the Proyecto CIAA (Argentine Open Industrial Computer),
where Argentinian universities, companies and institutions
worked together on developing embedded computers,
covering both hardware and software.

Pablo Gomez is a full-time Researcher with the School
of Engineering at the University of Buenos Aires, having
received his doctorate in 2015. As well as directing the
master’s programs on Embedded Systems, he is Editor and
Contributor of the ‘Acoustics and Audio’ section of Elektron
Journal, published by the School of Engineering at the
University of Buenos Aires.

Eric Pernia is currently a Research Professor with the Science
and Technology department at the National University
of Quilmes and a Field Application Engineer at Quectel
Wireless Solutions. He has broad experience in hardware,
software and firmware development, and has contributed to
many open-source projects on GitHub.

	Contents
	Preface
	Acknowledgments
	Authors’ Biographies
	Authors’ Contributions
	Book Organization
	How This Book Can Be Used for Teaching in Engineering Schools
	Bill of Materials
	List of Figures
	List of Tables

	Chapter 1: Introduction to Embedded Systems
	1.1 Roadmap
	1.1.1 What You Will Learn
	1.1.2 Contents of This Chapter

	1.2 Fundamentals of Embedded Systems
	1.2.1 Main Components of Embedded Systems
	1.2.2 First Implementation of the Smart Home System
	1.2.3 Getting Ready to Program the First Implementation of the Smart Home System
	Example 1.1: Activate the Alarm When Gas is Detected
	Example 1.2: Activate the Alarm on Gas Presence or Over Temperature
	Example 1.3: Keep the Alarm Active After Gas or Over Temperature Were Detected
	Example 1.4: Secure the Alarm Deactivation by Means of a Code
	Example 1.5: Block the System when Five Incorrect Codes are Entered

	1.3 Under the Hood
	1.3.1 Brief Introduction to the Cortex-M Processor Family and the NUCLEO Board

	1.4 Case Study
	1.4.1 Smart Door Locks

	References

	Chapter 2: Fundamentals of Serial Communication
	2.1 Roadmap
	2.1.1 What You Will Learn
	2.1.2 Review of Previous Chapter
	2.1.3 Contents of This Chapter

	2.2 Serial Communication between a PC and the NUCLEO Board
	2.2.1 Connect the Smart Home System to a PC
	2.2.2 Modularization of a Program into Functions
	Example 2.1: Monitor the Alarm State with a PC
	Example 2.2: Monitor Over Temperature and Gas Detection with a PC
	Example 2.3: Deactivate the Alarm Using the PC
	Example 2.4: Improve the Code Maintainability using Arrays
	Example 2.5: Change the Alarm Turn Off Code Using the PC

	2.3 Under the Hood
	2.3.1 Basic Principles of Serial Communication

	2.4 Case Study
	2.4.1 Industrial Transmitter

	References

	Chapter 3: Time Management and Analog Signals
	3.1 Roadmap
	3.1.1 What You Will Learn
	3.1.2 Review of Previous Chapters
	3.1.3 Contents of This Chapter

	3.2 Analog Signals Measurement with the NUCLEO Board
	3.2.1 Connect Sensors, a Potentiometer, and a Buzzer to the Smart Home System
	3.2.2 Test the Operation of the Sensors, the Potentiometer, and the Buzzer
	Example 3.1: Indicate which Sensor has Triggered the Alarm
	Example 3.2: Increase the Responsiveness of the Program
	Example 3.3: Activate the Over Temperature Alarm by Means of the Potentiometer
	Example 3.4: Usage of Functions to Compute the Temperature Value
	Example 3.5: Measure Temperature and Detect Gas using the Sensors

	3.3 Under the Hood
	3.3.1 Basic Principles of Analog to Digital Conversion

	3.4 Case Study
	3.4.1 Vineyard Frost Prevention

	References

	Chapter 4: Finite-State Machines and the Real-Time Clock
	4.1 Roadmap
	4.1.1 What You Will Learn
	4.1.2 Review of Previous Chapters
	4.1.3 Contents of This Chapter

