

STM32 Arm Programming for
Embedded Systems
Using C Language with STM32 Nucleo

Muhammad Ali Mazidi
Shujen Chen
Eshragh Ghaemi

Copyright © 2014-2018 Mazidi All rights reserved

"Regard man as a mine rich in gems of inestimable value.
Education can, alone, cause it to reveal its treasures, and enable
mankind to benefit therefrom." Baha'u'llah
Dedication

To the faculty, staff, and students of BIHE university for their dedication and
steadfastness.

Preface

Since the early 2000s, hundreds of companies have licensed the Arm CPU
and the number of licensees is growing very rapidly. While the licensee must
follow the Arm CPU architecture and instruction set, they are free to
implement peripherals such as I/O ports, ADCs, Timers, DACs, SPIs, I2Cs
and UARTs as they please. In other words, while one can write an Assembly
language program for the Arm chip, and it will run on any Arm chip, a
program written for the I/O ports of an Arm chip for company A will not run

on an Arm chip from company B. This is due to the fact that special function
registers and their physical address locations to access the I/O ports are not
standardized and every licensee implements it differently. We have dedicated
the first volume in this series to the Arm Assembly language programming
and architecture since the Assembly language is standard and runs on any
Arm chip regardless of who makes them. Our Arm Assembly book is called
"Arm Assembly Language Programming and Architecture" and is available
from Amazon. See the following link:

http://www.microdigitaled.com/ARM/ARM_ASM_books.htm

For the peripheral programming of the Arm, we had no choice but to
dedicate a separate volume to each vendor. This volume covers the
peripheral programming of the STM32 Arm chip. Throughout the book, we
use C language to access the special function registers and program the
STM32F4xx peripherals. We have provided an Assembly language programs
for I/O ports in Chapter 2 for those who want to experiment with Assembly
language in accessing the I/O ports and their special function registers. The
Assembly language programs also help to see the contrast between the C and
Assembly versions of the same program in Arm.

Two approaches in programming the Arm chips When you program an
Arm chip, you have two choices:

1. Use the functions written by the vendor to access the peripherals. The vast
majority of the vendors/companies making the Arm chip provide a
proprietary device library of functions allowing access to their peripherals.
These device library functions are copyrighted and cannot be used with
another vendor's Arm chip. For students and developers, the problem with
this approach is you have no control over the functions and it is very hard to
customize them for your project.

2. The second approach is to access the peripheral's special function registers
directly using C language and create your own custom library since you have
total control over each function. Much of these functions can be modified
and used with another vendor if you decide to change the Arm chip vendor.
In this book, we have taken the second approach since our primary goal is to

teach how to program the peripherals of an Arm chip. We know this
approach is difficult and tedious, but the rewards are great.

Compilers and IDE Tools

For programming the Arm chip, you can use any of the widely available
compilers from Keil (www.keil.com), IAR (www.IAR.COM) or any other
one. For this book, we have used the Keil Arm compiler IDE to write and
test the programs. See our web site for the tutorials.

STM (STMicroelectronics) Arm Trainer

The STM has many inexpensive trainers for the Arm STM32F4xx series.
Among them is STM32F446 Nucleo board. Although we used the
STM32F446 board to test the programs, the programs can run on other
STM32F4xx chips with small or no modifications.

Chapters Overview
In Chapter 1, we examine the C language data types for 32-bit systems. We
also explore the new
ISO C99 data types since they are widely used in IDE compilers for the
embedded systems.

Chapter 2 examines the simple I/O port programming and shows sample
programs on how to access the special function registers associated with the
general purpose I/O (GPIO) ports.
Chapter 3 shows the interfacing of the Arm chip with the real-world devices:
LCD and keypad. It provides sample programs for the devices.
In Chapter 4, the interfacing and programming of serial UART ports are
examined.
Chapter 5 is dedicated to the timers in Arm. It also shows how to use timers
as an event counter.
The Interrupt programming of the Arm is discussed in Chapter 6.
Chapter 7 examines the ADC and DAC concepts and shows how to program
them with the Arm chip. It also examines the sensor interfacing and signal
conditioning.
Chapter 8 covers the SPI protocol and interfacing with sample programs in
Arm.

The I2C bus protocol and interfacing of an I2C based RTC is discussed in
Chapter 9.
Chapter 10 explores the relay and stepper motor interfacing with Arm.
The DC motor and PWM are examined in Chapter 11.
The Graphics LCD concepts and programming are discussed in Chapter 12.
Chapter 13 examines the concept of DMA and shows how to program it.

 Appendix A provides an introduction to IC chip technology and IC
interfacing along with the system design issues and failure analysis using
MTBF. See our website for this appendix.

 Appendix B provides a single source for STM32F446 microcontroller
alternate pin functions.

 The CPU clock source is examined in Appendix C.

Online support for this book
All the programs in this book and other support materials such as PPs and
tutorials are available
on our website:

http://www.MicroDigitalEd.com/Arm/STM_Arm_books.html

Many of the interfacing programs such as LCD can be tested using the
STM32 Arm Nucleo or Discovery boards connected to an LCD on a
breadboard. However, many courses use a system approach to the embedded
course by using an interface trainer. For this reason, we have modified the
programs for the EduPad interface trainer using STM32F446 Nucleo board.
See the following for the sample programs:

http://www.MicroDigitalEd.com/Arm/STM_Arm_books.html
Where to buy STM32 Arm Evaluation kit?
See our web site for STM32 evaluation kits and datasheet.
Contact us
Please contact the authors if use this book for a university course.
mdebooks@yahoo.com
Arm Trademarks

“From 1 August 2017, Arm has a new look and feel. The business has a new
corporate logo and it is now using the Arm word in sentence case instead of

the ARM word in uppercase in text. We ask all of Arm’s customers, partners,
licensees and any other third parties to use the Arm word in sentence case in
text in all relevant materials. The only exception to this rule will be when
using the ARM word in any circumstances, where all of the surrounding
words also appear in uppercase, e.g. headings.”

https://www.arm.com/company/policies/trademarks

Table of Contents

Preface 4 Two approaches in programming the Arm chips 4 Compilers
and IDE Tools 4 STM (STMicroelectronics) Arm Trainer 5 Chapters
Overview 5 Online support for this book 5 Where to buy STM32 Arm
Evaluation kit? 6 Contact us 6

Chapter 1: C for Embedded Systems 10 Section 1.1: C Data types for
Embedded Systems 10 Section 1.2: Bit-wise Operations in C 16 Answer
to Review Questions 21

Chapter 2: STM Arm I/O Programming 22 Section 2.1: STM32
Microcontroller 22 Section 2.2: GPIO (General Purpose I/O)
Programming and Interfacing 30 Section 2.3: Seven-segment LED
interfacing and programming 49 Section 2.4: I/O Port Programming
with Assembly Language 53 Answer to Review Questions 55

Chapter 3: LCD and Keyboard Interfacing 56 Section 3.1: Interfacing
to an LCD 56 Section 3.2: Interfacing the Keyboard to the CPU 71
Answers to Review Questions 79

Chapter 4: UART Serial Port Programming 80 Section 4.1: Basics of
Serial Communication 80 Section 4.2: Programming the UART Ports 88
Section 4.3: Using C Library Console I/O 116 Answer to Review
Questions 119

Chapter 5: STM Arm Timer Programming 120 Section 5.1:
Introduction to counters and timers 120 Section 5.2: System Tick Timer
122 Section 5.3: Timer and Delay Generation in STM32F4xx 129
Section 5.4: Compare Registers and Waveform Output 140 Section 5.5:

Using Timer/Counter for Input Capture 148 Section 5.6: Pulse Counter
programming 154 Answer to Review Questions 157

Chapter 6 : Interrupt and Exception Programming 158 Section 6.1:
Interrupts and Exceptions in Arm Cortex-M 158 Section 6.2: Arm
Cortex-M Processor Modes 167 Section 6.3: STM32 Arm I/O Port
Interrupt Programming 171 Section 6.4: USART Serial Port Interrupt
Programming 184 Section 6.5: SysTick Programming and Interrupt 187
Section 6.6: Timer Interrupt Programming 189 Section 6.7: Interrupt
Priority Programming in STM32 Arm 192 Answer to Review Questions
195

Chapter 7: ADC, DAC, and Sensor Interfacing 197 Section 7.1: ADC
Characteristics 197 Section 7.2: ADC Programming with STM32 Arm
203 Section 7.3: Sensor Interfacing and Signal Conditioning 218 Section
7.4: Interfacing to a DAC 222 Answers to Review Questions 232

Chapter 8 : SPI Protocol and DAC Interfacing 234 Section 8.1: SPI Bus
Protocol 234 Section 8.2: SPI programming in STM32 Arm 238 Section
8.3: LTC1661 SPI DAC 249 Answers to Review Questions 256

Chapter 9 : I2C Protocol and RTC Interfacing 257 Section 9.1: I2C Bus
Protocol 257 Section 9.2: I2C Programming in STM32F4xx Arm 265
Section 9.3: DS1337 RTC Interfacing and Programming 276 Answers to
Review Questions 290

Chapter 10: Relay, Optoisolator, and Stepper Motor Interfacing 291
Section 10.1: Relays and Optoisolators 291 Section 10.2: Stepper Motor
Interfacing 297 Answers to Review Questions 305

Chapter 11: PWM and DC Motor Control 306 Section 11.1: DC Motor
Interfacing and PWM 306 Section 11.2: Programming PWM in STM
Arm 314 Answers to Review Questions 324

Chapter 12: Programming Graphic LCD 325 Section 12.1: Graphic
LCDs 325 Section 12.2: Displaying Texts on Graphic LCDs 331 Answers
to Review Questions 336

Chapter 13: DMA Programming 337
Section 13.1: Concept of DMA 337
Section 13.2: DMA Programming in STM32 340
Answers to Review Questions 357
Appendix A: IC Interfacing, System Design, and Failure Analysis 359
Appendix B: Pin Alternate Function for STM Arm STM32F446RE
LQFP64 Package 360 Appendix C: STM32F4xx Clock and SYSCLK
366

Chapter 1: C for Embedded Systems

In reading this book we assume you already have some understanding of
how to program in C language. In this chapter, we will examine some
important concepts widely used in embedded system design that you may
not be familiar with due to the fact that many generic C programming books
do not cover them. In section 1.1, we examine the C data types for 32-bit
systems. The bit-wise operators are covered in section 1.2.

Section 1.1: C Data types for Embedded Systems

In general C programming textbooks, we see char, short, int, long, float, and
double data types. We need to examine the size of C data types in the light of
32-bit processors such as Arm. The C standards do not specify the size of
data types. The compiler designers are free to decide the size for each data
type. The float and double data types are standardized by the IEEE754 and
covered in Volume 1 of this book series and are often followed by all the
compilers. The sizes of char and short are often set at 1 byte and 2 bytes. The
size of int is often depending on the data size of the CPU but rarely go below
16 or above 32. The sizes of long and long long are implemented the same
way everywhere.

If you think this is confusing, there are three methods that may help you to
find out the exact sizes of the data types.
1. Read the manuals of the compiler. Because the data sizes are not
standardized, the compile user’s manuals usually specify them.

2. Use pseudo function sizeof(). C compilers supports a pseudo function
sizeof(), which returns the size of the parameter in the number of byte(s).
The parameter may be a data type or a variable. For example, sizeof(int)
returns the number of bytes in an int variable.

3. Use C99 data types. Realized the confusion of lack of standard for data
size, the C standard committee developed a new set of well-defined data
type with standard sizes. We will cover them later in this chapter.

For now, we will discuss the data types defined by Keil MDK-Arm first.
char

The char data type is a byte size data whose bits are designated as D7-D0. It
can be signed or unsigned. In the signed format the D7 bit is used for the +
or - sign and takes values between -128 to +127. In the unsigned char we
have values between 0x00 to 0xFF in hex or 0 to 255 in decimal since there
is no sign and the entire 8 bits are used for the magnitude. (See Chapter 5 of
Volume 1.)

short int

The short int (or usually referring as short) data type is a 2-byte size data
whose bits are designated as D15-D0. It can be signed or unsigned. In the
signed format, the D15 bit is used for the + or - sign and takes values
between -32,768 to +32,767. In the unsigned short int we have values
between 0x0000 to 0xFFFF in hex or 0 to 65,535 in decimal since there is no
sign and the entire 16 bits are used for the magnitude. See Chapter 5 of
Volume 1 (the Arm assembly book).

A 32-bit processor such as the Arm architecture with 32-bit data bus reads
the memory with a minimum of 32 bits on the 4-byte boundary (address
ending in 0, 4, 8, and C in hex). If a short int variable is allocated straddling
the 4-byte boundary, access to that variable is called an unaligned access.
Not all the Arm processors support unaligned access. Those devices
(including the MSP432 used in the MSP432 LaunchPad) supporting
unaligned access pay a performance penalty by having to read/write the
memory twice to gain access to one variable (see Example 1-1). Unaligned
access can be avoided by either padding the variables with unused bytes

(Keil) or rearranging the sequence of the variables (CCS) in allocation. The
compilers usually generate aligned variable allocation.

Example 1-1
Show how memory is assigned to the following variables in aligned and
unaligned allocation. Begin from memory location 0x20000000.
unsigned char a;
unsigned short int b;
unsigned short int c;

Solution:
Unaligned allocation of variable c

a b b c 20000000 20000001 20000002 20000003
c
20000004
20000005 20000006 20000007

Aligned allocation of variables by padding one byte between variable a and
b

a b b 20000000 20000001 20000002 20000003
c c

20000004 20000005
Aligned allocation of variables by rearranging the variable sequence

b b c c 20000000 20000001 20000002 20000003
a
20000004 20000005 20000006 20000007

int

The int data type usually represents for the native data size of the processor.
For example, it is a 2-byte size data for a 16-bit processor and a 4-byte size
data for a 32-bit processor. This may cause confusion and portability issue.
The C99 standard addressed the issue by creating a new set of integer
variable types that will be discussed later. For now, we will stick to the
conventional data types.

The int data type of the Arm processors is 4-byte size and identical to long
int data type described below.
long int

The long int (or long) data type is a 4-byte size data whose bits are
designated as D31-D0. It can be signed or unsigned. In the signed format the
D31 bit is used for the + or - sign and takes values between
–231 to +231–1. In the unsigned long we have values between 0x00000000 to
0xFFFFFFFF in hex. See Chapter 5 of Volume 1. In the 32-bit
microcontroller when we declare a long variable, the compiler sets aside 4
bytes of storage in SRAM. But it also makes sure they are aligned, meaning
it places the data in locations with addresses ending with 0, 4, 8 and C in
hex. This avoids unaligned data access performance penalty covered in
Volume 1. The unsigned long is widely used in Arm for defining addresses
since Arm address size is 32-bit long.

Example 1-2
Show how memory is assigned to the following variables in aligned and
unaligned allocation. Begin from memory location 0x20000000.
unsigned char a;
unsigned short int b;
unsigned short int c;
unsigned int d;
Solution:
Unaligned allocation of variable c

a b b c 20000000 20000001 20000002 20000003
c d d d 20000004 20000005 20000006 20000007
d
20000008 20000009 2000000A 2000000B

Aligned allocation of variables by padding byte(s) between variable a and b
a b b 20000000 20000001 20000002 20000003

c c
20000004 20000005 20000006 20000007
d d d d 20000008 20000009 2000000A 2000000B Aligned allocation of
variables by rearranging the variable sequence

d d d d 20000000 20000001 20000002 20000003
b b c c 20000004 20000005 20000006 20000007
a
20000008 20000009 2000000A 2000000B
long long

The long long data type is an 8-byte size data whose bits are designated as
D63-D0. It can be signed or unsigned. In the signed format the D63 bit is
used for the + or - sign and takes values between
–263 to +263–1. In the unsigned long long we have values between
0x0000000000000000 to 0xFFFFFFFFFFFFFFFF in hex. In the 32-bit
microcontroller, when we declare a long long variable, the compiler sets
aside 8 bytes of storage in SRAM and it makes sure they are aligned,
meaning it places the data in locations with addresses ending with 0 and 8.
This avoids unaligned data access performance penalty.

Why should I care about which data type to use?
There are three major reasons why a programmer should care about data
type, performance, overflow, and coercion.
Performance

It must be noted that while in the 8-bit microcontrollers we need to use the
proper data type for the variables to improve the performance, this is less of
problem in 32-bit CPUs such as Arm. For example, for the number of days
working in a month (or number of hours in a day) we use unsigned char
since it is less than 255. Using unsigned char in 8-bit microcontroller is
important since it saves RAM space, memory access time, and computation
clock cycles. If we use int instead, the compiler allocates 2 bytes in RAM
and that is a waste of RAM resource. The CPU will have to access the
additional byte and perform additional arithmetic instructions with it even if
the byte contains zero and has no effect on the result. This is a problem that
we should avoid since an 8-bit microcontroller usually has few RAM bytes
with slower clock speed for bus and CPU. In the case of 32-bit systems such
as Arm, 1, 2, or 4 bytes of data will result in the same memory access time
and computation time. Most of the 32-bit systems also have more generous
amount of RAM to alleviate the concern of memory usage and allow
padding for aligned access.

Data type Size Range
char 1 byte -128 to 127
unsigned char 1 byte 0 to 255
short int 2 bytes -32,768 to 32,767 unsigned short int 2 bytes 0 to 65,535
int 4 bytes -2,147,483,648 to 2,147,483,647 unsigned int 4 bytes 0 to
4,294,967,295 long 4 bytes -2,147,483,648 to 2,147,483,647 unsigned long
4 bytes 0 to 4,294,967,295 long long 8 bytes -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 unsigned long long 8 bytes 0 to
18,446,744,073,709,551,615 Table 1-1: ANSI C (ISO C89) integer data types and their
ranges

Notes
1. By default variables are considered as signed unless the unsigned keyword
is used. As a result, signed long is the same as long; the long long is the
same as signed long long, and so on with the exception of char. Whether
char is signed or unsigned by default varies from compiler to compiler. In
some compilers, including Keil, there is an option to choose if the char
variable should be considered as signed char or unsigned char by default.
(To choose this in Keil, go to Project menu and select Options. Then, in the
C/C++ tab, check or uncheck the choice Plain char is signed, as you desire.)
It is a good practice to write out the signed keyword explicitly, when you
want to define a variable as signed char.
2. In some compilers (including Keil and IAR) the int type is considered as
long int while in some other compilers (including AVR and PIC compilers) it
is considered as short int. In other words, the int type is commonly defined
so that the processor can handle it easily. As we will see next, we can use
int16_t and int32_t instead of short and long in order to prevent any kind of
ambiguity and make the code portable between different processors and
compilers.

Overflow

Unlike assembly language programming, high level program languages do
not provide indications when an overflow occurs and the program just fails
silently. For example, if you use a short int to hold the number of seconds of
a day, 9 hours 6 minutes and 7 seconds into the day, the second count will

overflow from 32,767 to -32,768. Even if your program handles negative
second count, the time will jump back to the day before.

the day before.

bit int will hold a number up to 2,147,483,647 but it does not eliminate the
potential of the problem. One of the critical overflow problem waiting to
happen is the Unix Millennium Bug. Unix keeps track of time using a 32-bit
int for the number of seconds since January 1st 1970. This variable is going
to overflow comes January 19, 2038. Because of the popularity of Unix, not
only Unix systems are extensively used, many other systems use the same or
similar format to keep track of time. So far, there is no universal solution to
mitigate this problem yet. Coercion

In C language, the data types of the operands must be identical for binary
operations (the operator with two operands such as A + B). If you write a
statement with different operand data types for a binary operation, the
compiler will convert the smaller data type to the bigger data type. If it is an
assignment operator (A = B), the right hand side operand is converted to the
left hand side data type before the assignment. These implicit data type
conversion is called coercion. The compiler may or may not give you
warning when coercion occurs.

In two conditions, coercion may result in undesirable result. If the variable is
signed and the data sized is increased, the new bits are filled with the sign bit
(most significant bit) of the original value. For example, if an 8-bit number
0b10010010 is coerced into a 16-bit signed number, the result will be
0b1111111110010010. This may work just fine in most cases, but there are
few occasions that will became an issue.

The other problem is when you assign a larger data type to a smaller data
type variable, the higher order bits will be truncated. For example, in the
statement “A = B;” if A is 8-bit and B is 16-bit, the upper 8 bits of B is
discarded before the assignment.

There is not a simple solution for the data type size issues. As a programmer,
you have to be cognizant about them all the time.
Data types in ISO C99 standard

While every C programmer has used ANSI C (ISO C89) data types, many C
programmers are not familiar with the ISO C99 standard. In C standards, the
sizes of integer data types were not defined and are up to the compilers to
decide.

In ISO C99 standard, a set of data types were defined with number of bits
and sign clearly defined in the data type names. See Table 1-2. The C99
standard is used extensively by embedded system programmer for RTOS
(real time operating system) and system design. It is also supported by most
of C compilers. Notice the range is the same as ANSI C standard except it
uses explicitly descriptive syntax.

These integer data types are defined in a header file called stdint.h. You need
to include this header file in order to use these data types.

Data type Size Range
int8_t 1 byte -128 to 127
uint8_t 1 byte 0 to 255
int16_t 2 bytes -32,768 to 32,767
uint16_t 2 bytes 0 to 65,535
int32_t 4 bytes -2,147,483,648 to 2,147,483,647
uint32_t 4 bytes 0 to 4,294,967,295
int64_t 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
uint64_t 8 bytes 0 to 18,446,744,073,709,551,615

Table 1-2: ISO C99 integer data types and their ranges
Review Questions

1. In an 8-bit system we use (char, unsigned char) for the number of months
in a year.
2. For a system with 16-bit address, bus we use (int, unsigned int) for
address definition.
3. For an Arm system the address is _____bit wide and we use ______data
type for it.
4. True or false. In C programming of Arm, compiler makes sure data are
aligned.

Section 1.2: Bit-wise Operations in C

One of the most important and powerful features of the C language is its
ability to perform bit manipulations. Because many books on C do not cover
this important topic, it is appropriate to discuss it in this section. This section
describes the action of bit-wise logic operators and provides some examples
of how they are used.

Bit-wise operators in C

While every C programmer is familiar with the logical operators AND
(&&), OR (||), and NOT (!), many C programmers are less familiar with the
bitwise operators AND (&), OR (|), EX-OR (^), invert (~), right shift (>>),
and left shift (<<). These bit-wise operators are widely used in software
engineering for embedded systems and control; consequently, their
understanding and mastery are critical in microprocessor-based system
design and interfacing. See Table 1-3.

A B AND OR EX-OR Invert
(A & B) (A | B) (A ^ B) ~B
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 1 0 0

Table 1-3: Bit-wise Logic Operators for C
The following shows some examples using the C bit-wise operators:

0x35 & 0x0F results in 0x05 /* ANDing */
0x04 | 0x68 results in 0x6C /* ORing: */
0x54 ^ 0x78 results in 0x2C /* XORing */
~0x55 results in 0xAA /* Inverting 0x55 */

Examples 1-3 and 1-4 show how the bit-wise operators are used in C. Run
the following programs on your simulator and examine the results.

Example 1-3
Run the following program on your simulator and examine the results.
int main(void) {

volatile unsigned char temp; /* declare volatile otherwise the optimizer will
remove it. */ temp = 0x35 & 0x0F; /* ANDing : 0x35 & 0x0F = 0x05 */
temp = 0x04 | 0x68; /* ORing : 0x04 | 0x68 = 0x6C */
temp = 0x54 ^ 0x78; /* XORing : 0x54 ^ 0x78 = 0x2C */ temp = ~0x55; /*
Inverting : ~0x55 = 0xAA */ while (1);
return 0;

}
Setting and Clearing (masking) bits
As discussed in Volume 1 of the series, OR can be used to set a bit or bits,
and AND can be used to clear a bit or bits. If you examine Table 1-3 closely,
you will see that:

 Anything ORed with a 1 results in a 1; anything ORed with a 0 results in
no change.

 Anything ANDed with a 1 results in no change; anything ANDed with a 0
results in a zero.

 Anything EX-ORed with a 1 results in the complement; anything EX-
ORed with a 0 results in no change.
See Example 1-4.

Example 1-4
The following program toggles only bit 4 of var1 repetitively without
disturbing the rest of the bits. int main(void)
{

unsigned char var1; while(1)
{

var1 = var1 | 0x10; /* Set bit 4 (5th bit) of var1 */ var1 = var1 & 0xEF; /*
Clear bit 4 (5th bit) of var1 */ }
}
Notice that we can also toggle the bit using EX-OR as shown below: var1 =
var1 ^ 0x10;
Testing bit with bit-wise operators in C

In many cases of system programming and hardware interfacing, it is
necessary to test a given bit to see if it is high or low. For example, many
devices send a high signal to signify that they are ready for an action or to

indicate that they have data available. How can the bit (or bits) be tested? In
such cases the unused bits are masked and then the remaining data is tested.
See Example 1-5.

Example 1-5
Write a C program to monitor bit 5 of var1. If it is HIGH, change value of
var2 to 0x55; otherwise, change value of var2 to 0xAA. Solution:
...

while(1) {
if (var1 & 0x20) var2 = 0x55; else
var2 = 0xAA;

}
…
/* check bit 5 (6th bit) of var1 */
/* this statement is executed if bit 5 is a 1 */

/* this statement is executed if bit 5 is a 0 */
Bit-wise shift operation in C
There are two bit-wise shift operators in C. See Table 1-4.

Operation Shift Right Shift Left Symbol Format of Shift Operation
>> data >> number of bit-positions to be shifted right << data << number of
bit-positions to be shifted left

Table 1-4: Bit-wise Shift Operators for C
The following shows some examples of shift operators in C:

1. 0b00010000 >> 3 /* it equals 00000010. Shifting right 3 times */
2. 0b00010000 << 3 /* it equals 10000000. Shifting left 3 times */
3. 1 << 3 /* it equals 00001000. Shifting left 3 times */
Compound Operators

In C language, whenever the left-hand-side of the assignment operator (=)
and the first operand on the right-hand-side are identical we can avoid
repeating the operand by using the compound operators. As shown in Table
1-5, in compound operators, one of the operands is written just on the
lefthand-side of the equal sign.

Instruction
a = a + 6;
a = a – 23;
y = y * z;
z = z / 25;
w = w | 0x20; v = v & mask; m = m ^ togBits; Its equivalent using
compound operators a += 6;
a –= 23;
y *= z;
z /= 25;
w |= 0x20;
v &= mask;
m ^= togBits;

Table 1-5: Some Compound Operator Examples
Review Questions

1. What is result of 0x2F & 0x27?
2. What is result of 0x2F | 0x27?
3. What is result of 0x2F ^ 0x27?
4. What is result of 0x2F >> 3?
5. What is result of 0x27 << 4?
6. In Example 1-5 what is stored in var2 if the value of var1 is 0x03?
Bit-wise operations using compound operators

The majority of hardware access level code involves setting a bit or bits in a
register, clearing a bit or bits in a register, toggling a bit or bits in a register,
and monitoring the status bits. For the first three cases, the operations read
the content of the register, modify a bit of bits then write it back to the same
register. The compound operators are very suitable for these operations.

To set bit(s) in a register,
register |= MASK;
where MASK is a number that has ‘1’ at the bit(s) to be set.
register |= 0x08;
The number 0x08 has a ‘1’ at bit 3, therefore the statement sets bit 3 of the
register.
register |= 0x42;

The number 0x42 has a ‘1’ at bit 6 and bit 1, therefore the statement sets bit
6 and bit 1 of the register.
To clear bit(s) in a register,
register &= ~MASK;
where MASK is a number that has ‘1’ at the bit(s) to be cleared.
register &= ~0x20;
The number 0x20 has a ‘1’ at bit 5, therefore the statement clears bit 5 of the
register.
register &= ~0x12;

The number 0x12 has a ‘1’ at bit 4 and bit 1, therefore the statement clears
bit 4 and bit 1 of the register. Notice the mask for clearing the bits is the
same as the mask for setting the bits, where the bits to be modified are ‘1’
and the rest of the bits are ‘0’ except that in clearing the bits, the mask is
complemented in the statements.

To toggle bit(s) in a register,
register ^= MASK;
The examples are similar to setting bits so we will skip them here.
Using shift operator to generate mask

With the statements above, one challenge may be to generate the mask with
the correct bit(s) set to 1 depending on how proficient you are with
converting binary numbers to hexadecimal. Some compilers allow you to
write a literal binary number in the format of 0b00000000 but since it is not
in the C standards, many compilers do not accept this notation.

One way to ease the generation of the mask is to use the left shift operator.
To generate a mask with bit n set to 1, use the expression:
1 << n If more bits are to be set in the mask, they can be “or” together. To
generate a mask with bit n and bit m set to 1, use the expression:
(1 << n) | (1 << m)
Now to set bit 3 of the register, we can rewrite the statement
register |= 0x08; as
register |= 1 << 3;
And to set bit 6 and bit 1 of the register, we can rewrite the statement
register |= 0x42; as
register |= (1 << 6) | (1 << 1);

The same goes for clearing bit 5 of the register, we can use the statement
register &= ~(1 << 5);
And to clear bit 4 and bit 1 of the register
register &= ~((1 << 4) | (1 << 1));

Notice that regardless of setting or clearing bits, the mask always has 1s at
the bit locations for the bits to be modified and when multiple bits are used
in the mask, they are always ORed together. We will leave the toggling of
the bits for the readers.

Setting the value in a multi-bit field

Setting the value in a multi-bit field 28 determine the divisor value to
divide the clock and we would like to set the divisor to 5. One way of doing
so is to set or clear the bits one by one.

register |= 1 << 30; register &= ~(1 << 29); register |= 1 << 28;

Although this method will achieve the desired result, the divisor value 5 is
not apparent from reading the code. An alternative way is to clear the field
first then set the value.
register &= ~(7 << 28);
register |= 5 << 28;
The first statement clears bit 30-28 and the second statement set the value 5
in the field. With this method, the divisor 5 is visible in the second
statement.
These two statements may be combined into a single statement:
register = (register & ~(7 << 28)) | (5 << 28);
Reading of the articles by Michael Barr on embedded.com is strongly
recommended: http://www.embedded.com/user/Michael.Barr

Answer to Review Questions

Section 1.1: C Data types for Embedded Systems

1. unsigned char
2. unsigned int
3. 32 – unsigned long (or uint32_t)

4. True
Section 1.2: Bitwise Operations in C

1. 0x27
2. 0x2F
3. 0x08
4. 0x05
5. 0x70
6. 0xAA

Chapter 2: STM Arm I/O Programming

In a microcontroller, we use the general purpose input output (GPIO) pins to
interface with LED, switch (SW), LCD, keypad, and so on. This chapter
covers the programming of GPIO using LED, switches, and seven segment
LEDs as examples. This is a very important chapter since the vast majority
of embedded products have some kind of I/O. More importantly, this chapter
sets the stage for the understanding of peripheral I/O addresses and how they
are accessed and used in Arm processors. Because some of the core
materials covered in this chapter are used in subsequent chapters, we urge
you to study this chapter thoroughly before moving on to other chapters.
Section 2.1 examines the memory and I/O map of the STMicroelectronics
(from now on STM) Arm chip. Section 2.2 shows how to access the special
function registers associated with the GPIO of STM Arm. In Section 2.2, we
also use simple LEDs and switches to show the programming of GPIO.
Section 2.3 examines the 7-segment LED connection to Arm and how to
program it. Section 2.4 shows how to program I/O ports of the STM Arm
chip in Assembly language.

Section 2.1: STM32 Microcontroller

The STM32 is MCUs built on Arm® Cortex™M processor core. The
STM32 microcontrollers can cover Arm® Cortex™ M0, M0+, M3, M4 and
M7 cores. They can have few K bytes to few M bytes of onchip Flash
memory for code. Their on-chip SRAM can vary depending on the chip.
They all have a large number of on-chip peripherals. See Figure 2-1. In this
book, we focus on STM32F446 chips. The STM32F4xx is based on Cortex-

M4 while STM32F0 uses Cortex-M0+. We use STM32 Nucleo trainer board
which uses STM32F446RE chip to test the programs in this book. This
board is Arduino Nano Compatible. See Figures 2-1 to 2-6.

Figure 2 – 1: STM32 Arm Cortex Portfolio

Figure 2 - 2: STM32F446RE Arm Microcontroller Block Diagram

Figure 2 – 3: STM32 Arm Cortex Portfolio

Figure 2 - 4: STM32F446RE
Nucleo Board

Figure 2 - 5: STM32F446RE Nucleo Block Diagram

Figure 2 - 6: STM32F446RE Nucleo board top layout
Note
For more information about the STM32 series see the following websites:
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-
bit-Arm-cortexmcus.html?querycriteria=productId=SC1169
http://www.st.com
The tutorials for Keil using STM32 Nucleo and other trainer boards can be
found on our website:
http://www.microdigitaled.com/ARM/STM_ARM_books.html
The above site also has source code programs used in this book in addition
to PowerPoints

STM32F4xx Memory Map

As we stated in Volume 1, the Arm has 4GB (Giga bytes) of memory
address space. It also uses memory mapped I/O, meaning the I/O peripheral

registers are mapped into the 4GB memory space. See Table 2-1 for memory
map of STM32F446 chip. It must be noted that the upper limit address varies
among the chips depending on the size of on-chip Flash, SRAM, and
peripherals. Check the memory map of your STM Arm in device datasheet.

Memory sizes Address range Flash 512KB 0x00000000-0x0007FFFF
SRAM 128KB 0x20000000-0x20001FFFF

I/O All the peripherals 0x40000000-0x4xxxxxxx
Table 2-1: Memory Map of STMF446RE

Figure 2 - 7: Memory map for STM32F446RE
Regarding of Figure 2 - 7, the following points must be noted:

1) The Flash memory is used for program code. One can also store in Flash
ROM constant (fixed) data such as look-up table if needed. The Flash
memory is organized in n-byte paged. Each block can be independently

erased and written to. Various Arm chips have different block page size
depending on the on-chip Flash size.

2) The SRAM is for variables, scratch pad, and stack. It starts at address
0x20000000. Address aliases can be used for a portion of SRAM to allow
individual bit-access. This is called bit-banding and is discussed in Volume
1.

3) The peripherals such as GPIO, Timers, ADCs are mapped to addresses
starting at 0x40000000. The upper limit address can vary among the family
members of Arm chips depending on the number of peripherals the chip
supports.

STM32‘s naming convention
STM32 part numbers have the following format:

STM32 F 4xx P FFF T 6

Table 2-2 lists the possible values for each field in the part number (not all
combinations are valid): Field Description STM32 Product Family F
Product Type 4xx Device subfamily L4

P Pin count
FFF Flash Memory size
T Packaging
Some Valid Values
Arm® based 32-bit microcontroller

407: STM32F4xx ,
446: STM32F4xx, L4: STM32L4xx, and so on.
K = 32 pins
R = 64 pins
J = 72 pins
M = 81 pins
O = 90 pins
V = 100 pins
Q = 132 pins
Z = 144 pins

B = 128 KB
C = 256 KB
E = 512 KB
G = 1 MB
LQFP

6 temperature
Table 2 - 2: STM32 Arm Naming
For example, STM32F446_Nucleo board uses the STM32F446RE chip.
From Table 2-2 we see that the chip has 64 pins and comes with 512KB of
on-chip Flash memory.
In Figure 2-8, the STM Arm Families and their features are shown.

Figure 2 - 8: STM32 Cortex-M Portfolio
Review Questions

1. STM32F446RE has _______KB of on-chip Flash memory. 2.
STM32F446RE has _______KB of on-chip SRAM memory.

3. The Flash memory is used mainly for (program code, data).

4. The SRAM memory is used for (program code, data).

5. Give the starting address of the Flash memory of STM32F446RE. 6. Give
the meaning of RE in STM32F446RE.

Section 2.2: GPIO (General Purpose I/O) Programming and
Interfacing

While memory holds code and data for the CPU to process, the I/O ports are
used by the CPU to access input and output devices. In the microcontroller,
we have two types of I/O. They are:

a. General Purpose I/O (GPIO): The GPIO ports are used for interfacing
devices such as LEDs, switches, LCD, keypad, and so on.
b. Special purpose I/O: These I/O ports have designated function such as
ADC (Analog-toDigital), Timer, UART (universal asynchronous receiver
transmitter), and so on.

We have dedicated many chapters to these special purpose I/O ports. In this
chapter, we examine the GPIO and its interfacing to LEDs, switches, and 7-
segment LEDs and show how to access them with C programs.

I/O Pins on Nucleo board

In STM Arm chips, general purpose I/O ports are named with alphabets A,
B, C, D, E, F, G, and H. Each port can have up to 16 pins and they are
designated as PA0-PA15, PB0-PB15, and so on. It must be noted that not all
16 pins of each port are implemented in every chip. The Arm chip used in
STM NucleoF446RE board is from the STM32F446 chip series. See Figures
2-9 and 2-10.

Figure 2 – 9:
STM32F4xx LQFP 64 pinout used in Nucleo-F446RE board

Figure 2 – 10: STM32F4xx LQFP 100 pinout
Notice from about figures, not all pins for each port is implemented. For
example, only two pins of Port H are implemented.
GPIO Registers Address

The Arm chips have two types of buses: APB (Advanced Peripheral Bus)
and AHB (Advanced HighPerformance Bus). The AHB is a high-
performance bus designed to interface memory and fast I/Os directly to the
CPU. The APB is designed for lower speed and low power consumption
memory and peripherals.

Table 2 - 3: Partial listing of Peripheral address map for STM32F446

The AHB bus is much faster than APB. The AHB allows one clock cycle
access to the memory and fast peripherals without any wait state. The APB
is slower and its access time is a minimum of 2 clock cycles. In many cases,

there are multiple AHB-APB bridges to connect AHB to the APB busses.
Each APB bus connects to certain peripherals and each peripheral is
allocated certain address space. In the STM32 Arm, the GPIO ports are
connected to AHB bus via AHB/APB1 and AHP/APB2 bridges. The AHB
and memories are connected to CPU via what is called Bus Matrix. See
Figures 2-11 and 2-2.

Figure 2-11: STM Arm Bus Matrix

Each peripheral such as GPIO, Timer, and ADC are assigned a set of
addresses. The first address is called the base address. Each peripheral has
multiple special function registers. Each register has an address. The register
address is an offset address from the base address, as we will see soon. The
following shows the address ranges assigned to Ports of STM32F4xx chip.

■ GPIO Port A: 0x4002 0000 - 0x4002 03FF
■ GPIO Port B: 0x4002 0400 - 0x4002 07FF
■ GPIO Port C: 0x4002 0800 - 0x4002 0BFF
■ GPIO Port D: 0x4002 0C00 - 0x4002 0FFF
■ GPIO Port E: 0x4002 1000 - 0x4002 13FF
■ GPIO Port F: 0x4002 1400 - 0x4002 17FF
■ GPIO Port G: 0x4002 1800 - 0x4002 1BFF

■ GPIO Port H: 0x4002 1C00 - 0x4002 1FFF
■ GPIO Port I: 0x4002 2000 - 0x4002 23FF

Table 2 - 4 shows some of the registers associated with each GPIO ports.
Address (Offset) Name 0x00 GPIOx_MODER 0x04 GPIOx_OTYPER 0x08
GPIOx_OSPEEDR 0x0C GPIOx_PUDR 0x10 GPIOx_IDR 0x14
GPIOx_ODR 0x18 GPIOx_BSRR Description Type

GPIOx Port Mode(Direction) Register R/W Output Type Register R/W
Output Speed Register R/W Pull-Up / Down Register R/W Port Input Data
Register R/W Port Output Data Register R/W Bit Set / Reset Register R/W
Where x=A, B, C, ….. for ports

Table 2 – 4: Some of the GPIO Registers in STM32F4xx Arm

Generally, every microcontroller has a minimum of two registers associated
with each of I/O port. They are Data Register and Direction Register. The
Direction register is used to make the pin either input or output. After the
Direction register is properly configured, then we use the Data register to
actually write to the pin or read data from the pin. It is the Direction register
(when configured as an output) that allows the information written to the
Data register to be driven to the pins of the device. See Figure 2-12.

Figure 2 - 12: The Data and Direction
Registers and a Simplified View of an I/O pin Port Output Register

The output register in STM Arm is called GPIO port output data register
(GPIOx_ODR) in which x can be A, B, C and so on depending on the
number of ports implemented in a given chip. They are located at the offset
address of 0x14 from the Base address of that port. This is shown below.

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 ODRy: Port output data (y = 0..15)
These bits can be read and written by software.
Figure 2 - 13: GPIOx_ODR Output Data Register (x=A, B,C, ..)
Direction Register

In STM Arm the direction register is part of the GPIOx_MODER which
stands for GPIO Mode Register. For each GPIO pin, there are two
corresponding bits in the MODER register. These two bits need to be a 00 to
configure the port pin as input and a 01 as output. This register is also used
to set the alternative function mode for each pin, in addition to deciding if it
is used for analog or digital I/O.

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode (reset state)

Figure 2 - 14: GPIOx_MODER (GPIO Mode) for Direction Register (x=A, B, C, …) For
example, by writing 0x05 (0000 0101 in binary) into the GPIOA_MODER
register, pins 0 and 1 of PORT A become outputs while the other pins
become inputs.
See Example 2-1.
Example 2-1

In a gives circuit board, an LED is connected to PA5. Find the value we need
to write to the direction register.
Solution:

Since LEDs is an output, we need to write 0x0400 to the Mode register.
Notice the pins are designated as PA15-PA0. The binary and hex numbers
are as follow:
0000 0100 0000 0000 = 0x0400.

The Clock Enable of the Peripheral Registers

Before accessing the peripheral registers, we need to examine the clock
enable registers.Most of the digital electronic circuits these days are built
with CMOS technology because at quiescent state, a CMOS circuit
consumes almost no power at all. To conserve power, Arm microcontrollers
have ways of either slowing down the peripheral circuit clock or stopping
the clock altogether.

By default, the GPIO modules of the STM32 Arm microcontrollers have the
clock disabled coming out of power-on reset. So the programmers have to
enable the clock to a given I/O port or peripheral before using it. This is
done with a group of registers belonging to RCC (Reset and Clock Control)
registers. For the STM32F446 chips, the GPIO clock enable is controlled by
lower bits of RCC_AHB1ENR (AHB1 Enable Register) register as seen in
Figure 2 - 15. Notice this is not standard across all STM Arm family
members.

Bit 7 GPIOHEN: IO port H clock enable This bit is set and cleared by
software. 0: IO port H clock disabled
1: IO port H clock enabled

Bit 6 GPIOGEN: IO port G clock enable This bit is set and cleared by
software. 0: IO port G clock disabled
1: IO port G clock enabled
Bit 5 GPIOFEN: IO port F clock enable This bit is set and cleared by
software. 0: IO port F clock disabled
1: IO port F clock enabled
Bit 4 GPIOEEN: IO port E clock enable This bit is set and cleared by
software. 0: IO port E clock disabled
1: IO port E clock enabled
Bit 3 GPIODEN: IO port D clock enable This bit is set and cleared by
software. 0: IO port D clock disabled
1: IO port D clock enabled
Bit 2 GPIOCEN: IO port C clock enable This bit is set and cleared by
software. 0: IO port C clock disabled
1: IO port C clock enabled
Bit 1 GPIOBEN: IO port B clock enable This bit is set and cleared by
software. 0: IO port B clock disabled
1: IO port B clock enabled
Bit 0 GPIOAEN: IO port A clock enable This bit is set and cleared by
software. 0: IO port A clock disabled
1: IO port A clock enabled

Figure 2 - 15: RCC_AHB1ENR register bits to enable clock to I/O ports

It must be noted that the clocks for the serial communication modules,
timers and other peripheral are not enabled upon reset. There are several
registers belonging to RCC_AHBxENR group of registers such as
RCC_AHB1ENR and RCC_AHB2ENR depending on which family of
STM32 you are using. There are also RCC_APBxENR group of registers
used to enable the clock to various peripherals. They have slower speed than
the RCC_AHBx option. We will discuss the configuration of their clocks in
their respective chapters.

LED connection in Nucleo boards

Many of the STM32 Nucleo and Discovery trainer boards have a single or
multiple user LEDs. By user LED we mean the LED connected to GPIO
pins and can be programmed directly. In an STM32F4 Nucleo board, the

user LED is active HIGH meaning when the I/O is HIGH value, the LED is
on and when the I/O is LOW, the LED is off. There are other LEDs on the
board such as serial link and Power LEDs. Check your trainer board user
manual. In STM32F446RE Nucleo board, there is a single user LED. It is
designated as LD2. The user LED is connected to PA5 pin of Port A, as
shown in Figure 2-16. Again, this is not consistent across all the STM
boards. You need to check the user manual and schematic for your board. On
STM Arm boards, there are other LEDs such as COM which provides
information about ST-LINK communication status. The PWR LED indicates
that the STM32 part is powered and power is available.

Figure 2 - 16: User LED connection
for STM32F446RE Nucleo board
Toggling LED in Software
To toggle the user LD2 (green) of the Nucleo board, the following steps
must be followed.

1) Set the Mode register bits for PA5 as output,
2) write HIGH to PA5 in data OUT register,
3) call a delay function,
4) write LOW to PA5 in data OUT register,
5) call a delay function,
6) repeat steps 2 to 5.

Program 2-1 implements the algorithm to toggle the LED continuously. The
device header file for STM32F446 in Keil MDK-Arm v5 is
"stm32F446xx.h". But if you include "stm32F4xx.h", it will select the
header file to match the device of choice for the project. The one-

millisecond delay was achieved by using 16MHz default frequency for
SYSCLK. See Appendix C for more on STM32 clock frequency.

Program 2-1: Toggling an LED in C
/* p2_1.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 board at 1
Hz *
* This program toggles LD2 for 0.5 second ON and 0.5 second OFF * by
writing 0 or 1 to bit 5 of the Port A Output Data Register. * The
green LED (LD2) is connected to PA5.