	4.2 Matrix Keypad Reading with the NUCLEO Board
	4.2.1 Connect a Matrix Keypad and a Power Supply to the Smart Home System
	4.2.2 Test the Operation of the Matrix Keypad and the RTC
	Example 4.1: Turn Off the Incorrect Code LED by Double-Pressing the Enter Button
	Example 4.2: Introduce the Usage of the Matrix Keypad
	Example 4.3: Implementation of Numeric Codes using the Matrix Keypad
	Example 4.4: Report Date and Time of Alarms to the PC Based on the RTC

	4.3 Under the Hood
	4.3.1 Graphical Representation of a Finite-State Machine

	4.4 Case Study
	4.4.1 Smart Door Locks

	References

	Chapter 5: Modularization Applied to Embedded Systems Programming
	5.1 Roadmap
	5.1.1 What You Will Learn
	5.1.2 Review of Previous Chapters
	5.1.3 Contents of This Chapter

	5.2 Basic Principles of Modularization
	5.2.1 Modularity Principle

	5.3 Applying Modularization to the Program Code of the Smart Home System
	5.3.1 Refactoring the Program Code of the Smart Home System
	5.3.2 Detailed Implementation of the Refactored Code of the Smart Home System

	5.4 Organizing the Modules of the Smart Home System into Different Files
	5.4.1 Principles Followed to Organize the Modules into Files: Variables and Functions
	5.4.2 Detailed Implementation of the Code of the Smart Home System in Different Files

	References

	Chapter 6: LCD Displays and Communication between Integrated Circuits
	6.1 Roadmap
	6.1.1 What You Will Learn
	6.1.2 Review of Previous Chapters
	6.1.3 Contents of This Chapter

	6.2 LCD Display Connection using GPIOs, I2C, and SPI Buses
	6.2.1 Connect a Character LCD Display to the Smart Home System using GPIOs
	6.2.2 Basic Principles of Character LCD Displays
	Example 6.1: Indicate Present Temperature, Gas Detection, and Alarm on the Display
	Example 6.2: Use of a 4-Bit Mode to Send Commands and Data to the Display
	6.2.3 Connect a Character LCD Display to the Smart Home System using the I2C Bus
	6.2.4 Fundamentals of the Inter-Integrated Circuit (I2C) Communication Protocol
	Example 6.3: Control the Character LCD Display by means of the I2C Bus
	6.2.5 Connect a Graphical LCD Display to the Smart Home System using the SPI Bus
	6.2.6 Basics Principles of Graphical LCD Displays
	6.2.7 Fundamentals of the Serial Peripheral Interface (SPI) Communication Protocol
	Example 6.4: Control the Graphical LCD Display by means of the SPI Bus
	Example 6.5: Use of the Graphic Capabilities of the Graphical LCD Display

	6.3 Under the Hood
	6.3.1 Comparison between UART, SPI, and I2C

	6.4 Case Study
	6.4.1 LCD Usage in Mbed-Based Projects

	References

	DC Motor Driving using Relays and Interrupts
	7.1 Roadmap
	7.1.1 What You Will Learn
	7.1.2 Review of Previous Chapters
	7.1.3 Contents of This Chapter

	7.2 Motion Detection and DC Motor Control using Relays and Interrupts
	7.2.1 Connect a DC Motor and a PIR Sensor to the Smart Home System
	7.2.2 Fundamentals of Interrupt Service Routines
	Example 7.1: Control a DC Motor using Interrupts
	Example 7.2: Use a DC Motor to Open and Close a Gate
	Example 7.3: Use of a PIR Sensor to Detect Intruders
	Example 7.4: Use of the PIR Sensor as an Intruder Detection Alarm

	7.3 Under the Hood
	7.3.1 Basic Principles of a Relay Module

	7.4 Case Study
	7.4.1 Smart Street Lighting

	References

	Chapter 8: Advanced Time Management, Pulse-Width Modulation
	8.1 Roadmap
	8.1.1 What You Will Learn
	8.1.2 Review of Previous Chapters
	8.1.3 Contents of This Chapter