* The LED is high active (a '1' turns on the LED).
* The default system clock is running at 16 MHz.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */ GPIOA->MODER |=
0x00000400; /* set pin to output mode */

while(1) {
GPIOA->ODR |= 0x00000020; /* turn on LED */ delayMs(500);
GPIOA->ODR &= ~0x00000020; /* turn off LED */ delayMs(500);

}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

The Register Naming Convention

Keil MDK-Arm uses the syntax to define registers to be compliant with
CMSIS (Cortex Microcontrollers Software Interface Standard). In this
syntax, each port is defined as a pointer to a struct with the register as the
members of struct. For example, the GPIO Port D MODE Register is
referred to as GPIOD->MODER and the Out Data Register for Port D is
referred to as GPIOD->ODR. There are several ways of declaring a name in
C for a register. We will discuss more in details in Section 2.4. Another
reason we use the naming convention above is that they are supplied by the

device manufacturer. The program starts with a statement of #include
"stm32F4xx.h", which in term includes the appropriate header files based on
the device used for the project (stm32f446xx.h). The file that contains the
definitions of the port registers for Keil MDK-Arm is at:

C:\Keil\Arm\PACK\Keil\STM32F4xx_DFP\2.11.0\Drivers\CMSIS\Device\S
T\STM32F4xx\Include\
Bit Set/Reset Register

In the program above, the register bits are modified using “|=” operator to set
the bit and “&=” to clear the bit. These read-modify-write (RMW)
operations, meaning the value of the port register is read into the CPU
register, the selected bit is set or cleared then the value is written back to the
port register. There are few potential issues with an RMW operation. One is
that it takes three steps to change the selected bit(s). In a multithreaded
environment, there is a chance that one RMW operation is interrupted by the
other. After the first operation is completed, the second write will wipe out
the modification done by the first one.

The STM32 Family GPIO ports have an additional register that make
turning a pin (or more) on and off easier. This register allows the program to
set or reset a bit or bits of the register by a single write instruction. See the
GPIOx_BSRR (GPIO bit set/reset register). Writing to the register only
affects the pin(s) that the corresponding bit(s) in the value written is (are)
‘1’. This makes it easier to turn on or off a single pin or a few pins without
affecting the other pins. The lower 16 bits (D15-D0) of GPIOx_BSRR
register turns on (set) a bit and the upper 16 bits (D31-D16) turns off (reset)
a bit. For example, writing a value 0x00000020 to GPIOA_BSRR will turn
on bit PA5 of that port without modifying any other pins. These registers
make the program more readable, faster to run and since a write to these
registers are a single instruction execution and will not to be interrupted. See
Figure 2 - 17.

Bits 31:16 BRy: Port x reset bit y (y = 0..15)
These bits are write-only. A read to these bits returns the value 0x0000. 0:
No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit
Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x set bit y (y= 0..15)
These bits are write-only. A read to these bits returns the value 0x0000. 0:
No action on the corresponding ODRx bit
1: Sets the corresponding ODRx bit

Figure 2 - 17: GPIOx_BSRR (GPIO Bit Set Reset) Register
Program 2-2 performs the same function as Program 2-1 but uses the
GPIOx_BSRR register to control Mode register and toggle the green LED
(LD2).
Program 2-2: Toggling an LED using the alternative registers
/* p2_2.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 board at 1
Hz *
* This program toggles LD2 for 0.5 second ON and 0.5 second OFF
* by writing a '1' to bit 5 or bit 21 of the Bit Set/Reset
* Register (BSRR). The lower 16 bits of BSRR turns on the pins
* and the upper 16 bits of BSRR turns off the pins.
* Writing a '1' to bit 5 turns on pin 5. Writing a '1' to
* bit 21 (5 + 16) turns off pin 5.
* The green LED (LD2) is connected to PA5.
* The LED is high active (a '1' turns on the LED).
* The default system clock is running at 16 MHz.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */ GPIOA->MODER |=
0x00000400; /* set pin to output mode */

while(1) {
GPIOA->BSRR = 0x00000020; /* turn on LED */ delayMs(500);
GPIOA->BSRR = 0x00200000; /* turn off LED */ delayMs(500);

}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

CPU clock frequency and time delay
Many microcontrollers have at least three clock sources that may be used to
drive the CPU.

1) The on-chip oscillator circuit. This is the least precise clock source for the
CPU. But it does not require additional external devices and is always
available regardless of the circuit design of the system.

2) The externally connected crystal (XTAL) oscillator. It offers the most
precise clock but at high frequency, such as above 100MHz, crystals are
expensive. Also, the frequency is fixed by the crystal.

3) PLL (phase locked loop). A compromise between precision, flexibility,
and economy is to use a crystal oscillator along with the on-chip PLL
circuitry to generate a high-frequency clock source for the CPU. This option
is often used for systems with CPU frequency of 20MHz and higher.
Another added benefit of using the PLL is that the clock frequency is
programmable. You may run high clock frequency for CPU intensive tasks
and slow down the clock at other times to conserve energy.

For more about the clock generation see Appendix C.
Measuring time delay in a C program loop

One simple way of creating a time delay is using a “for loop” in C language.
The length of time delay loop for a given system is a function of two factors:
the CPU frequency and the compiler. It must be noted that a time delay C
loop measured using a given compiler (e.g. Keil) may not give the same
result if a different compiler such as IAR is used. Another factor that
complicates the delay time is the use of cache, which is available on an
STM32F446 device.

Regardless of clock source to CPU and the C compiler used, always use an
oscilloscope to measure the duration of the time delay loop for a given
system with a given compiler and compiler option setting.

Input Data
Reading the GPIOx_IDR (GPIO input data) register will return the status of
the port pins. If the pin
is high, it returns a ‘1’ and if the pin is low, it returns a ‘0’. See Figure 2-18.

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 IDRy: Port input data (y = 0..15)
These bits are read-only and can be accessed in word mode only. They
contain the input value of the corresponding I/O port.

Figure 2 - 18: GPIOx_IDR (Input Data) Register
Reading a switch in STM Arm

The NUCLEO-F446RE board comes with a single user push-button switch
(B1). This switch is connected to PC13 pin of the Port C in STM32F446
chip. See Figure 2-19. Notice that there is also a reset switch called B2. The
B2 push-button is connected to NRST, and it is used to reset the
STM32F466RE chip.

Figure 2 - 19: Switch connection to STM32F4-
NUCLEO board

You can also connect an external switch to the board and experiment with
the concept of inputting data via a port. Depending on how the external
switch is connected, you need to enable the internal pull-up or pull-down
resistor for the pin. If the switch is connected to the ground, the internal pull-
up resistor is enabled. If the switch is connected to the power, the internal
pull-down resistor is enabled (See Figure 2 - 20).

Figure 2 - 20: Connecting external switches to the microcontroller
Note

Each of the GPIO ports has four 32-bit memory-mapped control registers
(GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR)
to configure up to 16 I/Os. The GPIOx_MODER register is used to select the
I/O mode (input, output, AF, analog). The GPIOx_OTYPER and
GPIOx_OSPEEDR registers are used to select the output type (push-pull or
open-drain) and speed. The GPIOx_PUPDR register is used to select the
pull-up/pull-down whatever the I/O direction.

It was mentioned earlier that the MODE register is used to change the data
direction of the corresponding pin. In addition to the MODE register, there
are three more registers associated with the GPIO function. They are
GPIOx_OTYPER (GPIO Output Type Register), GPIOx_OSPEEDR (GPIO
Output Speed Register), and GPIOx_PUPDR (GPIO Pull-up/Pull-down
Register). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used
to select the output type (push-pull or open-drain) and speed. The
GPIOx_OSPEEDR registers are used to select the output type (push-pull or
open-drain) and speed. The 21, 2-22, and 2-23.

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 OTy: Port x configuration bits (y = 0..15)
These bits are written by software to configure the output type of the I/O
port. 0: Output push-pull (reset state)
1: Output open-drain
Figure 2 - 21: GPIOx_OTYPER Register

Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output speed. 00:
Low speed
01: Medium speed
10: Fast speed
11: High speed

Figure 2 - 22: GPIOx_OSPEEDR Register

Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down 11: Reserved

Figure 2 - 23: GPIOx_PUPDR Register
Example 2-4
Write the statements to configure Port A0 as an input pin with pull-up
resistor.
Solution:
GPIOA->MODER &= ~0x00000003; /* clear pin mode bits to input mode
for PA0 */
GPIOA->PUPDR &= ~0x00000003; /* clear pull-up/pull-down bits for PA0
*/
GPIOA->PUPDR |= 0x00000001; /* set pull-up for PA0 */

To read a switch and display it on an LED, the following steps must be
taken.
1) Make pin PA5 as output in MODER register for the LD2,
2) configure PC13 as input,
3) read switch from PC13,
4) if PC13 is high, set PA5 high to turn on the LED,
5) else clear PA5 low to turn off the LED
6) Repeat steps 3 to 5.

See Programs 2-3.
Program 2-3: Reading a switch and displaying it on an LED
/* p2_3.c Turn on or off LED by a switch
*
* This program turns on the green LED (LD2) by pressing the user *
button B1 of the Nucleo board.
* The user button is connected to PC13. It has a pull-up resitor *
so PC13 stays high when the button is not pressed.
* When the button is pressed, PC13 becomes low.
* The green LED (LD2) is connected to PA5.
* A high on PA5 turns on the LED.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

int main(void) {
RCC->AHB1ENR |= 4; /* enable GPIOC clock */ RCC->AHB1ENR |= 1; /*
enable GPIOA clock */

GPIOA->MODER &= ~0x00000C00; /* clear pin mode */ GPIOA->MODER |=
0x00000400; /* set pin to output mode */

GPIOC->MODER &= ~0x0C000000; /* clear pin mode to input mode */
while(1) {
if (GPIOC->IDR & 0x2000) /* if PC13 is high */

GPIOA->BSRR = 0x00200000; /* turn off green LED */ else
GPIOA->BSRR = 0x00000020; /* turn on green LED */ }
}

Alternate pin functions of the GPIO

The STM Arm microcontrollers, like other Arm core microcontrollers, have
a rich set of peripheral modules. If each peripheral has its own I/O pins, a
microcontroller will need several hundred pins to support all of its on-chip
features. In order to reduce the cost of the devices, the peripheral modules
share the I/O pins. Using a single pin for multiple functions is called pin
multiplexing. Pin multiplexing allows several peripheral modules or core
functions to use the same pin but only one at the time similar to a
multiplexer circuit (see Figure 2 - 24).

In STM Arm chips, the default function of a pin is digital input mode upon
reset. To use any other alternate function, we must modify GPIOx_MODER
register first. The alternate function registers are called GPIOx_AFLR
(GPIOx Alternate Function Low) and GPIOx_AFHR (GPIOx Alternate
Function High). In Keil MDK-Arm, they are named GPIOx->AFR[0] and
GPIOx->AFR[1] respectively. Notice for pins 0 to 7 we use GPIOx_AFLR
and for pins 8 to 15 we use GPIOxAFHR registers. We will see their use in
future chapters.

Figure 2 - 24: STM32 Arm Pin Multiplexing of Alternate Functions

When GPIOx_MODER bits are set to 10, the pin is used by one of the
alternate functions. The actual alternate function for the pin is selected by
GPIOx_AFLR and GPIOx_AFHR registers only after GPIOx_MODER is
configured. The four bits of GPIOxAFLR and GPIOxAFHR registers are
allocated for each pin. See Figures 2-25A, 2-25B and Table 2-5.

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10
0011: AF3 1011: AF11
0100: AF4 1100: AF12
0101: AF5 1101: AF13
0110: AF6 1110: AF14
0111: AF7 1111: AF15

Figure 2 - 25A: GPIOx_AFRL (GPIOx Alternate Function Low) register to select alternate pin
functions

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)
These bits are written by software to configure alternate function I/Os
AFRHy selection:

0000: AF0
0001: AF1

0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7
1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

Figure 2 - 25B: GPIOx_AFRH (GPIOx Alternate Function High) register to select alternate pin
functions

Since each pin uses four bits in GPIOx_AF registers, it requires 64 bits (16 x
4 bits = 64bits) to select alternate functions for 16 pins of a GPIO port. For
this reason we need two 32-bit registers of GPIOxAFLR and GPIOx_AFHR
to cover all the options. The alternate functions available for each pin of
STM32F446RE are listed in Table 2 - 5. For the detailed mapping of the
alternate function I/O pins in your STM Arm chip, please refer to the
“Alternate function mapping” table in the device datasheet. We will discuss
how to select the alternate functions in the future chapters when the
peripherals are introduced.

Table 2 - 5: STM32F446RE Alternative Functions (AF0-AF15) Pin Selection (Partial listing, see
Appendix B for full listing)

Review Questions
1. STM STM32F446RE chip has __________ GPIO ports.
2. True or false. Every Arm microcontroller must have minimum of 3
memory spaces of Flash (for code), SRAM (for data), and I/O (peripherals).
3. Port A in STMicro Arm can have maximum of ____ pins.
4. STM32F446RE Nucleo board comes with …….user on-board LED for
simple I/O.
5. STM32F446RE Nucleo board comes with a ……user on-board switch for
simple I/O.

Section 2.3: Seven-segment LED interfacing and programming

A popular numeric display is a seven-segment LED. The 7-seg LED can
have a common anode or a common cathode. With common anode, the
anode of the LED is driven by the positive supply voltage and the
microcontroller sinks the individual cathodes LOW for current to flow
through LEDs to light up. In this configuration, the sink current capability of
the microcontroller is critical. With common cathode, the cathode of the
LED is connected to the ground and microcontroller drives the individual
anodes HIGH to light up the LED. In this configuration, the microcontroller
pins must provide sufficient source current for each LED segment. In either
configuration, if the microcontroller does not have sufficient drive or sink
current capacity, we must add a buffer between the 7-seg LED and the
microcontroller. The buffer for the 7-seg LED can be an IC chip or
transistors.

The seven segments of LED are designated as a, b, c, d, e, f, and g. See
Figure 2-26.

Figure 2 - 26:
Seven-segment Display
A byte of data should be sufficient to drive all of the segments. In the
example below, segment a is assigned to bit D0, segment b is assigned to bit
D1, and so on as shown below:
D7 D6 D5 D4 D3 D2 D1 D0 . g F e d c b a
Table 2 – 6: Assignments of port pins to each segments of a 7-seg LED
The D7 bit is assigned to the decimal point. One can create the following
patterns for numbers 0 to 9 for the common cathode configuration:

Num D7 D6 D5 D4 D3 D2 D1 D0 Hex value . g f e d c b a 0 0 0 1 1 1 1 1 1
0x3F 1 0 0 0 0 0 1 1 0 0x06 2 0 1 0 1 1 0 1 1 0x5B 3 0 1 0 0 1 1 1 1 0x4F 4 0
1 1 0 0 1 1 0 0x66 5 0 1 1 0 1 1 0 1 0x6D 6 0 1 1 1 1 1 0 1 0x7D 7 0 0 0 0 0
1 1 1 0x07 8 0 1 1 1 1 1 1 1 0x7F 9 0 1 1 0 1 1 1 1 0x6F

Table 2 - 7: Segment patterns for the 10 decimal digits for a common cathode 7-seg LED In
Figures 2-27 and 2-28 the connection for 2-digit 7-seg LED and the
microcontroller is shown. The Program 2-5 shows the code.

Figure 2 -
27: Connections between microcontroller and a two-digit 7-segment LED

Figure 2
- 28: Connections between microcontroller and 7-segment LED with drivers

Notice since the same segment for both digit 1 and digit 2 are connected to
the same I/O port pin, the common cathode of each digit must be driven

separately so that only one digit is on at a time. The two digits are turned on
alternatively. For example, if we want to display number 75 on the 7-seg
LED, the following steps should be used:

1) Configure Port C as output port to drive the segments,
2) Configure PortB0-1 as output port to select the digits,
3) Write the pattern of numeral 7 from Table 2-7 to Port C,
4) Turn on the select pin to HIGH to activate the tens digit,
5) Delay for some time,
6) Write the pattern of numeral 5 from Table 2-7 to Port C,
7) Turn on the select pin to HIGH to activate the ones digit,
8) Delay for some time,
9) Repeat from step 3 to 8.

At a low frequency of alternating digits, the display will appear to be
flickering. To eliminate the flickering display, each digit should be turned on
and off at least 60 times each second. From the example above, the delay for
steps 6 and 9 should be 8 milliseconds or less.

1 second / 60 / 2 = 8 millisecond
See Program 2-4.
Program 2-4: Displaying "75" on 2-digit 7-segment LED display
/* p2_4.c Display number 75 on a 2-digit 7-segment common cathode
LED. *
* The segments are driven by Port C0-C6.
* The digit selects are driven by PB0 and PB1.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
RCC->AHB1ENR |= 2; /* enable GPIOB clock */ RCC->AHB1ENR |= 4; /*
enable GPIOC clock */

GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode */ GPIOC->MODER |=
0x00005555; /* set pins to output mode */ GPIOB->MODER &=
~0x0000000F; /* clear pin mode */ GPIOB->MODER |= 0x00000005; /* set
pins to output mode */

for(;;) {
GPIOC->ODR = 0x0007; /* display tens digit */ GPIOB->BSRR =
0x00010000; /* deselect ones digit */ GPIOB->BSRR = 0x00000002; /*
select tens digit */ delayMs(8);
GPIOC->ODR = 0x006D; /* display ones digit */ GPIOB->BSRR =
0x00020000; /* deselect tens digit */ GPIOB->BSRR = 0x00000001; /*
select ones digit */ delayMs(8);
}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Notice in Figure 2-28, a single pin is used to select each digit. That means if
we want 4 digits we must use a total of 12 pins. That is 8 pins for the
segments a through g, decimal point, and 4 pins to select each digit. This
might not be feasible in applications in which we have a limited number of
microcontroller pins to spare. One solution is to use a decoder for the digit
selection. For example, a 74LS138 decoder can be used for up to 8-digit 7-
seg LED system with three select pins. Another approach is to use a 7-
segment LED driver chip such as MAX 7221, which only uses two interface
pins. An additional advantage of MAX7221 is that the refreshing of the
segments is handled by the driver chip itself so the microcontroller does not
have to spend time refreshing the display and can concentrate on other
important tasks. The MAX7221 is an I2C device and the vast majority of
microcontrollers come with on-chip I2C serial communication feature, which
we will discuss in a separate chapter.

Review Questions
1. In a common cathode 7-seg LED connection, to turn on a segment the
microcontroller drives it

(high, low).
2. True or false. In connecting the 7-seg LED directly to microcontroller, the
refreshing of digits is
done by microcontroller itself.
3. What is the disadvantage of letting microcontroller do the refreshing of 7-
seg LEDs? 4. List two advantages of using an IC chip such as MAX7221
chip?

5. In an application, we need 8 digits of 7-seg LED. (a) How many pins of
microcontroller will be
used if we connect microcontroller to 7-seg directly? (b) How about if we
use 3-8 decoder for
digit selection?

Section 2.4: I/O Port Programming with Assembly Language

In Program 2-2, we let the header file to define the physical address of the
special function registers belonging to the I/O ports. Often the manufacturer
of the device will provide these definitions in a C header file. In program 2-5,
we define the physical addresses of special function registers. Since this is
tedious and prone to error, we avoid using this method. This is given simply
as an example for learning purpose.

Program 2-5: Toggling LED in C (using special function registers by
their addresses)
/* p2_5.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 board at 1
Hz *
* This program toggles LD2 for 0.5 second ON and 0.5 second OFF. *
It is identical to Program 2-2 but was written without using * the
header file. The registers are defined locally in the file. *
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#define RCC_AHB1ENR (*((volatile unsigned int*)0x40023830)) #define
GPIOA_MODER (*((volatile unsigned int*)0x40020000)) #define
GPIOA_BSRR (*((volatile unsigned int*)0x40020018))

void delayMs(int n);
int main(void) {
RCC_AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA_MODER &= ~0x00000C00; /* clear pin mode */ GPIOA_MODER |=
0x00000400; /* set pin to output mode */

while(1) {
GPIOA_BSRR = 0x00000020; /* turn on LED */ delayMs(500);
GPIOA_BSRR = 0x00200000; /* turn off LED */ delayMs(500);

}
}
/* 16 MHz SYSCLK */ void delayMs(int n) { int i; for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Program 2-6 shows the assembly version of the Program 2-5 using Keil Arm
assembler. Program 2-6: Toggling LED in assembly language (Keil)
; p2_6.s
; Assembly program to toggle the green LED (LD2)
; on STM32F446RE Nucleo64 board at 1 Hz
;

EXPORT __Vectors
EXPORT Reset_Handler
AREA vectors, CODE, READONLY

__Vectors DCD 0x10010000 ; 0x20008000 ; Top of Stack DCD
Reset_Handler ; Reset Handler

RCC_AHB1ENR equ 0x40023830
GPIOA_MODER equ 0x40020000
GPIOA_BSRR equ 0x40020018

AREA PROG, CODE, READONLY
Reset_Handler
ldr r4, =RCC_AHB1ENR ; enable GPIOA clock
ldr r5, [r4]
orr r5, #1
str r5, [r4]

ldr r4, =GPIOA_MODER ; set pin to output mode ldr r5, [r4]
bic r5, #0x00000C00
orr r5, #0x00000400
str r5, [r4]

L1 ldr r4, =GPIOA_BSRR
ldr r5, =0x00000020 ; turn on LED str r5, [r4]
mov r0, #500
bl delay

ldr r4, =GPIOA_BSRR
ldr r5, =0x00200000 ; turn off LED str r5, [r4]
mov r0, #500
bl delay
b L1 ; loop forever

; delay milliseconds in R0 delay ldr r1, =5325 DL1 subs r1, r1, #1

bne DL1
subs r0, r0, #1 bne delay bx lr

end

Answer to Review Questions

Section 2-1
1. 512KB
2. 128KB
3. Program code
4. Data
5. 0x0000 0000 to 0x0007 FFFF
6. R is for 64-pin and E is for 512 KB of Flash memory

Section 2-2
1. 3 (A, B, and C). It also has part of port H.
2. True
3. 16
4. 1
5. 1

Section 2-3
1. High
2. True
3. It takes time and pins of microcontroller to scan the 7-segments.
4. (1) It refreshes the 7-segment displays, (2) it is connected to the
microcontroller using I2C which uses just 2 pins of the microcontroller.
5. (a) 8 pins for data and 8 pins for selector; (b) 8 pins for data and 3 pins for
selector.

Chapter 3: LCD and Keyboard Interfacing

In this chapter, we show interfacing to two real-world devices: LCD and
Keyboard. They are widely used in different embedded systems.

Section 3.1: Interfacing to an LCD

This section describes the operation modes of the LCDs, then describes how
to program and interface an LCD to the STM Arm board.

LCD operation
In recent years the LCD is replacing LEDs (seven-segment LEDs or other
multi-segment LEDs). This
is due to the following reasons:

1. The declining prices of LCDs.
2. The ability to display numbers, characters, and graphics. This is in
contrast to LEDs, which are limited to numbers and a few characters. (The
new OLED panels are relatively much more expensive except the very small
ones. But their prices are dropping. The interface and programming to
OLED are similar to graphic LCD.)
3. Incorporation of the refreshing controller into the LCD itself, thereby
relieving the CPU of the task of refreshing the LCD.
4. Ease of programming for both characters and graphics.
5. The extremely low power consumption of LCD (when backlight is not
used).

LCD module pin descriptions

For many years, the use of Hitachi HD44780 LCD controller dominated the
character LCD modules. Even today, most of the character LCD modules
still use HD44780 or a variation of it. The HD44780 controller has a 14 pin
interface for the microprocessor. We will discuss this 14 pin interface in this
section. The function of each pin is given in Table 3-1. Figure 3-1 shows the
pin positions for various LCD modules.

Pin Symbol I/O Description
1 VSS -Ground
2 VCC -+5V power supply
3 VEE -Power supply to control contrast
4 RS I RS = 0 to select command register, RS = 1 to select data register
5 R/W I R/W = 0 for write, R/W = 1 for read
6 E I Enable
7 DB0 I/O The 8-bit data bus
8 DB1 I/O The 8-bit data bus
9 DB2 I/O The 8-bit data bus 10 DB3 I/O The 8-bit data bus 11 DB4 I/O The
4/8-bit data bus 12 DB5 I/O The 4/8-bit data bus 13 DB6 I/O The 4/8-bit
data bus 14 DB7 I/O The 4/8-bit data bus

Table 3-1: Pin Descriptions for LCD

Figure 3-1: Pin Positions for Various LCDs from Optrex
VCC, VSS, and VEE: While VCC and VSS provide +5V power supply and
ground, respectively, VEE is used for controlling the LCD contrast.

RS, register select: There are two registers inside the LCD and the RS pin is
used for their selection as follows. If RS = 0, the instruction command code
register is selected, allowing the user to send a command such as clear
display, cursor at home, and so on (or query the busy status bit of the
controller). If RS = 1, the data register is selected, allowing the user to send
data to be displayed on the LCD (or to retrieve data from the LCD
controller).

R/W, read/write: R/W input allows the user to write information into the
LCD controller or read information from it. R/W = 1 when reading and R/W
= 0 when writing.

E, enable: The enable pin is used by the LCD to latch information presented
to its data pins. When data is supplied to data pins, a pulse (Low-to-High-to-
Low) must be applied to this pin in order for the LCD to latch in the data
present at the data pins. This pulse must be a minimum of 230 ns wide,
according to Hitachi datasheet.

D0–D7: The 8-bit data pins are used to send information to the LCD or read
the contents of the LCD's internal registers. The LCD controller is capable of
operating with 4-bit data and only D4-D7 are used. We will discuss this in
more details later.

To display letters and numbers, we send ASCII codes for the letters A–Z, a–
z, numbers 0–9, and the punctuation marks to these pins while making RS =
1.

There are also instruction command codes that can be sent to the LCD in
order to clear the display, force the cursor to the home position, or blink the
cursor. Table 3-2 lists some commonly used command codes. For detailed
command codes, see Table 3-4.

Code (Hex) Command to LCD Instruction Register
1 Clear display screen
2 Return cursor home
6 Increment cursor (shift cursor to right) F Display on, cursor blinking 80
Force cursor to beginning of 1st line C0 Force cursor to beginning of 2nd
line 38 2 lines and 5x7 character (8-bit data, D0 to D7) 28 2 lines and 5x7
character (4-bit data, D4 to D7)

Table 3-2: Some commonly used LCD Command Codes
Sending commands to LCDs

To send any of the commands to the LCD, make pins RS = 0, R/W = 0, and
send a pulse (L-to-H-toL) on the E pin to enable the internal latch of the
LCD. The connection of an LCD to the microcontroller is shown in Figure
3-2.

Figure 3-2:
LCD Connection to Microcontroller
Notice the following for the connection in Figure 3-2:

1. The LCD's data pins are connected to PORTD of the microcontroller.
2. The LCD's RS pin is connected to Pin 2 of PORTA of the microcontroller.
3. The LCD's R/W pin is connected to Pin 4 of PORTA of the
microcontroller.
4. The LCD's E pin is connected to Pin 5 of PORTA of the microcontroller.
5. Both Ports D and A are configured as output ports.

Sending data to the LCD
In order to send data to the LCD to be displayed, we must set pins RS = 1,
R/W = 0, and also send
a pulse (L-to-H-to-L) to the E pin to enable the internal latch of the LCD.
Because of the extremely low power feature of the LCD controller, it runs
much slower than the
microcontroller. The first two commands in Table 3-2 take up to 1.64 ms to
execute and all the other
commands and data take up to 40 us. (At the highest clock speed, MKL25Z4
can execute more than 1,000
instructions in 40 us.) After one command or data is written to the LCD
controller, one must wait until the
LCD controller is ready before issuing the next command/data otherwise the
second command/data will
be ignored. An easy way (not as efficient though) is to delay the
microcontroller for the maximal time it
may take for the previous command. We will use this method in the
following examples. All the examples
in this chapter use much more relaxed timing than the original HD44780
datasheet (See Table 3-4) to
accommodate the variations of different LCD modules. You may want adjust
the delay time for the LCD
module you use.

Program 3-1: This program displays a message on the LCD using 8-bit
mode and delay.
/* p3_1.c: Initialize and display "hello" on the LCD using 8-bit
data mode. *
* Initialize LCD controller and flash hello on the LCD.
* This program does not poll the status of the LCD.
* It uses delay to wait out the time LCD controller is busy.
* For simplicity, all delay below 1 ms uses 1 ms. You may

* want to adjust the amount of delay for your LCD controller
* to enhance the performance.
*
* The LCD controller is connected to the Nucleo-F446RE
* board as follows:
*
* PC0-PC7 for LCD D0-D7, respectively.
* PB5 for LCD R/S
* PB6 for LCD R/W
* PB7 for LCD EN
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

#define RS 0x20 /* PB5 mask for reg select */ #define RW 0x40 /* PB6
mask for read/write */ #define EN 0x80 /* PB7 mask for enable */

void delayMs(int n);
void LCD_command(unsigned char command); void LCD_data(char data);
void LCD_init(void);
void PORTS_init(void);

int main(void) {
/* initialize LCD controller */ LCD_init();
LCD_data('l'); LCD_data('o'); delayMs(1000);

while(1) {
/* Write "hello" on LCD */ LCD_data('h');
LCD_data('e');
LCD_data('l');

/* clear LCD display */ LCD_command(1);
delayMs(500);

}
}

/* initialize port pins then initialize LCD controller */ void
LCD_init(void) {
PORTS_init();

delayMs(30); /* initialization sequence */ LCD_command(0x30);
delayMs(10);
LCD_command(0x30);
delayMs(1);
LCD_command(0x30);

LCD_command(0x38); /* set 8-bit data, 2-line, 5x7 font */
LCD_command(0x06); /* move cursor right after each char */

LCD_command(0x01); /* clear screen, move cursor to home */
LCD_command(0x0F); /* turn on display, cursor blinking */

}
void PORTS_init(void) {
RCC->AHB1ENR |= 0x06; /* enable GPIOB/C clock */

/* PB5 for LCD R/S */
/* PB6 for LCD R/W */
/* PB7 for LCD EN */
GPIOB->MODER &= ~0x0000FC00; /* clear pin mode */ GPIOB->MODER |=
0x00005400; /* set pin output mode */ GPIOB->BSRR = 0x00C00000; /*
turn off EN and R/W */

/* PC0-PC7 for LCD D0-D7, respectively. */
GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode */ GPIOC->MODER |=
0x00005555; /* set pin output mode */

}

void LCD_command(unsigned char command) {
GPIOB->BSRR = (RS | RW) << 16; /* RS = 0, R/W = 0 */ GPIOC->ODR =
command; /* put command on data bus */ GPIOB->BSRR = EN; /* pulse E
high */ delayMs(0);
GPIOB->BSRR = EN << 16; /* clear E */

if (command < 4)
delayMs(2); /* command 1 and 2 needs up to 1.64ms */
else
delayMs(1); /* all others 40 us */
}
GPIOC->ODR = data; /* put data on data bus */ GPIOB->BSRR = EN; /*
pulse E high */ delayMs(0);
GPIOB->BSRR = EN << 16; /* clear E */

void LCD_data(char data) {
GPIOB->BSRR = RS; /* RS = 1 */ GPIOB->BSRR = RW << 16; /* R/W = 0 */

delayMs(1); }

/* delay n milliseconds (16 MHz CPU clock) */ void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ;
}

Checking LCD busy flag

The above programs used a time delay before issuing the next data or
command. This allows the LCD a sufficient amount of time to get ready to

accept the next data. However, the LCD has a busy flag. We can monitor the
busy flag and issue data when it is ready. This will speed up the process. To
check the busy flag, we must read the command register (R/W = 1, RS = 0).
The busy flag is the D7 bit of that register. Therefore, if R/W = 1, RS = 0.
When D7 = 1 (busy flag = 1), the LCD is busy taking care of internal
operations and will not accept any new information. When D7 = 0, the LCD
is ready to receive new information.

Doing so requires switching the direction of the port connected to the data
bus to input mode when polling the status register then switch the port
direction back to output mode to send the next command. If the port
direction is incorrect, it may damage the microcontroller or the LCD
module. The next program example uses polling of the busy bit in the status
register.

Program 3-2: This program displays a message on the LCD using 8-bit
mode and polling of the status register
/* p3_2.c: Initialize and display "Hello" on the LCD using 8-bit
data mode. *
* Data pins use Port C; control pins use Port B.
* Polling of the busy bit of the LCD status register is used for
timing. *
* The LCD controller is connected to the Nucleo-F446RE
* board as follows:
*
* PC0-PC7 for LCD D0-D7, respectively.
* PB5 for LCD R/S
* PB6 for LCD R/W
* PB7 for LCD EN
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h" void delayMs(int n);
void LCD_command(unsigned char command); void
LCD_command_noPoll(unsigned char command); void LCD_data(char data);
void LCD_init(void);
void LCD_ready(void);
void PORTS_init(void);

#define RS 0x20 /* PB5 mask for reg select */ #define RW 0x40 /* PB6
mask for read/write */ #define EN 0x80 /* PB7 mask for enable */

int main(void) {
/* initialize LCD controller */ LCD_init();

while(1) {
/* Write "Hello" on LCD */ LCD_data('H');
LCD_data('e');
LCD_data('l');
LCD_data('l');
LCD_data('o');
delayMs(500);

/* clear LCD display */ LCD_command(1);
delayMs(500);

}
}

/* Initialize port pins then initialize LCD controller */ void
LCD_init(void) {
PORTS_init();

delayMs(30); /* initialization sequence */
LCD_command_noPoll(0x30); /* LCD does not respond to status poll yet
*/ delayMs(10);
LCD_command_noPoll(0x30);
delayMs(1);
LCD_command_noPoll(0x30); /* busy flag cannot be polled before this
*/

LCD_command(0x38); /* set 8-bit data, 2-line, 5x7 font */
LCD_command(0x06); /* move cursor right after each char */
LCD_command(0x01); /* clear screen, move cursor to home */
LCD_command(0x0F); /* turn on display, cursor blinking */

}
void PORTS_init(void) {
RCC->AHB1ENR |= 0x06; /* enable GPIOB/C clock */

/* PB5 for LCD R/S */
/* PB6 for LCD R/W */
/* PB7 for LCD EN */
GPIOB->MODER &= ~0x0000FC00; /* clear pin mode */ GPIOB->MODER |=
0x00005400; /* set pin output mode */ GPIOB->BSRR = 0x00C00000; /*
turn off EN and R/W */ /* This function waits until LCD controller
is ready to

/* PC0-PC7 for LCD D0-D7, respectively. */
GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode */ GPIOC->MODER |=
0x00005555; /* set pin output mode */

}

* accept a new command/data before returns.
* It polls the busy bit of the status register of LCD controller. *
In order to read the status register, the data port of the *

microcontroller has to change to an input port before reading * the
LCD. The data port of the microcontroller is return to * output port
before the end of this function.
*/

void LCD_ready(void) {
char status;

/* change to read configuration to poll the status register */
GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode */ GPIOB->BSRR = RS
<< 16; /* RS = 0 for status register */ GPIOB->BSRR = RW; /* R/W = 1
for read */

do { /* stay in the loop until it is not busy */ GPIOB->BSRR = EN;
/* pulse E high */ delayMs(0);
status = GPIOC->IDR; /* read status register */ GPIOB->BSRR = EN <<
16; /* clear E */
delayMs(0);

} while (status & 0x80); /* check busy bit */

/* return to default write configuration */
GPIOB->BSRR = RW << 16; /* R/W = 0, LCD input */ GPIOC->MODER |=
0x00005555; /* Port C as output */

}

void LCD_command(unsigned char command) {
LCD_ready(); /* wait for LCD controller ready */ GPIOB->BSRR = (RS |
RW) << 16; /* RS = 0, R/W = 0 */ GPIOC->ODR = command; /* put
command on data bus */ GPIOB->BSRR = EN; /* pulse E high */
delayMs(0);
GPIOB->BSRR = EN << 16; /* clear E */

}

/* This function is used at the beginning of the initialization *
when the busy bit of the status register is not readable. */

void LCD_command_noPoll(unsigned char command) {
GPIOB->BSRR = (RS | RW) << 16; /* RS = 0, R/W = 0 */ GPIOC->ODR =
command; /* put command on data bus */ GPIOB->BSRR = EN; /* pulse E
high */ delayMs(0);
GPIOB->BSRR = EN << 16; /* clear E */

}

void LCD_data(char data) {
LCD_ready(); /* wait for LCD controller ready */ GPIOB->BSRR = RS;
/* RS = 1 */
GPIOB->BSRR = RW << 16; /* R/W = 0 */
GPIOC->ODR = data; /* put data on data bus */ GPIOB->BSRR = EN; /*

pulse E high */ delayMs(0);
GPIOB->BSRR = EN << 16; /* clear E */

}

/* delay n milliseconds (16 MHz CPU clock) */ void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ;
}

LCD 4-bit Option

To save the number of microcontroller pins used by LCD interfacing, we can
use the 4-bit data option instead of 8-bit. In the 4-bit data option, we only
need to connect D7-D4 to microcontroller. Together with the three control
lines, the interface between the microcontroller and the LCD module will fit
in a single 8-bit port. See Figure 3-3.

With 4-bit data option, the microcontroller needs to issue commands to put
the LCD controller in 4-bit mode during initialization. This is done with
command 0x20 in Program 3-3. After that, every command or data needs to
be broken down to two 4-bit operations, upper nibble first. In Program 3-3,
the upper nibble is extracted usingcommand & 0xF0 and the lower
nibble is shifted into place by command << 4.

Figure 3-3:
LCD Connection for 4-bit Data
Program 3-3: This program uses the 4-bit data option to show a message
on the LCD.
/* p3_3.c: Initialize and display "HELLO" on the LCD using 4-bit
data mode. *
* Because of 4-bit data mode, every byte of command or data is
* transmitted twice, one for the upper nibble and one for lower

nibble. * This program does not poll the status of the LCD.
* It uses delay to wait out the time LCD controller is busy.
* For simplicity, all delay below 1 ms uses 1 ms. You may
* want to adjust the amount of delay for your LCD controller
* to enhance the performance.
*
* The LCD controller is connected to the Nucleo-F446RE
* board as follows:
*
* PC4-PC7 for LCD D0-D7, respectively.
* PB5 for LCD R/S
* LCD R/W is tied to ground
* PB7 for LCD EN
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define RS 0x20 /* PB5 mask for reg select */ #define EN 0x80 /* PB7
mask for enable */

void delayMs(int n);
void LCD_nibble_write(char data, unsigned char control); void
LCD_command(unsigned char command);
void LCD_data(char data);
void LCD_init(void);
void PORTS_init(void);

int main(void) {
/* initialize LCD controller */ LCD_init();

while(1) {
/* Write "HELLO" on LCD */ LCD_data('H');
LCD_data('E');
LCD_data('L');
LCD_data('L');
LCD_data('O');
delayMs(1000);

/* clear LCD display */ LCD_command(1);
delayMs(1000);

}
}

/* initialize GPIOB/C then initialize LCD controller */ void
LCD_init(void) {
PORTS_init();

delayMs(20); /* LCD controller reset sequence */
LCD_nibble_write(0x30, 0);
delayMs(5);

LCD_nibble_write(0x30, 0);
delayMs(1);
LCD_nibble_write(0x30, 0);
delayMs(1);
void PORTS_init(void) {

LCD_nibble_write(0x20, 0); /* use 4-bit data mode */
delayMs(1);
LCD_command(0x28); /* set 4-bit data, 2-line, 5x7 font */
LCD_command(0x06); /* move cursor right */
LCD_command(0x01); /* clear screen, move cursor to home */
LCD_command(0x0F); /* turn on display, cursor blinking */

RCC->AHB1ENR |= 0x06; /* enable GPIOB/C clock */

/* PORTB 5 for LCD R/S */
/* PORTB 7 for LCD EN */
GPIOB->MODER &= ~0x0000CC00; /* clear pin mode */ GPIOB->MODER |=
0x00004400; /* set pin output mode */ GPIOB->BSRR = 0x00800000; /*
turn off EN */

/* PC4-PC7 for LCD D4-D7, respectively. */
GPIOC->MODER &= ~0x0000FF00; /* clear pin mode */ GPIOC->MODER |=
0x00005500; /* set pin output mode */

}

void LCD_nibble_write(char data, unsigned char control) { /*
populate data bits */
GPIOC->BSRR = 0x00F00000; /* clear data bits */ GPIOC->BSRR = data &
0xF0; /* set data bits */

/* set R/S bit */
if (control & RS)

GPIOB->BSRR = RS;
else
GPIOB->BSRR = RS << 16;

/* pulse E */
GPIOB->BSRR = EN;
delayMs(0);
GPIOB->BSRR = EN << 16;

}

void LCD_command(unsigned char command) {
LCD_nibble_write(command & 0xF0, 0); /* upper nibble first */
LCD_nibble_write(command << 4, 0); /* then lower nibble */

if (command < 4)
delayMs(2); /* command 1 and 2 needs up to 1.64ms */

else
delayMs(1); /* all others 40 us */
}

void LCD_data(char data) {
LCD_nibble_write(data & 0xF0, RS); /* upper nibble first */
LCD_nibble_write(data << 4, RS); /* then lower nibble */

delayMs(1); }

/* delay n milliseconds (16 MHz CPU clock) */ void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ;

LCD cursor position

In the LCD, one can move the cursor to any location in the display by
issuing an address command. The next character sent will appear at the
cursor position. For the two-line LCD, the address command for the first
location of line 1 is 0x80, and for line 2 it is 0xC0. The following shows
address locations and how they are accessed:

where A6A5A4A3A2A1A0=
0000000 to 0100111 for line 1 and A6A5A4A3A2A1A0 = 1000000 to
1100111 for line 2. See Table 3-3.
Table 3-3: LCD Addressing Commands DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Line 1 (min) 1 0 0 0 0 0 0 0
Line 1 (max) 1 0 1 0 0 1 1 1
Line 2 (min) 1 1 0 0 0 0 0 0
Line 2 (max) 1 1 1 0 0 1 1 1

The upper address range can go as high as 0100111 for the 40-character-
wide LCD while for the 20-character-wide LCD the address of the visible
positions goes up to 010011 (19 decimal = 10011 binary). Notice that the
upper range 0100111 (binary) = 39 decimal, which corresponds to locations
0 to 39 for the LCDs of 40 × 2 size. Figure 3-4 shows the addresses of cursor
positions for various sizes of LCDs. All the addresses are in hex. Notice the
starting addresses for four line LCD are not in sequential order.

Figure 3-4: Cursor Addresses for
Some LCDs
As an example of setting the cursor at the fourth location of line 1 we have
the following:
LCD_command(0x83);
and for the sixth location of the second line we have:
LCD_command(0xC5);
Notice that the cursor location addresses are in hex and starting at 0 as the
first location.

LCD timing and data sheet
Figures 3-5 and 3-6 show timing diagrams for LCD write and read timing,
respectively.

Figure 3-5: LCD Write Timing

Figure 3-6: LCD Read Timing

Notice that the write operation happens on the H-to-L transition of the E pin.
The microcontroller must have data ready and stable on the data lines before
the H-to-L transition of E to satisfy the setup time requirement.

The read operation is activated by the L-to-H pulse of the E pin. After the
delay time, the LCD controller will have the data available on the data bus if
the R/W line is high. The microcontroller should read the data from the data
lines before lowering the E pulse.

Table 3-4 provides a more detailed list of LCD instructions.
Instructio n
Clear display
Return Home
Entry
Mode Set

Display On/Off Control

Cursor or Display shift

Function Set

Set CG RAM
Address Set DD RAM
Address

Execution
RS R/ DB DB DB DB DB DB DB DBDescription TimeW 7 6 5 4 3 2 1 0 (Max)
Clears entire display and sets

0 0 0 0 0 0 0 0 0 1 DD RAM address 0 in address 1.64 ms counter
Sets DD RAM address to 0 as address counter. Also returns

0 0 0 0 0 0 0 0 1 - display being shifted to 1.64 ms original positions. DD
RAM contents remain unchanged. Sets cursor move direction and specifies
shift of display.

0 0 0 0 0 0 0 1I/ S These operations are 40µsD performed during data write
and read.
Sets On/Off of entire display 0 0 0 0 0 0 1 D C B (D), cursor On/Off (C),
and40µsblink of cursor position
character (B).
Moves cursor and shifts 0 0 0 0 0 1S/ R/ - - display without changing DD
40µsC L RAM contents.
Sets interface data length 0 0 0 0 1D N F - - (DL), number of display lines
40µsL (L), and character font (F)

Sets CG RAM address. CG 0 0 0 1 AGC RAM data is sent and 40µs
received after this setting.
Sets DD RAM address. DD 0 0 1 ADD RAM data is sent and 40µs
received after this setting.

Read BusyBFlag & 0 1 FAddress
AC
Reads Busy flag (BF)

indicating internal operation 40µsis being performed and reads
address counter contents.
Write
Data CG or 1 0

DD RAM
Read Data
CG or DD 1 1 RAM
Abbreviations:

Write Data
Writes data into DD or CG 40µsRAM.
Read Data

DD RAM: Display data RAM
CG RAM: Character generator RAM AGC: CG RAM address
Reads data from DD or CG 40µsRAM.

ADD: DD RAM address, corresponds to cursor address AC: address counter
used for both DD and CG RAM addresses I/D: 1 = Increment, 0: Decrement
S =1: Accompanies display shift
S/C: 1 = Display shift, 0: Cursor move
R/L: 1: Shift to the right, 0: Shift to the left
DL: 1 = 8 bits, 0 = 4 bits
N: 1 = 2-line, 0 = 1-line
F: 1 = 5 x 10 dots, 0 = 5 x 7 dots
BF: 1 = Internal operation, 0 = Can accept instruction

Table 3-4: List of LCD Instructions

Review Questions
1. The RS pin is an _______ (input, output) pin for the LCD.
2. The E pin is an ________ (input, output) pin for the LCD.
3. The E pin requires an _______ (H-to-L, L-to-H) transition to latch in
information at the data pins of the LCD.
4. For the LCD to recognize information at the data pins as data, RS must be
set to _____ (high, low).

5. Give the command codes for line 1, first character, and line 2, first
character.

Section 3.2: Interfacing the Keyboard to the CPU

To reduce the microcontroller I/O pin usage, keyboards are organized in a
matrix of rows and columns. The CPU accesses both rows and columns
through ports; therefore, with two 8-bit ports, an 8 × 8 matrix of 64 keys can
be connected to a microprocessor. When a key is pressed, a row and a
column make a contact; otherwise, there is no connection between rows and
columns. In a PC keyboards, an embedded microcontroller in the keyboard
takes care of the hardware and software interfacing of the keyboard. In such
systems, it is the function of programs stored in the ROM of the
microcontroller to scan the keys continuously, identify which one has been
activated, and present it to the main CPU on the motherboard. In this section,
we look at the mechanism by which the microprocessor scans and identifies
the key. For clarity some examples are provided.