	8.2 Analog Signal Generation with the NUCLEO Board
	8.2.1 Connect an RGB LED, a Light Sensor, and an Audio Plug to the Smart Home System
	8.2.2 Fundamentals of Timers, Pulse-Width Modulation, and Audio Message Playback
	Example 8.1: Implementation of PWM to Control the Brightness of an RGB LED
	Example 8.2: Implementation of PWM using the PwmOut Class
	Example 8.3: Control the Siren and Strobe Light using PWM
	Example 8.4: Adjustment of the Color of the Decorative RGB LED
	Example 8.5: Use of the Light Sensor Reading to Control the RGB LED
	Example 8.6: Playback of an Audio Message using the PWM Technique

	8.3 Under the Hood
	8.3.1 Fundamentals of Control Theory

	8.4 Case Study
	8.4.1 Smart City Bike Lights

	References

	Chapter 9: File Storage on SD Cards and Usage of Software Repositories
	9.1 Roadmap
	9.1.1 What You Will Learn
	9.1.2 Review of Previous Chapters
	9.1.3 Contents of This Chapter

	9.2 File Storage with the NUCLEO Board
	9.2.1 Connect an SD Card to the Smart Home System
	9.2.2 A Filesystem to Control how Data is Stored and Retrieved
	Example 9.1: Create a File with the Event Log on the SD Card
	Example 9.2: Save a File on the SD Card with only New Events that were not Previously Saved
	Example 9.3: Get the List of Event Log Files Stored on the SD Card
	Example 9.4: Choose and Display One of the Event Log Files Stored on the SD Card

	9.3 Under the Hood
	9.3.1 Fundamentals of Software Repositories

	9.4 Case Study
	9.4.1 Repository Usage in Mbed-Based Projects

	References

	Chapter 10: Bluetooth Low Energy Communication with a Smartphone
	10.1 Roadmap
	10.1.1 What You Will Learn
	10.1.2 Review of Previous Chapters
	10.1.3 Contents of This Chapter

	10.2 Bluetooth Low Energy Communication between a Smartphone and the NUCLEO Board
	10.2.1 Connect the Smart Home System to a Smartphone
	10.2.2 Messages Exchanged with the Smartphone Application
	Example 10.1: Control the Gate Opening and Closing from a Smartphone
	Example 10.2: Report the Smart Home System State to a Smartphone
	Example 10.3: Implement the Smart Home System State Report Using Objects
	Example 10.4: Implement Non-Blocking Delays using Pointers and Interrupts

	10.3 Under the Hood
	10.3.1 Basic Principles of Bluetooth Low Energy Communication

	10.4 Case Study
	10.4.1 Wireless Bolt

	References

	Chapter 11: Embedded Web Server over a Wi-Fi Connection
	11.1 Roadmap
	11.1.1 What You Will Learn
	11.1.2 Review of Previous Chapters
	11.1.3 Contents of This Chapter

	11.2 Serve a Web Page with the NUCLEO Board
	11.2.1 Connect a Wi-Fi Module to the Smart Home System
	11.2.2 Fundamentals of the Web Server to be Implemented
	Example 11.1: Implement the AT Command to Detect the Wi-Fi Module
	Example 11.2: Configure the Credentials to Connect to the Wi-Fi Access Point
	Example 11.3: Serve a Simple Web Page using the Wi-Fi Connection
	Example 11.4: Serve a Web Page that Shows the Smart Home System Information

	11.3 Under the Hood
	11.3.1 Basic Principles of Wi-Fi and TCP Connections

	11.4 Case Study
	11.4.1 Indoor Environment Monitoring

	References

	Chapter 12: Guide to Designing and Implementing an Embedded System Project
	12.1 Roadmap
	12.1.1 What You Will Learn
	12.1.2 Review of Previous Chapters
	12.1.3 Contents of This Chapter

	12.2 Fundamentals of Embedded System Design and Implementation
	12.2.1 Proposed Steps to Design and Implement an Embedded System Project
	Example 12.1: Select the Project that will be Implemented
	Example 12.2: Elicit Project Requirements and Use Cases
	Example 12.3: Design the Hardware
	Example 12.4: Design the Software
	Example 12.5: Implement the User Interface
	Example 12.6: Implement the Reading of the Sensors
	Example 12.7: Implement the Driving of the Actuators
	Example 12.8: Implement the Behavior of the System
	Example 12.9: Check the System Behavior
	Example 12.10: Develop the Documentation of the System

	12.3 Final Words
	12.3.1 The Projects to Come

	References

	Glossary of Abbreviations
	Index