Scanning and identifying the key

Figure 3-7 shows a 4 × 4 matrix connected to two ports. The rows are
connected to an output port and the columns are connected to an input port.
All the input pins have pull-up resistor connected. If no key has been
pressed, reading the input port will yield 1s for all columns. If all the rows
are driven low and a key is pressed, the column of that key will read back a 0
since the key pressed shorted that column to the row that is driven low. It is
the function of the microprocessor to scan the keyboard continuously to
detect and identify the key pressed. How it is done is explained next.

Figure 3-7: Matrix Keyboard
Connection to Ports
Key press detection

To detect the key pressed, the microprocessor drives all rows low then it
reads the columns. If the data read from the columns is D7–D4 = 1111, no
key has been pressed and the process continues until a key press is detected.
However, if one of the column bits has a zero, this means that a key was
pressed. For example, if D7–D4= 1101, this means that a key in the D5
column has been pressed.

The following program detects whether any of the keys is pressed.
Program 3-4: This program turns on the blue LED when a key is
pressed.
/* p3_4.c: Matrix keypad detect
*
* This program checks a 4x4 matrix keypad to see whether * a key is
pressed or not. When a key is pressed, it turns * on the LD2 (green
LED).
*
* PC0-3 are connected to the columns and PC4-7 are
* connected to the rows of the keypad.

*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

void delay(void);
void keypad_init(void); char keypad_kbhit(void);

int main(void) { keypad_init();

// enable PA5 for green LED
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0xC0000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin output mode */

while(1) {
if (keypad_kbhit() != 0) /* if a key is pressed */

GPIOA->BSRR = 0x00000020; /* turn on green LED */ else
GPIOA->BSRR = 0x00200000; /* turn off green LED */ }
}

/* this function initializes PC0-3 (column) and PC4-7 (row).
* The column pins need to have the pull-up resistors enabled.
*/

void keypad_init(void) {
RCC->AHB1ENR |= 0x14; /* enable GPIOC clock */
GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode to input */
GPIOC->PUPDR = 0x00000055; /* enable pull up resistors for column
pins */

}

/* This is a non-blocking function.
* If a key is pressed, it returns 1. Otherwise, it returns a 0. */

char keypad_kbhit(void) {
int col;
GPIOC->MODER = 0x00005500; /* make all row pins output */ GPIOC-
>BSRR = 0x00F00000; /* drive all row pins low */ delay(); /* wait
for signals to settle */ col = GPIOC->IDR & 0x000F; /* read all
column pins */ GPIOC->MODER &= ~0x0000FF00; /* disable all row pins
drive */ if (col == 0x000F) /* if all columns are high */ return 0;
/* no key pressed */
else
return 1; /* a key is pressed */ }

/* make a small delay */ void delay(void) {
int i;
for (i = 0; i < 20; i++) ; }

Key identification

After a key press is detected, the microprocessor will go through the process
of identifying the key. Starting from the top row, the microprocessor drives
one row low at a time; then it reads the columns. If the data read is all 1s, no
key in that row is pressed and the process is moved to the next row. It drives
the next row low, reads the columns, and checks for any zero. This process
continues until a row is identified with a zero in one of the columns. The
next task is to find out which column the pressed key belongs to. This should
be easy since each column is connected to a separate input pin. Look at
Example 3-1.

Example 3-1

From Figure 3-7, identify the row and column of the pressed key for each of
the following. (a) D3–D0 = 1110 for the row, D7–D4= 1011 for the column
(b) D3–D0 = 1101 for the row, D7–D4= 0111 for the column

Solution:

From Figure 3-7 the row and column can be used to identify the key.
(a) The row belongs to D0 and the column belongs to D6; therefore, the key
number 2 was pressed. (b) The row belongs to D1 and the column belongs to
D7; therefore, the key number 4 was pressed.

Figure 3-8 is the flowchart for the detection and identification of the key
activation.

Figure 3-8:
The Flowchart for Key Press Detection and Identification

Program 3-5 provides an implementation of the detection and identification
algorithm in C language. We will exam it in details here. First for the
initialization of the ports, Port C pins 3-0 are used for rows. The Port C pins
7-4 are used for columns. They are all configured as input digital pin to
prevent accidental short circuit of two output pins. If output pins are driven
high and low and two keys of the same column are pressed at the same time
by accident, they will short the output low to output high of the adjacent pins
and cause damages to these pins. To prevent this, all pins are configured as
input pin and only one pin is configured as output pin at a time. Since only
one pin is actively driving the row, shorting two rows will not damage the
circuit. The input pins are configured with pull-up enabled so that when the
connected keys are not pressed, they stay high and read as 1.

The key scanning function is a non-blocking function, meaning the function
returns regardless of whether there is a key pressed or not. The function first

drives all rows low and check to see if any key pressed. If no key is pressed,
a zero is returned. Otherwise the code will proceed to check one row at a
time by driving only one row low at a time and read the columns. If one of
the columns is active, it will find out which column it is. With the
combination of the active row and active column, the code will find out the
key that is pressed and return a unique numeric code. The program below
reads a 4x4 keypad and use the key code returned to set the LEDs. LED
program is borrowed from P2-7 in Chapter 2.

Program 3-5: This program displays the pressed key on the single LED.
/* p3_5.c: Matrix keypad scanning
*
* This program scans a 4x4 matrix keypad and returns a unique *
number for each key pressed.
* LD2 (green LED) is used to blink the returned number. *
* PC0-3 are connected to the columns and PC4-7 are
* connected to the rows of the keypad.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

void delay(void);
void delayMs(int n);
void keypad_init(void); char keypad_getkey(void); void
LED_init(void);
void LED_blink(int value);

int main(void) {
unsigned char key;
keypad_init(); LED_init();

while(1) {
key = keypad_getkey(); /* read the keypad */
if (key != 0)

LED_blink(key); /* set LEDs according to the key code */ }
}
/* this function initializes PC0-3 (column) and PC4-7 (row).

* The column pins need to have the pull-up resistors enabled.

*/
void keypad_init(void) {
RCC->AHB1ENR |= 0x14; /* enable GPIOC clock */
GPIOC->MODER &= ~0x0000FFFF; /* clear pin mode to input */

GPIOC->PUPDR = 0x00000055; /* enable pull up resistors for column
pins */

}
*
* Only one row is driven so that if multiple keys are pressed and
row pins are * shorted, the microcontroller will not be damaged.
When the row is being * deactivated, it is driven high first
otherwise the stray capacitance may keep * the inactive row low for
some time.
*/

/*
* This is a non-blocking function to read the keypad.
* If a key is pressed, it returns a unique code for the key.
* Otherwise, a zero is returned.
* PC6-9 are used as input and connected to the columns. Pull-up
resistors are * enabled so when the keys are not pressed, these pins
are pulled high. * PC4-7 are used as output that drives the keypad
rows.
* First, all rows are driven low and the input pins are read. If no
key is * pressed, they will read as all one because of the pull up
resistors. * If they are not all one, some key is pressed.
* If some key is pressed, the program proceeds to drive only one row
low at * a time and leave the rest of the rows inactive (float) then
read the input pins. * Knowing which row is active and which column
is active, the program can decide * which key is pressed.

char keypad_getkey(void) {
int row, col;
const int row_mode[] = {0x00000100, 0x00000400, 0x00001000,
0x00004000}; /* one

row is output */
const int row_low[] = {0x00100000, 0x00200000, 0x00400000,
0x00800000}; /* one
row is low */
const int row_high[] = {0x00000010, 0x00000020, 0x00000040,
0x00000080}; /* one
row is high */

/* check to see any key pressed */
GPIOC->MODER = 0x00005500; /* make all row pins output */ GPIOC-
>BSRR = 0x00F00000; /* drive all row pins low */ delay(); /* wait
for signals to settle */ col = GPIOC->IDR & 0x000F; /* read all
column pins */ GPIOC->MODER &= ~0x0000FF00; /* disable all row pins
drive */ if (col == 0x000F) /* if all columns are high */

return 0; /* no key pressed */

/* If a key is pressed, it gets here to find out which key.
* It activates one row at a time and read the input to see

* which column is active. */

for (row = 0; row < 4; row++) {
GPIOC->MODER &= ~0x0000FF00; /* disable all row pins drive */ GPIOC-
>MODER |= row_mode[row]; /* enable one row at a time */ GPIOC->BSRR
= row_low[row]; /* drive the active row low */ delay(); /* wait for
signal to settle */ col = GPIOC->IDR & 0x000F; /* read all columns
*/
GPIOC->BSRR = row_high[row]; /* drive the active row high */ if (col
!= 0x000F) break; /* if one of the input is low, some key is

pressed. */
}
GPIOC->BSRR = 0x000000F0; /* drive all rows high before disable them
/ GPIOC->MODER &= ~0x0000FF00; / disable all rows */
if (row == 4)

return 0; /* if we get here, no key is pressed */

/* gets here when one of the rows has key pressed, check which
column it is */ if (col == 0x000E) return row * 4 + 1; /* key in
column 0 */ if (col == 0x000D) return row * 4 + 2; /* key in column
1 */ if (col == 0x000B) return row * 4 + 3; /* key in column 2 */ if
(col == 0x0007) return row * 4 + 4; /* key in column 3 */

return 0; /* just to be safe */ }
void LED_init(void) { // enable PA5 for green LED RCC->AHB1ENR |= 1;
/* enable GPIOA clock */ GPIOA->MODER &= ~0xC0000C00; /* clear pin
mode */ GPIOA->MODER |= 0x00000400; /* set pin output mode */ } /*
turn on or off the LEDs according to the value */
void LED_blink(int value) {
value %= 17; /* cap the max count at 16 */

for (; value > 0; value--) {
GPIOA->BSRR = 0x00000020; /* turn on LED */ delayMs(200);
GPIOA->BSRR = 0x00200000; /* turn off LED */ delayMs(200);

}
delayMs(200);
}

/* make a small delay */ void delay(void) {
int i;
for (i = 0; i < 20; i++) ; }

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Contact Bounce and Debounce

When a mechanical switch is closed or opened, the contacts do not make a
clean transition instantaneously, rather the contacts open and close several
times before they settle. This event is called contact bounce (see Figure 3-9).
So it is possible when the program first detects a switch in the keypad is
pressed but when interrogating which key is pressed, it would find no key
pressed. This is the reason we have a return 0 after checking all the rows.
Another problem manifested by contact bounce is that one key press may be
recognized as multiple key presses by the program. Contact bounce also
occurs when the switch is released. Because the switch contacts open and
close several times before they settle, the program may detect a key press
when the key is released.

Figure 3-9: Switch
contact bounces

For many applications, it is important that each key press is only recognized
as one action. When you press a numeral key of a calculator, you expect to
get only one digit. A contact bounce results in multiple digits entered with a
single key press. A simple software solution is that when a transition of the
contact state change is detected such as a key pressed or a key released, the
software does a delay for about 10 – 20 ms to wait out the contact bounce.
After the delay, the contacts should be settled and stable.

There are IC chips such as National Semiconductor's MM74C923 that
incorporate keyboard scanning and decoding all in one chip. Such chips use
combinations of counters and logic gates (no microprocessor) to implement
the underlying concepts presented in Programs 3-4 and 3-5.

Review Questions
1. True or false. To see if any key is pressed, all rows are driven low.
2. If D3–D0 = 0111 is the data read from the columns, which column does
the key pressed belong to?
3. True or false. Key press detection and key identification require two

different processes.
4. In Figure 3-7, if the row has D3–D0 = 1110 and the columns are D7–D4 =
1110, which key is pressed?
5. True or false. To identify the key pressed, one row at a time is driven low.

Answers to Review Questions

Section 3-1
1. Input
2. Input
3. H-to-L
4. High
5. 0x80 and 0xC0

Section 3-2
1. True
2. Column 3
3. True
4. A
5. True

Chapter 4: UART Serial Port Programming

Computers transfer data in two ways: parallel and serial. In parallel data
transfers, often eight or more lines (wire conductors) are used to transfer
data to another device. In serial communication, the data is sent one bit at a
time. Years ago, parallel data transfer was preferred for a short distance
because it may transfer multiple bits at the same time and provides higher
throughput. As technology advances, the data rate of serial communication
may exceed parallel communication while parallel communication still
retains the disadvantages of the size and cost of cable and connector, the
crosstalk between the data lines and the difficulty of synchronizing the
arrival time of data lines at a longer distance.

Serial communication and the study of associated chips are the topics of this
chapter. Section 4.1 examines the basic concepts of serial communication.
The STM Arm serial COM (UART) port programming is covered in

Sections 4.2 and 4.3. The other serial data transfer protocols such as SPI and
I2C are covered in future chapters.

Section 4.1: Basics of Serial Communication

When a microprocessor communicates with the outside world it usually
provides the data in bytesize chunks. For parallel transfer, 8-bit data is
transferred at the same time. For serial transfer, 8-bit data is transferred one
bit at a time. Figure 4-1 diagrams serial versus parallel data transfers.

Figure 4-1:
Serial vs. Parallel Data Transfer

The fact that in serial communication, a single data line is used instead of the
8-bit data line of parallel communication not only makes it much cheaper but
also makes it possible for two computers located in two distant locations to
communicate.

For serial data communication to work, the byte of data must be grabbed
from the 8-bit data bus of the microprocessor and converted to serial bits
using a parallel-in-serial-out shift register; then it can be transmitted over a
single data line. This also means that at the receiving end there must be a
serial-inparallel-out shift register to receive the serial data, pack it into a
byte, and present it to the system at the receiving end. See Figures 4-2 and 4-
3.

Figure 4-2: Parallel In Serial Out

Figure 4-3: Serial In Parallel Out

When the distance is short, the digital signal can be transferred as it is on a
simple wire and requires no modulation. This is how PC keyboards transfer
data between the keyboard and the motherboard. However, for long-distance
data transfers using communication lines such as a telephone, serial data
communication requires a modem to modulate (convert from 0s and 1s to
audio tones) the data before putting it on the transmission media and
demodulate (convert from audio tones to 0s and 1s) at the receiving end.

Serial data communication uses two methods, asynchronous and
synchronous. With synchronous communication, the clock is transmitted
alongside with the data. With asynchronous communication, no clock is
transmitted. The transmitter and receiver agree on a clock speed for data

transmission. They may have slight speed difference so the receiver will try
to synchronize the clock to the incoming data for every character received.
We will see how it works later. The synchronous method usually transfers a
block of data (characters) at a time while the asynchronous transfers a single
byte at a time.

It is possible to write software to use either of these methods, but the
programs can be tedious and inefficient. For this reason, special IC chips are
made by many manufacturers for serial data communications. These chips
are commonly referred to as UART (universal asynchronous
receivertransmitter) and USART (universal synchronous-asynchronous
receiver-transmitter). The COM port in the PC uses an UART. When this
function is incorporated into a microcontroller, it is often referred as SCI
(Serial Communication Interface).

Half- and full-duplex transmission

In data transmission, a duplex transmission is one in which the data can be
transmitted and received. This is in contrast to simplex transmission such as
printers, in which the computer only sends data. Duplex transmissions can
be half or full duplex. If data is transmitted one way at a time, it is referred
to as half duplex. If the data can go both ways at the same time, it is full
duplex. Of course, full duplex requires two wire conductors for the data lines
(in addition to ground), one for the transmission and one for the reception, in
order to transfer and receive data simultaneously. See Figure 4-4.

Figure 4-4:
Simplex, Half-, and Full-Duplex Transfers
Asynchronous serial communication and data framing

The data coming in at the receiving end of the data line in a serial data
transfer is all 0s and 1s; it is difficult to make sense of the data unless the
sender and receiver agree on a set of rules, a protocol, on how the data is
packed, how many bits constitute a character, and when the data begins and
ends.

Start and stop bits

Asynchronous serial data communication is widely used for character-
oriented transmissions. In the asynchronous method, each character, such as
ASCII characters, is packed between the start and stop bits. This is called
framing. The start bit is always one bit but the stop bit can be one or two
bits. The start bit is always a 0 (low) and the stop bit(s) is a 1 (high). For
example, look at Figure 4-5 where the ASCII character "A", binary 0100
0001, is framed between the start bit and 2 stop bits. Notice that the LSB is
sent out first.

Figure 4-5: Framing
ASCII "A" (0x41)

In Figure 4-5, when there is no data transfer, the signal stays 1 (high), which
is referred to as a mark. The 0 (low) is referred to as space. Notice that the
transmission begins with a start bit followed by D0, the LSB, and then the
rest of the bits until the MSB (D7), finally, the 2 stop bits indicating the end
of the character "A" are sent.

In asynchronous serial communications, peripheral chips can be
programmed for data that is 5, 6, 7, or 8 bits wide. While in older systems
ASCII characters were 7-bit, the modern systems usually send non-ASCII 8-
bit data. The old Baud code uses 5- or 6-bit characters but they are rarely
seen these days even though some of the hardware still support them. In
some older systems, due to the slowness of the receiving mechanical device,
2 stop bits were used to give the device sufficient time to organize itself
before transmission of the next byte. However, in modern PCs the use of 1
stop bit is common. Assuming that we are transferring a text file of ASCII
characters using 1 stop bit, we have a total of 10 bits for each character since
8 bits are for the ASCII code, and 1 and 2 bits are for start and stop bits,
respectively. Therefore, for each 8-bit character, there are extra two bits or
25% overhead. (2/8 x100=25%)

Parity bit

In some systems in order to maintain data integrity, the parity bit of the
character byte is included in the data frame. This means that for each
character (7- or 8-bit, depending on the system) we have a single parity bit in
addition to the start and stop bits. The parity bit may be odd or even. In the
case of an odd parity the number of data bits, including the parity bit, has an
odd number of 1s. Similarly, in an even parity the total number of bits,
including the parity bit, is even. For example, the ASCII character "A",
binary 0100 0001, has 0 for the even parity bit. UART chips allow

programming of the parity bit for odd, even, and no parity options, as we
will see in the next section. If a system requires the parity, the parity bit is
transmitted after the MSB, and is followed by the stop bit. Parity bit offers
single bit detection but no easy way to recovery. The modern data
communication uses a higher level of protocols such as TCP/IP that
performs error detection and recovery strategy. Usage of the parity bit is not
as useful and if rarely used.

Data transfer rate

The rate of data transfer in serial data communication is specified in bps
(bits per second). Another often used term for bps is Baud rate. However,
the baud and bps rates are not necessarily equal. This is due to the fact that
baud rate is defined as the number of signal changes per second. In modems,
it is possible for each signal to transfer multiple bits of data. As far as the
unmodulated signal is concerned, the baud rate and bps are the same, and for
this reason, in this book we use the terms bps and baud interchangeably.

Example 4-1
Calculate the total number of bits used in transferring 50 pages of text, each
with 80 × 25 characters. Assume 8 bits per character and 1 stop bit.

Solution:
For each character a total of 10 bits is used, 8 bits for the character, 1 stop bit
and 1 start bit. Therefore, the total number of bits is 80 × 25 × 10 = 20,000
bits per page. For 50 pages, 1,000,000 bits will be transferred.

Example 4-2
Calculate the time it takes to transfer the entire 50 pages of data in Example
4-1 using a baud rate of: (a) 9600 (b) 57,600
Solution:
(a) 1,000,000 / 9600 = 104 seconds
(b) 1,000,000 / 57,600 = 17 seconds
Example 4-3
Calculate the time it takes to download a movie of 2 gigabytes using a
telephone line. Assume 8 bits, 1 stop bit, no parity, and 57,600 baud rate.
Solution:

2 × 230 × 10 / 57,600 = 347,222 seconds = 4 days
RS232 and other serial I/O standards

To allow compatibility among data communication equipment made by
various manufacturers, an interfacing standard called RS232 was proposed
by the Electronics Industries Association (EIA) in 1960, where RS stands for
recommended standard. It has several revisions through the years using an
alphabet at the end to denote the revision number such as RS232C. It was
finally adopted as an EIA standard and renamed EIA232, later on, TIA232
but most of the people still refer to it as RS232.

Today, RS232 is still used for simple serial I/O interfacing. However, since
the standard was set long before the advent of the TTL logic family, the
input and output voltage levels are not TTL compatible. In the RS232 at the
receiver, a 1 is represented by –3V to –25 V, while the 0 bit is +3V to +25 V,
making the voltages between –3V to +3V undefined. For this reason, to
connect any RS232 to a TTL-level chip (microprocessor or UART) we must
use voltage converters such as MAX232 or MAX233 to convert the TTL
logic levels to the RS232 voltage level, and vice versa. MAX232 and
MAX233 IC chips are commonly referred to as line drivers/receivers. This is
shown in Figures 4-6 and 4-7. The MAX232 has two sets of line drivers for
transferring and receiving data, as shown in Figure 4-6. The line drivers used
for TxD are called T1 and T2, while the line receivers for RxD are
designated as R1 and R2. In many applications, only one of each is used.
Notice in MAX232 that the T1 line driver has a designation of T1in and
T1out on pin numbers 11 and 14, respectively. The T1in pin is the TTL side
and is connected to TxD of the USART, while T1out is the RS232 side that
is connected to the RxD pin of the RS232 DB connector. The R1 line driver
has a designation of R1in and R1out on pin numbers 13 and 12, respectively.
The R1in (pin 13) is the RS232 side that is connected to the TxD pin of the
RS232 DB connector, and R1out (pin 12) is the TTL side that is connected
to the RxD pin of the USART.

Figure 4-6: MAX232

Figure 4-7: MAX233

MAX232 requires four capacitors of 1 µF. To save board space, some
designers use the MAX233 chip from Maxim. The MAX233 performs the

same job as the MAX232 but eliminates the need for capacitors. However,
the MAX233 chip is larger and more expensive than the MAX232. See
Figure 4-7 for MAX233 with no capacitor used.

RS232 pins
Table 4-1 provides the pins and their labels for the RS232 cable, commonly
referred to as the DB
9 connector. The x86 PC 9-pin serial port is shown in Figure 4-8.

Pin Description
1 Data carrier detect (DCD)
2 Received data (RxD)
3 Transmitted data (TxD)
4 Data terminal ready (DTR)
5 Signal ground (GND)
6 Data set ready (DSR)
7 Request to send (RTS)
8 Clear to send (CTS)
9 Ring indicator (RI)

Table 4-1: RS232 Pins

Figure 4-8: 9-Pin Male Connector
Data communication classification

Current terminology classifies data communication equipment as DTE (data
terminal equipment) or DCE (data communication equipment). DTE refers
to terminals and computers that send and receive data, while DCE refers to
communication equipment, such as modems, that is responsible for

transferring the data. Notice that all the RS232 pin function definitions of
Table 4-1 are from the DTE point of view.

The simplest connection between two PCs (DTE and DTE) requires a
minimum of three pins, TxD, RxD, and ground, as shown in Figure 4-9.
Notice that the connection between two DTE devices, such as two PCs,
requires pins 2 and 3 to be interchanged as shown in Figure 4-9. In looking
at Figure 4-9, keep in mind that the RS232 signal definitions are from the
point of view of DTE.

Figure 4-9:
DTE-DCE and DTE-DTE Connections
Examining the RS232 handshaking signals

To ensure fast and reliable data transmission between two devices, the data
transfer must be coordinated. Some of the pins of the RS-232 are used for
handshaking signals. They are described below. Due to the fact that in serial
data communication the receiving device may have no room for the data,
there must be a way to inform the sender to stop sending data. So some of
these handshaking lines may be used for flow control tool

1. DTR (data terminal ready): When the terminal (or a PC COM port) is
turned on, after going through a self-test, it sends out signal DTR to indicate
that it is ready for communication. If there is something wrong with the
COM port, this signal will not be activated. This is an active-low signal and
can be used to inform the modem that the computer is alive and kicking.
This is an output pin from DTE (PC COM port) and an input to the modem.

2. DSR (data set ready): When a DCE (modem) is turned on and has gone
through the self-test, it asserts DSR to indicate that it is ready to
communicate. Therefore, it is an output from the modem (DCE) and an input

to the PC (DTE). This is an active-low signal. If for any reason the modem
cannot make a connection to the telephone, this signal remains inactive,
indicating to the PC (or terminal) that it cannot accept or send data.

3. RTS (request to send): When the DTE device (such as a PC) has a byte
to transmit, it asserts RTS to signal the modem that it has a byte of data to
transmit. RTS is an active-low output from the DTE and an input to the
modem.

4. CTS (clear to send): In response to RTS, when the modem has room for
storing the data it is to receive, it sends out signal CTS to the DTE (PC) to
indicate that it can receive the data now. This input signal to the DTE is used
by the DTE to start transmission.

5. CD (carrier detect, or DCD, data carrier detect): The modem asserts
signal DCD to inform the DTE (PC) that a valid carrier has been detected
and that contact between it and the other modem is established. Therefore,
DCD is an output from the modem and an input to the PC (DTE).

6. RI (ring indicator): An output from the modem (DCE) and an input to a
PC (DTE) indicates that the telephone is ringing. It goes on and off in
synchronization with the ringing sound. Of the six handshake signals, this is
the least often used, due to the fact that modems take care of answering the
phone. However, if in a given system the PC is in charge of answering the
phone, this signal can be used.
From the above description, PC and modem communication can be
summarized as follows: While

signals DTR and DSR are used by the PC and modem, respectively, to
indicate that they are alive and well, it is RTS and CTS that actually control
the flow of data. When the PC wants to send data it asserts RTS, and in
response, if the modem is ready (has the room) to accept the data, it sends
back CTS. If for lack of room, the modem does not activate CTS, the PC
will de-assert DTR and try again. RTS and CTS are also referred to as
hardware control flow signals. See Figure 4-10.

Figure 4-10: Null Modem Connection with Flow
Control Signals

This concludes the description of the most important pins of the RS232
handshake signals plus TxD, RxD, and ground. The ground is also referred
to as SG (signal ground). In the next section, we will see serial
communication programming for the microcontroller.

Review Questions
1. The transfer of data using parallel lines is ________________ (more
expensive, less expensive).
2. In communications between two PCs in New York and Dallas, we use
___________ (serial, parallel) data communication.
3. In serial data communication, which method fits block-oriented data?
4. True or false. Sending data to a printer is duplex.
5. True or false. In duplex we must have two data lines.
6. The start and stop bits are used in the ___________ (synchronous,
asynchronous) method.
7. Assuming that we are transmitting letter "D", binary 100 0100, with odd-
parity bit and 2 stop bits, show the sequence of bits transferred.
8. In Question 7, find the overhead due to framing.
9. Calculate the time it takes to transfer 400 characters as in Question 7 if we
use 1200 bps. What percentage of time is wasted due to overhead?
10. True or false. RS232 is not TTL-compatible.

Section 4.2: Programming the UART Ports

In this section, we examine the USART serial port registers of STM Arm
and show how to program them to transmit and receive data serially. The
STM Arm chips come with many on-chip USART (Universal
synchronous/asynchronous receiver transmitter) and they are designated as
USARTx, x=1, 2, 3 and so on. STM Arm chips also come with on-chip
LPUART (Low-power universal asynchronous receiver transmitter) and are
designated as LPUARTx, x=1, 2 and so on. The STM Arm supports SPI and
I2C protocols as we will see in future chapters. In the STM Arm trainers
such as Nulceo boards, the USART2 port is connected to the ST-Link
programming and debugging tool, which is connected to a USB connector.
See Figure 4-11. The ST-LINK/V2 is an in-circuit debugger and programmer
for the STM32 microcontroller families. The single wire interface module
(SWIM) and JTAG/serial wire debugging (SWD) interfaces are used to
communicate with any STM32 microcontroller located on an application
board. ST-LINK/V2 connection performs three distinct functions among
other things:

a) The programming (downloading) of the target device.
b) The debugging using Serial Wire Debug (SWD). The SWD is an
alternative to the JTAG standard.
c) Use as a virtual COM port.

Figure 4-11: ST-Link-V2-1 in Nucleo ST Arm board

Figure 4-12: ST-Link-V2-1 in Nucleo ST Arm board

When the USB cable connects the PC to the STM Arm trainer board, the
device driver at the host PC establishes a virtual connection between the PC
and the UART of the target STM Arm device with the ST-LINK in between.
On the Nucleo boards, the connection appears as a UART. On the host PC, it
appears as a COM/USB port and will work with communication software on
the PC such as a terminal emulator. It is called a virtual connection because
there is no need for an additional cable to make this connection.

Examining the datasheet of the Nucleo board, we see the UART2 uses PA2
(USART2_TX) and PA3 (USART2_RX) for TxD and RxD, respectively.
See Figure 4-13.

Figure 4-13: St-Link/V2 USART2-USB Port Connection

As we mentioned earlier, the STM Arm has many on-chip Serial COM ports.
They are designated as USARTx. The following is the partial list of the base
addresses in the memory map for STM32F446RE chip:

■ USART1 base address: 0x4001 1000 ■ USART2 base address:
0x4000 4400 ■ USART3 base address: 0x4000 4800

For other UART addresses see Table 2-3 in Chapter 2. Check the memory
map table for the datasheet of your device. The address offsets for some of
the USART registers are shown below. The actual physical addresses of
these registers are the offset addresses added to the base addresses.

Register Name Register Function

USART_SR USART_DR USART_BRR USART_CR1 USART_CR2
USART_CR3

Status Register
Data Register
Baud Rate Register Control Register 1 Control Register 2 Control Register 3

Register Address Offset (Hex)
0000
0004
0008

000C
0010
0014

Table 4-2: Partial list of USART Registers and their addresses Figure 4-14 shows the
simplified block diagram of the USART units

Figure 4-14: A Simplified Block Diagram of USART
In all microcontrollers, there are 3 groups of registers in UART peripherals:

1. Configuration registers: Before using the USART peripheral the
configuration registers must be initialized. This sets some parameters of the
communication including Baud rate, word length, stop bit, interrupts (if
needed). In STM Arm microcontroller, some of the configuration registers
are: BAUD, Control 1, and Control 2.

2. Transmit and receive register: To send data, we simply write to the
Transmit Data register (USART_TDR). The USART peripheral sends out
the content of the data transmit register through the serial transmit pin
(TXD). The received data is stored in the Receive Data register
(USART_RDR). Notice that we have two separate registers for transmit and
Receive registers. They have two different addresses. That means you write
to the transmit register and you read from the receive register.

3. Interrupt and status register: the interrupt and status register contains
some flags which show the state of sending and receiving data including the
availability of the newly received data, the existence of errors in receiving
data, the sending unit is ready for new data, Interrupt flag, etc. The interrupt

and status register is called as USART_ISR (USART interrupt and status) in
the STM Arms.

There are many special function registers associated with each of the
USARTs. In this section, first, we will be using the USART2 as an example,
since a virtual connection is available on the STM Nucleo trainer boards.

First, we will examine the baud-rate generator registers.
16MHz HSI Clock and SYSCLK
In STM32F446 Arm, there are three different clock sources that can be used
to drive the system clock (SYSCLK). They are as follow:
1. HSI (High Speed Internal) RC oscillator clock. 2. HSE (High Speed
External) oscillator clock using a crystal value of 4MHz to 26 MHz.
3. PLL clock.

The SYSCLK (system clock) clock is the clock that runs the peripherals
such as USART. The SYSCLK itself can come from any of the above
sources. In this book, we use the HSI (high speed internal) RC. According to
STM32F446 reference manual “The HSI clock signal is generated from an
internal 16 MHz RC oscillator and can be used directly as a system clock, or
used as PLL input. The HSI RC oscillator has the advantage of providing a
clock source at low cost (no external components). It also has a faster startup
time than the HSE crystal oscillator however, even with calibration the
frequency is less accurate than an external crystal oscillator or ceramic
resonator.” Again it must be emphasized that after restart from Reset, the
HSI oscillator frequency is set to its default value of 16 MHz and this is the
clock frequency we use in this book. See Appendix C for more information
on STMF4xx Arm clock. The HSI Oscillator is the default clock source for
SYSCLK and is turned on upon Reset. The HSION bit D0 in Figure 4-15
(RCC_CR) shows that.

Bit 1 HSIRDY: Internal high-speed clock ready flag

Set by hardware to indicate that the HSI oscillator is stable. After the HSION
bit is cleared, HSIRDY goes low after 6 HSI clock cycles.
0: HSI oscillator not ready
1: HSI oscillator ready

Bit 0 HSION: Internal high-speed clock enable
Set and cleared by software.
Set by hardware to force the HSI oscillator ON when leaving the Stop or
Standby mode or in case of a failure of the HSE oscillator used directly or
indirectly as the system clock. This bit cannot be cleared if the HSI is used
directly or indirectly as the system clock.
0: HSI oscillator OFF
1: HSI oscillator ON

Figure 4-15: RCC_CR (RCC Control Register) to showing the HSI Clock Source
SYSCLK and Peripheral Clock

As we show in Appendix C, the peripheral bus clocks are derived from the
(SYSCLK) System Clock. In order to optimize power consumption, each
clock source can be switched on or off independently when it is not used.
Figures 4-16 and 4-17 show several prescalers to configure the AHB
frequency, the high speed APB (APB2) and the low speed APB (APB1)
domains. Each peripheral clock can be enabled by the xxxxEN bit of the
RCC_AHBxENR, RCC_APBxENRy registers as we will see soon. Notice
from Figures 4-16 and 4-17, the SYSCLK goes through the AHB prescaler.
The lowest value for the AHB prescaler can divide by is 1 and the highest is
512 before it goes to APBx prescaler. Bits D7-D4 of RCC clock
configuration register (RCC_CFGR) registers dictates that. After going
through APBx presacler it is fed to USART2 and other peripherals such as
Timer, I2C and so on. Bits D12:D10 of RCC_CFGR gives us the options of
dividing HCLK by 1, 2, 4, 8 or 16 before it becomes PCLK1. That means if
we use 16MHz SYSCLK default clock, we can have maximum of 16MHz
clock source for all the peripherals if we leave these registers unchanged
from default. In case of USART we use 16MHz for Baud rate generation, as
we will see soon. Notice in Figure 4-16 for RCC_CFGR (Clock
Configuration Register) we also have bits D15:D13 for PPRE2 which is for

APB high-speed prescaler (APB2) clock divider. In all of the above
prescalers the default is to divide the SYSCLK by 1.

Bits 15:13 PPRE2: APB high-speed prescaler (APB2)
Set and cleared by software to control APB high-speed clock division factor.
Caution: The software has to set these bits correctly not to exceed 90 MHz
on this domain. The clocks are divided with the new prescaler factor from 1
to 16 AHB cycles after
PPRE2 write.
0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16
Bits 12:10 PPRE1: APB Low speed prescaler (APB1)
Set and cleared by software to control APB lowspeed clock division factor.
Caution: The software has to set these bits correctly not to exceed 45 MHz
on this domain. The clocks are divided with the new prescaler factor from 1
to 16 AHB cycles after
PPRE1 write.
0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16
Bits 9:8 Reserved, must be kept at reset value. Bits 7:4 HPRE: AHB
prescaler
Set and cleared by software to control AHB clock division factor.
Caution: The clocks are divided with the new prescaler factor from 1 to 16
AHB cycles after HPRE write.
Caution: The AHB clock frequency must be at least 25 MHz when the
Ethernet is used. 0xxx: system clock not divided

1000: system clock divided by 2
1001: system clock divided by 4
1010: system clock divided by 8
1011: system clock divided by 16
1100: system clock divided by 64
1101: system clock divided by 128
1110: system clock divided by 256
1111: system clock divided by 512

Figure 4-16: RCC_CFGR (Clock Configuration Register) Clock Select Resgister bit assignment

Figure 4-17: Clock Generation for USART2
Note
The clock generation of STM Arm is discussed in more details in the
Appendix C.
Enabling Clock to USART2

It must be noted that when the peripheral clock is not active, the peripheral
registers read or write accesses are not supported. The GPIO ports discussed
in chapters 2 and 3 are connected to AHB2 and its clock can be enabled by
using RCC_AHB2_ENR (AHB2 Enable register) bits, as we saw in chapters
2 and 3. Some of the USARTx modules are associated with APB1 bus clock
including the USART2 used in this chapter. It must be emphasized that all
the peripherals on AHBx and APBx buses have their clocks disabled after
reset. Their bus clock has to be enabled before gaining access to the registers
in that module. Figure 4-18 shows some of the clock enable bits for various
peripherals in the RCC_APB1ENR register. The D17 bit of that register is
used to enable the clock to the USART2 used in this chapter. We will see
others as we examine the STM Arm peripherals throughout the book.

Bit 20 UART5EN: UART5 clock enable This bit is set and cleared by
software. 0: UART5 clock disabled
1: UART5 clock enabled
Bit 19 UART4EN: UART4 clock enable This bit is set and cleared by
software. 0: UART4 clock disabled
1: UART4 clock enabled
Bit 18 USART3EN: USART3 clock enable This bit is set and cleared by
software. 0: USART3 clock disabled
1: USART3 clock enabled
Bit 17 USART2EN: USART2 clock enable This bit is set and cleared by
software.

0:USART2 clock disabled
Figure 4-18: APB1ENR peripheral clock enable register (RCC_APB1ENR) Bit Assignments
(Partial Listing)
Transmitter and Receiver Clock in USART baud rate generation

The transmitter uses the transmission clock to pace the data bit output. For
each clock pulse, one bit is transmitted. Therefore, the transmitter operates
on the clock that runs at the Baud rate. Because USART is asynchronous, the
receiver needs to detect the falling edge of the start bit and then samples the
consequent bits at the center of the bit time, so it has to run on a faster clock.
This is called oversampling.

BAUD Register

In the USART of ST Arm, the baud rate for the receiver and transmitter (Rx
and Tx) are both set to the same value as programmed in the USART_BRR
register. Although the BAUD register (USART_BRR) is a 32-bit register
only the lower 16 bits are used. For BRR register, we have the choices of
oversampling of 8 or 16. This is discussed next.

Oversampling by 16 and Baud Register
In case of oversampling by 16 (OVER8 = 0, default), we get BRR =
USARTDIV using the following
equation:

Tx/Rx baud = Fck / 8 x (2 - OVER8) x USARTDIV
= Fck / 8 x (2 - 0) x USARTDIV
= Fck / 8 x 2 x USARTDIV

USARTDIV = Fck / 16 x Baud In which Fck is the clock frequency fed to
USART and USARTDIV is an unsigned fixed point number that is coded on
the USART_BRR register. Notice from Figure 4-19, for the oversampling of
16, the fixed number with both mantissa and fraction are placed in
USART_BRR register in a way that the lower 4 bits of the USART_BRR are
used for fraction part and the upper 12 bits are set aside for Mantissa. See
Example 4-4A.

Bits 31:16 Reserved, must be kept at reset value
Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)
Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV
These 4 bits define the fraction of the USART Divider (USARTDIV). When
OVER8=1, the
DIV_Fraction3 bit is not considered and must be kept cleared.

Figure 4-19: BAUD (USART_BRR) Register
See Examples 4-4 and 4-5 for the calculations of values to put in
USART_BRR Baud register.
Example 4-4

Assume the clock source of 16 MHz is fed to USART Baud rate generator
with oversampling rate of 16. Find the values for the USART_BRR register

for baud rates of (a) 9,600, (b) 19,200, (c) 57,600, and (d) 115,200.

Solution:
USARTDIV = Fck / 16 x Baud
(a) 16MHz / 16 x 9,600 = 104.166. Now, 104 = 0x68 for upper 12-bits. For
fraction part, 0.166 x 16

= 2.656 and we use 3 for the lower 4 bits. Therefore BRR = 0x0683
(b) 16MHz / 16 x 19,200 = 52.08. Now, 52 = 0x034 for upper 12-bits. For
fraction part, 0.08 x 16 =
1.28 and we use 1 for lower 4-bits. Therefore BRR = 0x0341
(c) 16MHz / 16 x 57,600 = 17.36. Now, 17 = 0x011 for upper 12-bits. For
fraction part, 0.36 x 16 =
5.76 and we use 6 for lower 4 bits. Therefore BRR = 0x0116
(d) 16MHz / 16 x 115,200 = 8.68. Now, 08 = 0x008 for upper 12-bits. For
fraction part, 0.68 x 16 =
10.88 and we use 11 = 0xB for lower 4-bits. Therefore BRR = 0x008B.
Some of the standard Baud rates are 9,600, 19,200, 57,600, and 115,200.
Tables 4-3 shows the USART_BRR Register values for the different baud
rate using oversampling of 16 with 16 MHz Clock frequency.

Baud rate BRR (in dec) BRR (in hex)
9,600 104.166 0x0683
19,200 52.06 0x0341
57,600 17.36 0x0116
115,200 8.68 0x008B

Table 4-3: BAUD Rate Register (BRR) Values for Some Baud Rates using OVER=16 and clock
of 16MHz. Oversampling by 8 and Baud Register
In the case of oversampling by 8 (OVER8 = 1), the equation is:
Tx / Rx baud = Fck / 8 x (2 - OVER8) x USARTDIV
= Fck / 8 x (2 - 1) x USARTDIV
= Fck / 8 x USARTDIV
USARTDIV = Fck / 8 x Baud
In case of oversampling by 8 (OVER8=1), the fractional part is coded on 3
bits and programmed by the DIV_fraction[2:0] bits in the USART_BRR
register, and bit DIV_fraction[3] must be kept cleared.
Example 4-5

Assume the clock source of 16 MHz is fed to USART Baud rate generator
with oversampling rate of 8. Find the values for the USART_BRR register
for baud rates of (a) 9,600, (b) 19,200, (c) 57,600, and (d) 115,200.

Solution:

According to STM32F446 reference manual “When OVER8=1, the
fractional part is coded on 3 bits and programmed by the DIV_fraction[2:0]
bits in the USART_BRR register, and bit DIV_fraction[3] must be kept
cleared.”

USARTDIV = Fck / 8 x Baud

(a) 16MHz / 8 x 9,600 = 280.33. Now, we use 280 = 0x118 for upper 12-bits.
For fraction part, 0.33 x 8 = 2.64 and we use 3 for 3 lower bits. Therefore
BRR = 0x1183. Notice the 4th bit must be 0 in oversampling of 8.

(b) 16MHz / 8 x 19,200 = 104.166. Now, we use 104 = 0x068 for upper 12
bits. For fraction part, 0.166 x 8 = 1.328 and we use 1 for 3 lower bits.
Therefore BRR = 0x0681
(c) 16MHz / 8 x 57,600 = 34.72. We use 35 = 0x023 for upper 12-bits. For
fraction part, 0.72x 8 = 5.77 and we use 6 for lower 3 bits. Therefore BRR =
0x0236
(d) 16MHz / 8 x 115,200 = 17.36. We use 17 = 0x011 for upper 12bits. For
fraction part, 0.36 x 8 = 2.88 and we use 3 for lower 3 bits. Therefore BRR =
0x0113
Table 4-4 shows the USART_BRR Register values for the different baud rate
using oversampling of 8 with 16 MHz Clock frequency.

Baud rate BRR (in decimal) BRR (in hex)
9,600 280.33 0x1183
19,200 104.166 0x0681
57,600 34.72 0x0236
115,200 17.36 0x0113

Table 4-4: BAUD Rate Register (BRR) Values for Some Baud Rates using OVER=8 and clock of
16MHz. The choice of 16 or 8 oversampling is done via the CR1 Control
register. We discuss CR1 control register next.

USART Control 1 (USART_CR1) register
The next important register in USART is the control register. We have
several USART control registers. The most important among them are
USART Control 1 (USART_CR1) register and USART Control 2
(USART_CR2) register. They are 32-bit registers. The USART_CR1 register
is used to set the number of bits per character (data length) in a frame among
other things. Notice that the M1 bits of the USART_CR1 register determine
the framing of data by specifying the number of bits per character (character
size). The default for number of bits in character (word length) is 8. The
USART_CR1 register is also used to enable the serial port to send (TE,
Transmit Enable) and receive (RE, Receive Enable) data too. USART
feature cannot be used unless the UE (USART Enable) bit of CR1 register is
set to high. The TE (Transmit Enable), RE (Receive Enable), UE (USART
enable) are some of the most important bits in this register. Selection of
oversampling (OVER8) for Baud rate is another important bit in this register.
Upon Reset, the OVER8=0 which is for oversampling of 16. Many of the
others bits in CR1 are used for interrupts, as we will see in Chapter 6. See
Figure 4-20.

Bit 15 OVER8: Oversampling mode
0: oversampling by 16
1: oversampling by 8
Bit 13 UE: USART enable
When this bit is cleared the USART prescalers and outputs are stopped and
the end of the current byte transfer in order to reduce power consumption.
This bit is set and cleared by software.
0: USART prescaler and outputs disabled
1: USART enabled
Bit 12 M: Word length
This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, n Stop bit

Bit 7 TXEIE: TXE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR
register Bit 6 TCIE: Transmission complete interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR
register Bit 5 RXNEIE: RXNE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the
USART_SR register Bit 4 IDLEIE: IDLE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR
register Bit 3 TE: Transmitter enable
This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled
Bit 2 RE: Receiver enable
This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Figure 4-20: USART CR1 (Control 1 Register) bits definition (Partial Listing)
UART Control 2 register (USART_CR2)
Figure 4-21 describes various bits of the USART Control 2 (USART_CR2)
Register. The most important bit in this register is the selection of number of
stop bits. The default, upon Reset, is 1 stop bit.

Bits 13:12 STOP: STOP bits
These bits are used for programming the stop bits.

00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit
Note: The 0.5 Stop bit and 1.5 Stop bit are not available for UART4 &
UART5.

Bit 11 CLKEN: Clock enable
This bit allows the user to enable the SCLK pin.
0: SCLK pin disabled
1: SCLK pin enabled
This bit is not available for UART4 & UART5.

Figure 4-21: USART Control 2 (USART_CTR2) register (Partial Listing) UART Control 3
register (USART_CR3)

STM Arm reference manual describes various bits of the USART Control 3
(USART_CR3) Register. The USART_CR3 register is mainly concerned
with the handshaking signals of RTS and CTS among other things.

UART Data Register

To transmit a byte of data we must place it in USART Data (USART_DR)
register. It must be noted that a write to this register initiates a transmission
from the USART. Like some other Arm chips, the STM Arm uses the same
register for both transmit and receive data and it is called USART_DR
(USART Data Register). Notice some of STM Arm chips use different
registers for the received and transmit byte. It also must be noted that
received data in USART_RD register must be retrieved by reading it before
it is lost. Notice this is a 32-bit register and for the 8-bit character size, we
use only the lower 8 bits. According to STM32F446 reference manual “The
Data register performs a double function (read and write) since it is
composed of two registers, one for transmission (TDR) and one for reception
(RDR) .The TDR register provides the parallel interface between the internal
bus and the output shift register”

Bits 8:0 DR [8:0]: Data value
Contains the Received or Transmitted data character, depending on whether
it is read from or written to.The Data register performs a double function
(read and write) since it is composed of two registers, one for transmission
(TDR) and one for reception (RDR) The TDR register provides the parallel
interface between the internal bus and the output shift register The RDR
register provides the parallel interface between the input shift register and
the internal bus. When transmitting with the parity enabled (PCE bit set to 1
in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8
depending on the data length) has no effect because it is replaced by the
parity.When receiving with the parity enabled, the value read in the MSB bit
is the received parity bit.

Figure 4-22: USART_DR, USART Data Register (D31-D8 are not shown)
Note about USART DATA Registers

The Data register performs a double function (read and write) since it is
composed of two registers, one for transmission (TDR) and one for reception
(RDR) The TDR register provides the parallel interface between the internal
bus and the output shift Register The RDR register provides the parallel
interface between the input shift register and the internal bus.

USART Status Register (USART_SR)

The USART_SR (Status Register) register is very important register. It
contains the error flags such as Framing Error (FE), Parity Error (PE), and
Overrun Error (ORE). Only when the error flag is set, the program needs to
interrogate the USART_SR register for further information about the source
of the error. We will not go into details about the errors here. Readers who
are interested may refer to the reference manual for more information. The
flag bits in USART_SR can also be programmed to generate interrupts. We
will discuss the interrupts in Chapter 6. The USART_SR register also
contains some other important flags. They are TXE (Transmit Data Register
Empty), TC (Transmission Complete), and RXNE (Read Data Register Not
Empty). See Figure 4-23.

Figure 4-23 describes various bits of the USART_SR. Three of the
USART_SR register bits are used by the USART extensively. The TXE
(Transmit Data Register Empty) flag indicates that the transmit data register
is empty and is available to take a new byte of data to be transmitted. The
RXNE (Read Data Register Not Empty) flag indicates data register has
received a new byte of data and needs to be picked up before it is lost. The
TC (Transmit Complete) flag indicates that transmission is complete and
there is no more data to be transmitted by USART. That means it is ready to
accept a new data to be transmitted.

Bit 7 TXE: Transmit data register empty
This bit is set by hardware when the content of the TDR register has been
transferred into the shift register. An interrupt is generated if the TXEIE bit
=1 in the USART_CR1 register. It is cleared by a write to the USART_DR
register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Bit 6 TC: Transmission complete
This bit is set by hardware if the transmission of a frame containing data is
complete and if TXE is set. An interrupt is generated if TCIE=1 in the
USART_CR1 register. It is cleared by a software sequence (a read from the
USART_SR register followed by a write to the USART_DR register). The
TC bit can also be cleared by writing a '0' to it. This clearing sequence is
recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty
This bit is set by hardware when the content of the RDR shift register has
been transferred to the USART_DR register. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero
to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 3 ORE: Overrun error
This bit is set by hardware when the word currently being received in the
shift register is ready to be transferred into the RDR register while RXNE=1.
An interrupt is generated if RXNEIE=1 in the USART_CR1 register. It is

cleared by a software sequence (an read to the USART_SR register followed
by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Bit 1 FE: Framing error
This bit is set by hardware when a de-synchronization, excessive noise or a
break character is detected. It is cleared by a software sequence (an read to
the USART_SR register followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Bit 0 PE: Parity error
This bit is set by hardware when a parity error occurs in receiver mode. It is
cleared by a software sequence (a read from the status register followed by a
read or write access to the USART_DR data register). The software must
wait for the RXNE flag to be set before clearing the PE bit. An interrupt is
generated if PEIE = 1 in the USART_CR1 register. 0: No parity error
1: Parity error

Figure 4-23: Status Register (USART_SR) The TXE (Transmit Data Register
Empty) flag

To transmit a byte of data serially out of the TxD pin, we must write the data
into the USART Data Register (USART_DR). The transmit shift register is
an internal parallel-in-serial-out shift register whose job is to get the data
from the DR, frame it with the start and stop bits, and send it out one bit at a
time via the TXD pin. The transmit shift register is not accessible to the
programmer. The transmitter is double buffered, that means there is a data
register in addition to the shift register that shifts the bits out. While the shift
register is shifting the last byte out, the program may write another byte of
data to the data register to wait for the shift register to be ready. The transfer
of data between the data register and the shift register is automatic and the
programmer does not have to be concerned about it. We can only write to the
USART_DR register. Whenever the shifter is empty, it gets its new data
from the USART_DR register and clears the USART_DR register
immediately, so it does not send out the same data twice. When the shifter
fetches the data from the USART_DR, it clears the TXE flag to indicate it is

empty and the USART_DR register is ready for the next character. We
monitor the TXE flag before we write (load) another byte to the USART_DR
register.

The TC (Transmit Complete) flag

It must be emphasized that the TC (Transmit Complete) flag indicates both
the Transmit Data Register and the shift register are empty and there is no
data left for the transmitter to send. This bit is used when the program needs
to know that all the data is sent before starting the next task. When TXE flag
is set, the Transmit Data Register is empty but the last byte of data may still
be in the shift register. If the program is to shut down the transmitter, the last
byte of data will be lost and the data could have been half transmitted, which
may cause confusion or error on the receiving end. The TC flag is mostly
used in error handling and debugging so that the program waits for the data
transmission to complete before halting the operation or re-initialize the
USART.

The RXNE (Receive Not Empty) flag

The internal serial-in-parallel-out shifter register receives data via the RXD
pin. It removes the start and the stop bits and writes the received byte to the
USART Data Register (USART_DR). The receiver is also double buffered.
After the received data is written to the DR register, the shift register is
available to accept another byte of data. This allows the receiver to receive
data back-to-back. The program has the time before the next byte is
completely shifted in to read the last byte of data. The program should check
the RXNE flag frequently to see if data is ready to be read. After the data is
read from the USART_DR register, the RXNE flag is cleared automatically.
According to ST Arm reference manual “The RXNE bit is set to indicate
that the content of the shift register is transferred to the USART_DR. In
other words, data has been received and can be read (as well as its associated
error flags.”

If the program failed to read the data out of the USART_DR register before
the next byte is shifted in, a buffer overflow error occurs. A byte of data is
lost and the Overrun Error (ORE) flag in USART_SR register is set.

Reset and enabling the USART

As we mentioned earlier, to conserve power many of the on-chip peripherals
are disabled coming out of reset. Before enabling the USART, first the bus
clock to the USART should be enabled. The enabling of these clocks was
described earlier in this section.

The USART module should be configured properly before it is enabled
because most of the control registers are enabled-protected, that means they
cannot be modified while the module is enabled. One good way to disable
the USART before configuring is to use the software reset. By writing a 1 to
UE bit (UE, USART Enable) of the CR1 (Control Register 1), all the
registers will assume the default value and the module is disabled. When the
configuration is done, writing a 1 to USART Enable bit of the CR1 register
enables the USART module.

The GPIO pins used for USART TxD and RxD

In addition to the USART registers setup, we must also configure the I/O
pins for USART (TxD and RxD) to use their alternate functions. In the last
two chapters, we used the I/O pins as general purpose I/O (GPIO). When I/O
pins are used for other peripheral functions such as USART, Timer, and
ADC, we need to configure them as the alternate peripheral function using
the AFRx (Alternative Function Register) registers.

In STM Arm we have maximum of 16 pins for each port. There are two
GPIO_AFRx registers of GPIO_AFRL and GPIO_AFRH for each port.
Each GPIO_AFRx register is 32 bit long and holds the alternate function
selection for 8 pins. Since we have AF15-AF0 (total of 16) selections, we
need 4 bits for each entry (16 AFx4=64bits). That means we need two 32-bit
registers (32x2=64bits) to take care of all the alternate functions. That
explains why we have GPIO_AFRH and GPIO_AFRL registers.

In order for the GPIO_AFRx register selection of the alternate functions to
take effect, the GPIO_MODER bits for each pin must be configured first.
See Figure 4-24. Upon reset, GPIO_MODER are set as analog functions.
That means, we select GPIO_MODER=10 for AF option first and then we
choose one of the eight alternate peripheral pin functions using the

GPIO_AFRx register. See Figure 4-25. The available functions depend on
the pin and are shown in Table 4-5. In the first example program P4-1, PA2
and PA3 pins to be used for USART2_TxD and USART2_RxD signals. The
alternate functions of PA2 and PA3 pins are selected by GPIO_AFRx
registers. From Table 4-6, you can see that PA2 is for TXD of USART2 and
PA3 is used for RXD of USART2. The multiple USARTx options provide
some flexibility of choosing TxD and RxD for a given pins.

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12
0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

Figure 4-24: GPIO_AFRL (GPIO Alternate Function Register Low)

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)
These bits are written by software to configure alternate function I/Os
AFRHy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12
0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

Figure 4-25: GPIO_AFRH (GPIO Alternate Function Register High)
PIN TXD RXD AF

PA0 USART4 AF8
PA1 USART4 AF8
PA2 USART2 AF7
PA3 USART2 AF7
PA9 USART1 AF7
PA10 USART1 AF7
PB6 USART1 AF7
PB7 USART1 AF7
PB10 USART3 AF7
PB11 USART3 AF7

Table 4-5: partial list of STM Arm Pins Used for USART (See Appendix B and Table 4-6)

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode. 00:
Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mod

Figure 4-26: GPIOx_MODER (GPIO Mode) for Direction Register
(x=A, B, C,..)

Table 4-6: Alternate Functions (AF) Pin Multiplexing for Port A in STM32F446 Arm. See
Appendix B for other Ports. (See AF table for your device)
Example 4-6
In a given ST Miro Arm trainer USART2 port is used for serial ports. Find
the values for registers GPIO_MODER and GPIO_AFRL if pins PA2 and
PA3 are used for TxD and RxD.

Solution:
We use the option C (10=0x2) in the GPIO_MODER register to allow each
of PA2 and PA3 pins to be used for USART2_TxD and USART2_RxD
signals, respectively:

GPIOA->MODER &= ~0x0030; GPIOA->MODER |= 0x0020; GPIOA-
>MODER &= ~0x00C0; GPIOA->MODER |= 0x0080; /* enable alternate
function for PA2 */

/* enable alternate function for PA3 */
Also, peripheral function needs to be enabled in GPIOA_AFRL register:

GPIOA->AFR[0] &= ~0xF000; GPIOA->AFR[0] |= 0x7000; GPIOA-
>AFR[0] &= ~0x0F00; GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */

/* alt7 for USART2 */
Steps to configure USART2 for transmitting data
Here are the steps to configure the USART2 and transmit a byte of data for
STM Nucleo board:

1) Enable the Clock to GPIOA.
2) Enable the Clock to USART2.
3) Select the peripheral function AF7 for PA2 (USART2_TxD) pin using the
GPIO_MODER and GPIO_AFRL registers.
4) Set the baud rate for USART2 using USART2_BRR register.
5) Configure the CR1 (Control 1) register for oversampling rate, character
size (8-bit or 9-bit) and enabling transmit (TE).
6) Configure the CR2 (Control 2) register for number of stop bit(s) and so
on.
7) Configure the CR3 (Control 3) register for no hardware flow control and
so on.
8) Enable USART2 after configuration complete.

9) Wait until the TXE (Transmit Empty) bit of the USART_SR
register is set.

10) Write a byte to DR Register to be transmitted.

11) To transfer the next character, go to step 9.

Program 4-1 sends the characters "YES" to the terminal emulator program
(Tera Term) on a PC. You need to install Tera Term (or other terminal
programs such as HyperTerminal or Putty) on your PC to receive the output.
For Tera Term download and tutorial see:

http://MicroDigitalEd.com/tutorials/Tera_Terminal.pdf
Program 4-1: USART2 UART Transmit
/* p4_1.c Send a string "YES" to USART2
*
* USART2 is connected to the ST-Link virtual COM port. * Use Tera
Term to see the message "YES" on a PC.
*
* By default, the clock is running at 16 MHz.
* The UART2 is configured for 9600 Baud.
* PA2 - USART2 TX (AF7)
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"

void USART2_init(void); void USART2_write(int c); void delayMs(int);

/*--
---------MAIN function
*---
---------*/ int main (void) {
USART2_init(); /* initialize USART2 */

while(1) { /* Loop forever */
USART2_write('Y');
USART2_write('e');
USART2_write('s');
delayMs(10); /* leave a gap between messages */

}
}
/*--
---------Initialize UART pins, Baudrate

*---
---------*/ void USART2_init (void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* Enable USART2 clock */

/* Configure PA2 for USART2_TX */
GPIOA->AFR[0] &= ~0x0F00;
GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x0030;
GPIOA->MODER |= 0x0020; /* enable alternate function for PA2 */

USART2->BRR = 0x0683; /* 9600 baud @ 16 MHz */ USART2->CR1 = 0x0008;
/* enable Tx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop bit */
USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |= 0x2000;
/* enable USART2 */

}
void delayMs(int n) {
int i;
for (; n > 0; n--)

/* Write a character to USART2 */
void USART2_write (int ch) {
while (!(USART2->SR & 0x0080)) {} // wait until Tx buffer empty
USART2->DR = (ch & 0xFF);
}

for (i = 0; i < 2000; i++) ; }

The importance of the TXE (Transmit Data Register Empty) flag
To understand the importance of the role of TXE, look at the following
sequence of steps that the
STM Arm goes through in transmitting a character via DR register:

1. The character to be transmitted is written into the DR (data Register)
register.
2. The TXE flag is set to 0 automatically to indicate that the DR register has
a character and will not accept another character until this one is vacated.
3. The transmit shift register reads the character from the DR register and
begins to transfer the character.
4. The TXE flag is set to 1 as soon as the character is moved to the shift
register to indicate that the DR register is ready to accept another character.
5. The program may load another character into the DR register while the
last character is still shifting out.
6. When the last character is shifted out, the new character in the DR register
is moved to the shift register and immediately started being transmitted.
By monitoring the TXE flag, the program can keep the DR register full all
the time and the transmission of characters can be done back-to-back to
achieve the full throughput.

Steps to configure USART for receiving data
Here are the steps to configure the USART2 and receive a byte of data to
STM Nucleo board:

1) Enable the Clock to GPIOA.
2) Enable the Clock to USART2.
3) Select the peripheral function AF7 for PA3 (USART2_RxD) pin using the
GPIO_MODER and GPIO_AFRL registers.
4) Set the baud rate for USART2 using USART2_BRR register.
5) Configure the CR1 (Control 1) register for oversampling rate, character
size (8-bit or 9-bit) and enabling receive (RE).
6) Configure the CR2 (Control 2) register for number of stop bit(s) and so
on.
7) Configure the CR3 (Control 3) register for no hardware flow control and
so on.
8) Enable USART2 after configuration complete.

9) Wait until the RXNE (Receive Not Empty) bit of the
USART_SR register is set.

10) Read a byte from USART2_DR register that was received.

11) To receive the next character, go to step 9.

Program 4-2 receives the bytes of data via USART2 and displays it on the
LEDs.
Program 4-2: USART2 Receive
/* p4_2.c UART on USART2 Receive at 115200 Baud
*
* Receive key strokes from terminal emulator (TeraTerm) of the *
host PC to the USART2 of the Nucleo-F446RE board.
* USART2 is connected to the ST-Link virtual COM port.
* Launch Tera Term on a PC and hit any key.
* The LED program from P3_5 of Chapter 3 is used to blink the green
LED * according to the key received.
* You need to wait till the blinking stops before hitting another
key. * Received key is not echoed back to the terminal, so you will
not see * the character displayed.
*
* By default, the clock is running at 16 MHz.

* The UART2 is configured for 115200 Baud.
* PA3 - USART2 RX (AF7)
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"

void USART2_init(void); char USART2_read(void); void LED_blink(int
value); void delayMs(int);

/*--
---------MAIN function
*---
---------*/ int main (void) {
char c;

RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

USART2_init(); /* initialize USART2 */

while(1) { /* Loop forever */
c = USART2_read(); /* wait for a character received */ LED_blink(c);
/* blink the LED */

}
}
/*--
---------Initialize UART pins, Baudrate

*---
---------*/ void USART2_init (void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* Enable USART2 clock */
USART2->BRR = 0x008B; /* 115200 baud @ 16 MHz */ USART2->CR1 =
0x0004; /* enable Rx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop
bit */ USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |=
0x2000; /* enable USART2 */

/* Configure PA3 for USART2 RX */
GPIOA->AFR[0] &= ~0xF000;
GPIOA->AFR[0] |= 0x7000; /* alt7 for USART2 */
GPIOA->MODER &= ~0x00C0;
GPIOA->MODER |= 0x0080; /* enable alternate function for PA3 */

}

/* Read a character from USART2 */
char USART2_read(void) {
while (!(USART2->SR & 0x0020)) {} // wait until char arrives

return USART2->DR;
}

/* turn on or off the LEDs according to the value */
void LED_blink(int value) {
value %= 16; /* cap the max count at 15 */

for (; value > 0; value--) {
GPIOA->BSRR = 0x00000020; /* turn on LED */ delayMs(200);
GPIOA->BSRR = 0x00200000; /* turn off LED */ delayMs(200);

}
delayMs(800);
}

void delayMs(int n) {
int i;
for (; n > 0; n--)

for (i = 0; i < 2000; i++) ; }

Importance of the RXNE (Receive Not Empty) flag bit
In receiving bits via its RXD pin, the STM Arm goes through the following
steps:

1. The receiver's shift register receives the start bit indicating that the next bit
is the first bit of the character it is about to receive.
2. The character is received one bit at a time. When the stop bit is received, a
character is formed and placed in DR register and the RXNE flag is set
indicating that an entire character has been received.
3. If another character is coming in, the shift register will start receiving the
next character.
4. By checking the RXNE flag, we know that a character has been received
and is sitting in the DR register. The program reads the DR register contents
and saves it in a register or a variable before the next character received is
complete.
5. The RXNE flag is cleared automatically when the DR data register is
read.

Using other USART port

The previous two programs showed how to use the USART2 on STM
Nucleo board, which is connected to the host computer through the USB
cable. To use other USART ports, you can use a USB-toSerial module (or

cable) and connect to any USARTx port. The side of the USB-to-Serial
module connected to the USARTx pins on the Nucleo board should be 3.3V
logic level signals for TxD and RxD. The other USB side is connected to the
PC USB port. Here are some of the USB-to-Serial connections on the
market:

https://www.sparkfun.com/products/9893,
https://www.sparkfun.com/products/9717,
http://www.adafruit.com/products/284 or
http://www.adafruit.com/products/70.

Make sure you are using a 3.3V logic level converter or configure the
converter to use 3.3V. Many TTL-level serial to USB converters produce
output higher than 3.6V. They may appear functional in the short term but
will damage the Arm input pins.

Program 4-3 is modified from Program 4-1 to use UART4. (UART module
is like the USART module but does not support synchronous
communication.) Comparing them you will find that the initialization of the
associated port is changed. Program 4-3 also demonstrates how to initialize
an array of characters and send the message string to a UART.

Program 4-3: Sending "Hello" to Tera Term via UART4
/* p4_3.c Send a string "YES" to UART4
*
* UART4 Tx signal is connected to pin PA0. To see the output of
UART4 * on a PC, you need to use a USB-serial module. Connect the Rx
pin of * the module to the PA0 pin of the STM32F446 Nucleo board.
Make sure * the USB-serial module you use has a 3.3V interface.
*
* By default, the clock is running at 16 MHz.
* The UART is configured for 9600 Baud.
* PA0 - UART4 TX (AF8)
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"

void UART4_init(void); void UART4_write(int c); void delayMs(int);

/*--
---------MAIN function

*---
---------*/ int main (void) {
char message[] = "Hello\r\n";
int i;

UART4_init(); while (1) { for (i = 0; i < 7; i++) {
UART4_write(message[i]); /* send a char */ } delayMs(10); /* leave a
gap between messages */ } }
/*--
---------Initialize UART pins, Baudrate

*---
---------*/ void UART4_init (void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x80000; /* Enable UART4 clock */

/* Configure PA0 for UART4 TX */
GPIOA->AFR[0] &= ~0x000F;
GPIOA->AFR[0] |= 0x0008; /* alt8 for UART4 */
GPIOA->MODER &= ~0x0003;
GPIOA->MODER |= 0x0002; /* enable alternate function for PA0 */

UART4->BRR = 0x0683; /* 9600 baud @ 16 MHz */ UART4->CR1 = 0x0008;
/* enable Tx, 8-bit data */ UART4->CR2 = 0x0000; /* 1 stop bit */
UART4->CR3 = 0x0000; /* no flow control */ UART4->CR1 |= 0x2000; /*
enable UART4 */

}

/* Write a character to UART4 */
void UART4_write (int ch) {
while (!(UART4->SR & 0x0080)) {} // wait until Tx buffer empty
UART4->DR = (ch & 0xFF);
}

void delayMs(int n) {
int i;
for (; n > 0; n--)

for (i = 0; i < 2000; i++) ; }

Program 4-4 combines the UART transmit with UART receive. When a key
on the PC is pressed with a terminal emulator program, the keyed character
is sent to STM Nucleo board. The character received is echoed back out
through UART to the terminal emulator on the PC.

Program 4-4: Echoing the received data from UART4
/* p4_4.c UART4 echo at 9600 Baud
*

* This program receives a character from UART4 receiver
* then sends it back through UART4 transmitter.
* UART4 is connected to PA0-Tx and PA1-Rx.
* A 3.3V signal level to USB cable is used to connect PA0/PA1 * to
the host PC COM port.
* PA0 - UART4 TX (AF8)
* PA1 - UART4 RX (AF8)
* Use Tera Term on the host PC to send keystrokes and observe the
display * of the characters echoed.
*
* By default, the clock is running at 16 MHz.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"

void UART4_init(void); void UART4_write(int c); void delayMs(int);
char UART4_read(void);

int main (void) { char c;
UART4_init();

while (1) {
c = UART4_read(); UART4_write(c);

}
}

/* initialize UART4 to transmit at 9600 Baud */ void UART4_init
(void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x80000; /* Enable UART4 clock */

/* Configure PA0, PA1 for UART4 TX, RX */
GPIOA->AFR[0] &= ~0x00FF;
GPIOA->AFR[0] |= 0x0088; /* alt8 for UART4 */
GPIOA->MODER &= ~0x000F;
GPIOA->MODER |= 0x000A; /* enable alternate function for PA0, PA1 */

UART4->BRR = 0x0683; /* 9600 baud @ 16 MHz */ UART4->CR1 = 0x000C;
/* enable Tx, Rx, 8-bit data */ UART4->CR2 = 0x0000; /* 1 stop bit
*/
UART4->CR3 = 0x0000; /* no flow control */ UART4->CR1 |= 0x2000; /*
enable UART4 */

}

/* Write a character to UART4 */
void UART4_write (int ch) {
while (!(UART4->SR & 0x0080)) {} // wait until Tx buffer empty

UART4->DR = (ch & 0xFF);
}

/* Read a character from UART4 */
char UART4_read(void) {
while (!(UART4->SR & 0x0020)) {} // wait until char arrives
return UART4->DR;
}

Baud rate error calculation

In calculating the baud rate, we can use the integer number for the BRR
(Baud) register and drop the fraction. By dropping the decimal fraction
portion of the calculated values we run the risk of introducing error into the
baud rate. Even when we use the fraction in Baud rate generation, it allows
only four bits for the fraction. See STM Arm reference manual for further
information on this topic. ��������= 65,536×(1−8×9,6001
������)=60,502.835�� ������ (��
−����������)Interrupt-based data transfer�� ����������

By now you might have noticed that it is a waste of the microcontroller’s
time to poll the TXE and RXNE flags. In order to avoid wasting the
microcontroller’s time, we use interrupts instead of polling. In Chapter 6, we
will show how to use interrupts to program the serial communication port.

Break character and auto-baud

In the reference manuals, we see the mention of some terminology such as
break. The break character is when the USART sends out a low signal much
longer than one frame, that is ten zeros when the data size is 8-bit. The break
character is used to force a framing error at the receiver for the testing
purpose and auto-baud.

Auto-baud was fairly popular in the days when telephone modem dial-up
connection was used between the user terminal and the mainframe computer.
Because of the quality of the telephone line and modem equipment, users
had different maximal baud rate they might use. Instead of forcing all users
to use the lowest common baud rate, the main-frame computers support
several different baud rates. When the modem connection is established, the
user hit the enter key. If the computer recognized the enter key (when they

have the same baud rate), it responds with a message and the user proceeds
to log in the system. If the message is unintelligible (when they have the
different baud rate), the user hit the break key and sends a break character to
the computer. Upon receiving the break, a framing error is detected and the
computer will change the baud rate and resend the message again. The
process repeats until they find the same baud rate.

STM Arm USART ports support hardware auto-baud for LIN (Local
Interconnect Network). Readers should refer to the datasheet for the detailed
information.

Review Questions
1. On STM Nucleo board, which USART is used for Virtual Serial Com
port?
2. On STM Nucleo board, pins ___ and ___ are used for TxD and RxD of
USART2.
3. Which register is used to set the data size and number of stop bits?
4. How do we know if the transmit buffer is empty before we load in another
byte?
5. How do we know if a new byte has been received?

Section 4.3: Using C Library Console I/O

C library provides some standard console I/O functions that are convenient
for use such as getchar(), putchar(), gets(), puts(), printf(), and scanf(). These
functions rely on the hardware to provide input and output. In the Keil
MDK-Arm, the hardware interface is handled by two functions: fgetc() and
fputc(). The embedded programmers are required to implement these two
functions for the I/O. The implementation of these functions are usually in
the part of the software named Board Support Package (BSP). In the
example program P4-5 below, we use USART2 as the console and direct
fgetc() and fputc() to USART2_read() and USART2_write() so all the
console I/O will use USART2, which is connected to the host PC by the
virtual console through the ST-Link on the Nucleo board. Using a terminal
emulator like Tera Term will allow the user interface to the console I/O of
the embedded program. The return value of USART2_write() and
USART2_read() are modified from P4-1 and P4-2 to match the function
prototypes of the C library.

Program 4-5: C library Console I/O using USART2 in Keil
/* p4_5.c C library Console I/O using USART2 at 9600 Baud
*
* This program demonstrates the use of C library console I/O. * The
functions fputc() and fgetc() are implemented using
* USART2_write() and USART2_read() for character I/O.
* In the fgetc(), the received character is echoed and if a '\r' *
is received, a pair of '\r', '\n' is echoed.
* In fputc() and fgetc(), the file descripter is not checked. All *
file I/O's are directed to the console.
*
* By default, the clock is running at 16 MHz.
* The USART is configured for 9600 Baud.
* PA2 - USART2 TX (AF7)
* PA3 - USART2 RX (AF7)
* Use Tera Term on the host PC to send keystrokes and observe the
display * of the characters echoed.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"
#include <stdio.h>

void USART2_init(void); void delayMs(int);
int USART2_write(int c); int USART2_read(void);

int main(void) { int n;
char str[80];

USART2_init();

printf("Test stdio library console I/O functions\r\n");
fprintf(stdout, " test for stdout\r\n");
fprintf(stderr, " test for stderr\r\n");

while (1) {
printf("please enter a number: "); scanf("%d", &n);
printf("the number entered is: %d\r\n", n); printf("please type a
character string: "); gets(str);
printf("the character string entered is: "); puts(str);
printf("\r\n");

}
}

/* initialize USART2 to transmit at 9600 Baud */ void USART2_init
(void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* Enable USART2 clock */

/* Configure PA2, PA3 for USART2 TX, RX */ GPIOA->AFR[0] &= ~0xFF00;
GPIOA->AFR[0] |= 0x7700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x00F0;
GPIOA->MODER |= 0x00A0; /* enable alt. function for PA2, PA3 */

USART2->BRR = 0x0683; /* 9600 baud @ 16 MHz */ USART2->CR1 = 0x000C;
/* enable Tx, Rx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop bit
*/
USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |= 0x2000;
/* enable USART2 */

}

/* Write a character to USART2 */
int USART2_write (int ch) {
while (!(USART2->SR & 0x0080)) {} // wait until Tx buffer empty
USART2->DR = (ch & 0xFF);
return ch;
}

/* Read a character from USART2 */
int USART2_read(void) {
while (!(USART2->SR & 0x0020)) {} // wait until char arrives
return USART2->DR;
}

/* The code below is the interface to the C standard I/O library. *
All the I/O are directed to the console, which is UART3. */

struct __FILE { int handle; };
FILE __stdin = {0};
FILE __stdout = {1};
FILE __stderr = {2};

/* Called by C library console/file input
* This function echoes the character received. * If the character is
'\r', it is substituted by '\n'. */

int fgetc(FILE *f) {
int c;
c = USART2_read(); /* read the character from console */

if (c == '\r') { /* if '\r', after it is echoed, a '\n' is
appended*/ USART2_write(c); /* echo */
c = '\n';

}
USART2_write(c); /* echo */
return c; }
/* Called by C library console/file output */
int fputc(int c, FILE *f) {
return USART2_write(c); /* write the character to console */ }

The program P4-5 is a simple implementation to use the C library console
I/O. The Keil uVision IDE run-time environment has console I/O under
Compiler->I/O->STDIN, STDOUT, and STDERR. This topic is beyond the
scope of this book.

Answer to Review Questions

Section 4-1
1. more expensive
2. serial
3. synchronous
4. False; it is simplex.
5. True
6. Asynchronous
7. With 100 0100 binary we have 1 as the odd-parity bit. The bits as
transmitted in the sequence are:
(a) 0 (start bit) (b) 0 (c) 0 (d) 1
(e) 0 (f) 0 (g) 0 (h) 1
(i) 1 (parity) (j) 1 (first stop bit) (k) 1 (second stop bit)
8. 4 bits (a, i, j, k)
9. 400 × 11 = 4400 bits total bits transmitted. 4400/1200 = 3.667 seconds,
4/7 = 58%.
10. True

Section 4-2
1. USART2
2. PA2 and PA3
3. USARTx_CR1 and USARTx_CR2
4. The TXE flag from the USART2_SR register goes high.
5. The RXNE flag from the USART2_SR register goes high.

Chapter 5: STM Arm Timer Programming

In Section 5-1, the counter and timer concepts are reviewed. Section 5-2
covers the System Tick Timer which is available in all Arm Cortex
microcontrollers. In Section 5-3, 32-bit timers of STM Arm are covered. We
also cover STM 16-bit feature and show how to create a delay. Section 5-4

shows the output compare mode. In Section 5-5, input capturing is discussed
and the pulse width and frequency measuring are covered. Section 5-6 shows
event counter feature.

Section 5.1: Introduction to counters and timers

In the digital design course, you connected many flip-flops (FFs) together to
create up counter/down counter. For example, connecting 3 FFs together we
can count up to 7 (000-111 in binary). This is called 3-bit counter. The same
way, to create a 4-bit counter (counting up to 15, or 0000-1111 in binary) we
need 4 FFs. For 16-bit counter, we need 16 FFs and it counts up to 216– 1.
Figure 5- shows the T flip-flop connection and pulse outputs for all three
flip-flops.

Figure 5-1: A 3-bit
Counter
Regarding Figure 5-1, notice the following points:

1) The Q outputs give the down counter.
2) The ��̅ (Q not) outputs give us up counter.

3) The frequency on Q3 is 1/8 of the Clock fed to FF1.
4) We can use the circuit in Figure 5-1 to divide clock frequency.
5) We can use the circuit in Figure 5-1 to count the number of pulses fed to
CLK pin of FF1. An up counter begins counting from 0 and its value
increases on each clock until it reaches its maximum value. Then, it
overflows and rolls over to zero in the next clock. The following figure
shows the stages which an 8-bit counter goes through.

Figure 5-2: an 8-bit Up-Counter
Stages

A down counter begins counting from its maximum value and decreases on
each clock until it reaches to 0. Then, it underflows and rolls over to its
maximum value in the next clock. The following figure shows the stages
which an 8-bit down counter goes through.

Figure 5-3: an 8-bit Down-
Counter Stages
Counter Usages
Counters have different usages. Some of them are:

1. Counting events
2. Making delays (Using Counter as a Timer)
3. Measuring the time between 2 events

1. Counting events

You might need to count the number of cars going through a street or the
number of spaghetti packages which produced in a factory. To do so, you can
connect the output of a sensor to a counter, as shown in the following figure.

Figure 5-4: Counting Events Using a Counter
2. Making delays (Using Counter as a timer)

While controlling devices, it is a common practice to start or terminate a task
when a desired amount of time elapsed. For example, a washing machine or
an oven do each task for a determined amount of time. To do timing, we can
connect a clock generator to a counter, and wait until a desired amount of
time elapses. For example, in the following picture, the clock generator
makes a 1 Hz signal and the counter increasing every second. The counter
reaches to 60 after 60 seconds.

Figure 5-5: Using Counter as a Timer
3. Measuring the time between 2 events

You might need to measure the time between 2 events. For example, the
amount of time it takes a marathon runner to go from the start to the finish
point. In such cases we can use a circuit similar to the following:

Figure 5-6: Capturing
The counter is cleared at the start. Then, it increases on each clock pulse.
The value of the counter is loaded into another register when the runner
passes the finish line.
Counters and Timers in microcontrollers

Nowadays, all the microcontrollers come with on-chip Timer/Counter. If the
clock to the Timer comes from an internal source such as PLL, XTAL, and

RC, then it is called a Timer. If the clock source comes from an external
source, such as pulses fed to the CPU pin, then it is called a Counter. By
Counter, it is meant event-counter since it counts the event happening
outside the CPU. In many microcontrollers, the Timers can be used as Timer
or Counter.

Review Questions
1. With 5 FFs maximum count value we can get is ________.
2. With 5 FFs we can divide the frequency by maximum of ________.
3. When pulses are fed to a timer from the outside it is called ________.
4. When clocks pulses are fed to a timer from inside it is called ________.
5. If we need to divide a frequency by 500, we need ______ flip-flops.

Section 5.2: System Tick Timer

Every Arm Cortex-M comes with a System tick timer. System tick timer
allows the system to initiate an action on a periodic basis. This action is
performed internally at a fixed rate without external signal. For example, in a
given application we can use SysTick to read a sensor every 200 msec.
SysTick is used widely by operating systems so that the system software
may interrupt the application software periodically (often at 10 ms interval)
to monitor and control the system operations. The SysTick is a 24-bit down
counter driven by the processor clock (AHB clock, the clock that feeds the
CPU). It counts from an initial value down to 0. When it reaches 0, in the
next clock, it underflows and it raises a flag called COUNT and reloads the
initial value and starts over again. We can set the initial value to a value
between 0x000000 to 0xFFFFFF. See the following figure.

Figure
5-7: System Tick Timer Internal Structure

The down counter is named as STCVR (SysTick Current Value Register) in
Arm Cortex-M devices. The counter receives clock from the system clock or

the external clock. The clock source is chosen using the CLKSOURCE bit of
STCSR (SysTick Control & Status Register) register. In the STM32F4, the
external clock is connected to a prescaler that divides the AHB clock by 8.
The clock is ANDed with the ENABLE bit of STCSR register so it counts
down when the ENABLE bit is set. The STCSR register is shown in Figure
5-.

SysTick Registers
Next, we will describe the SysTick registers. There are three registers in the
SysTick module:
SysTick Control and Status register, SysTick Reload Value register, and
SysTick Current Value register.

The STCTRL (SysTick Control and Status) register is located at
0xE000E010. We use it to start the SysTick counter among other things.

Figure 5-8: STCTRL (System Tick Control)
ENABLE (D0): enables or disables the counter. When the ENABLE bit is set
the counter initializes the STCVR (SysTick Current Value Register) with the
value of the STRVR (SysTick Reload Value Register)

register and it counts down until it reaches to zero. Then, in the next clock, it
underflows which sets the COUNTFLAG flag to high and the counter
reloads the STCVR with the value of the STRVR register and then the
process is repeated. See the following figure.

Figure 5-9: System Tick Counting
TICKINT (Tick Interrupt): If TICKINT=1, an interrupt occurs when the
COUNTFLAG flag is set. See Chapter 6.

CLKSOURCE (Clock Source): The Arm core provides the choices of the
clock coming from system clock or External clock. If CLKSOURCE=0 then
the clock comes from External source. If CLKSOURCE=1, then the
processor clock provides the clock source to SysTick down counter. When
the CLKSOURCE bit is cleared, the SysTick will run at the 1/8 frequency of
the processor clock.

COUNTFLAG: Counter counts down from the initial value and when it
reaches 0, the counter is reloaded with the value in STRVR and the
COUNTFLAG is set high. See Figure 5-9. The flag remains high until it is
cleared by software. The flag can be cleared by reading the STCSR register
or writing to the STCVR register.

Example 5-1
Find the value for STCSR register, to start counting down with the internal
clock.
Solution:
STCSR: 000000000000000 0 Reserved COUNTFLAG 0000000000000 1 0 1 Reserved
CLKSOURCE TICKINT Enable
SysTick Reload Value Register (STRVR)

The STRVR (SysTick Reload Value) register is used to program the starting
value of SysTick down counter. The STRVR should contain the value N – 1
for the COUNT to fire every N clock cycles because the counter counts
down to 0 and stay at 0 for one clock cycle before reloading. For example, if
we need 1000 clock interval, then we make STRVR = 999. Although this is a
32-bit register, only the lower 24 bits are used. That means the highest value

that can be loaded into this register is 0x00FF FFFF or 16,777,216 decimal.
See Figures 5-7 and 5-10.

Figure 5-10: STRVR vs. STCVR

Program 5-1 loads the initial value to the maximum and dumps the current
value of the SysTick as it counts down onto an LED. The value of STCVR
(SysTick->VAL) is shifted to the right from bit 23 (the MSB of SysTick-
>VAL) to bit 5 (the LED is connected to pin PA5) so that it is aligned with
the user LED. SysTick is configured to use default system clock at 16 MHz.
The STRVR (SysTick->LOAD) register has 24 bits and is set to the maximal
value 0xFFFFFF. So the LED is toggling at the frequency of

16,000,000 ���� =16,000,000 ����
223 8,388,608 = 1.907 ����
And the frequency of the user LED is 0.954 Hz (half of the frequency of
toggles).
Program 5-1: Monitoring the value of STCVR of SysTick on LEDs
/* p5_1.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 using
SysTick

* This program configures SysTick to be a 24-bit free-running
* down-counter. Bit 23 of SysTick current value is written to
* the LED (PA5) continuously.
* SysTick is based on system clock running at 16 MHz.
* So bit 23 of SysTick current value toggles about 1 Hz
* (16,000,000 Hz / 2^23 = 1.907 Hz).
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */

GPIOA->MODER &= ~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000400; /* set pin to output mode */

/* Configure SysTick */
SysTick->LOAD = 0xFFFFFF; /* reload with max value */ SysTick->CTRL
= 5; /* enable it, no interrupt, use system clock */

while (1) {

/* take bit 23 of SysTick current value and shift it to bit 5 then
write it to PortA */
GPIOA->ODR = (SysTick->VAL >> (23 - 5)) & 0x00000020; }
}

See the following examples.
Example 5-2
In an Arm microcontroller system clock = 8MHz. Calculate the delay which
is made by the following function.

void delay(){
SysTick->LOAD = 9; SysTick->VAL = 0; SysTick->CTRL = 5; /* clear
current value register */

/* Enable the timer */

while((SysTick->CTRL &0x10000) == 0) /*wait until the COUNTFLAG is
set */ { }
SysTick->CTRL = 0; /*Stop the timer (Enable = 0) */
}

Solution:
The timer is initialized with 9. So, it goes through the following 10 stages:

Since the system clock is chosen as the clock source, each clock lasts 1 = 1 =
0.125µ��.������������ 8������

So, the program makes a delay of 9 × 0.125µ�� = 1.125µ��.
Note: the function call and the instructions execution take few clock cycles
as well. If you want to calculate the exact amount of delay, you should
include this overhead, as well. The value of SysTick->VAL chosen in this
example is small for ease of illustration. In real applications, you would

want to choose a larger delay so that the overhead is negligible compared to
the delay.

Note: Because the COUNTFLAG is set when the counter reaches zero, it
takes 9 cycles for the COUNTFLAG to set. If periodic (repetitive) operation
is used, the period will be equal to 10 cycles because the counter stays at 0
for one clock cycle before reloading.

Example 5-3
In an Arm microcontroller, the SYSCLK clock is chosen as the clock source
for the System tick timer. Calculate the delay which is made by the timer if
the STRVR register is loaded with N.
Solution:

The timer is initialized with N. So, it goes through N cycles.
Since the system clock is chosen as the clock source, each clock lasts 1 /
SYSCLK So, the program makes a delay of N × (1/ SYSCLK) = N /
SYSCLK.

Example 5-4
Using the SysTick timer, write a function that makes a delay of 1ms.
Assume SYSCLK = 16MHz.
Solution:

From the equation derived in Example 5-2 delay = N / SYSCLK
N = delay × SYSCLK = 0.001 sec × 16 MHz = 16,000 N = 16,000

void delay1ms(void){
SysTick->LOAD = 16000;
SysTick->VAL = 0; /* clear current value register */ SysTick->CTRL = 0x5;
/* Enable the timer */

while((SysTick->CTRL & 0x10000) == 0) /* wait until the COUNTFLAG
is set */ { }
SysTick->CTRL = 0; /* Stop the timer (Enable = 0) */

}

The Program 5-2 uses the SysTick to toggle PA5 pin 5 times every second.
We need the STRVR (Reload) value of 3,200,000 – 1 since 16MHz / 5 =
3,200,000. We assume the System clock is 16 MHz. Notice, every 3,200,000
clocks the down counter reaches 0, and COUNTFLAG is raised. Then the
STRVR register is loaded with 3,200,000 – 1 automatically. The
COUNTFLAG is clear when the STCTRL (SysTick->CTRL) register is
read.

Program 5-2: Toggle user LED at 5 Hz using the SysTick Counter
/* p2_2.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 using
SysTick *
* This program uses SysTick to generate 500 ms delay to
* toggle the LED. System clock is running at 16 MHz.
* SysTick is configure to count down from 3199999 to zero
* to give a 500 ms delay.

* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/
#include "stm32f4xx.h"
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000400; /* set pin to output mode */ /*
Configure SysTick */
SysTick->LOAD = 3200000 - 1; /* reload with number of clocks per
second */ SysTick->VAL = 0;
SysTick->CTRL = 5; /* enable it, no interrupt, use system clock */

while (1) {
if (SysTick->CTRL & 0x10000) { /* if COUNT flag is set */ GPIOA->ODR
^= 0x00000020; /* toggle green LED */

}
}
}

In Program 5-3, SysTick is used to generate multiple of 1 millisecond delay.
STRVR value of 16,000 is used since 0.001 sec × 16MHz = 16,000.
Program 5-3: Making delays using SysTick
/* p5_3.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 using
SysTick *
* This program uses SysTick to generate multiples of millisecond
delay. * System clock is running at 16 MHz. SysTick is configure *
to count down from 16000 to zero to give a 1 ms delay.
* A for loop counts how many millisecond the delay should be. * When

1000 is used for loop count, the delay is 1000 ms or 1 second. *
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

while (1) {
delayMs(1000); /* delay 1000 ms */ GPIOA->ODR ^= 0x00000020; /*
toggle red LED */

}
}

void delayMs(int n) { int i;

/* Configure SysTick */
SysTick->LOAD = 16000; /* reload with number of clocks per
millisecond */ SysTick->VAL = 0; /* clear current value register */
SysTick->CTRL = 0x5; /* Enable the timer */

for(i = 0; i < n; i++) {
while((SysTick->CTRL & 0x10000) == 0) /* wait until the COUNTFLAG is
set */

{ }
}
SysTick->CTRL = 0; /* Stop the timer (Enable = 0) */

}

The System Tick Timer has a very simple structure and is the same across all
the Arm Cortex-M chips regardless of who makes them. In addition,
STM32F4xx has its own timers which are covered in the next sections.

Review Questions
1. The highest number we can place in STRVR register is ___________.
2. Assume CPU frequency of 16MHz. Find the value for STRVR register if
we want 5 ms elapsed time.
3. The SysTick is _____-bit wide.
4. Which bit of STCSR is used to enable the SysTick.
5. The SysTick is (down or up) counter.

Section 5.3: Timer and Delay Generation in STM32F4xx

In addition to SysTick timers, STM32Fxx Arm comes with a large number
of timers. The timers are called TIMx where x=0, 1, 2, 3, 4, and so on. They
fall into three categories: a) Advanced Control Timer, b) General Purpose
Timer, and c) Basic Timer. See table 5-1. Advanced Control Timer is mostly
used for PWM and DC motor control and is covered in Chapter 11. The
TIMx are used for a wide range of generic timer/counter applications. While
most timers in STM Arm are 16-bit, there are one or two 32-bit timers too.
The 32-bit timers are in the general purpose timers group and usually
designated as TIM2 and TIM5. The 32-bit Timers discussed first in this
section. Other aspects of timers will be discussed in later part of this section.

TIMx has a counter similar to SysTick timer with additional features
including:

 To slow down the speed of timer counting, it has a prescaler.

 It can be used to generate an output of programmable frequency and
pulse-width modulation.

 It can capture the frequency and pulse width of an input signal.
 It can be used as event counter.
 On a counter overflow, compare match, or capture, it can generate

interrupts or events

We will discuss the details of these features in the coming sections. See table
below.

Table 5-1: STMF466RE Arm timers
Timer Clock

As we discuss in Appendix C, the SYSCLK goes through AHB and APB
prescaler before it is fed to peripheral modules such as timers. The AHB
prescaler can divide the SYSCLK by up to maximum of 512. After SYSCLK
goes through AHB prescaler it can be divided again by another prescaler
associated with the APB prescaler. The values that APB prescaler can divide
by are 1, 2, 4, 8, and 16. This is the case for all peripherals. However, in the
case of STM Arm timers, we have another stage. If the APB prescaler is 1
(no division), the timer clock frequencies are the same frequency as APB. If
the APB prescaler is 2, 4, 8, 16 (divided by 2, 4, 8, 16), timer clock
frequencies are set to twice the frequency of the APB.

Figure 5-11: STM32F4xx Timer Prescale Options

In STM32F4xx, all the timers are connected to APB buses. The
RCC_APB1ENR and APB2ENR registers are used to enable or disable the
clock to individual TIMx timers. Bits 8-0 of RCC_APB1ENR register are
used to enable the clock to some of TIMx timers. These bits are cleared after
reset. Without the clock enabled, the CPU will not be able to communicate
with the timer. So the program needs to enable these clocks first. Figures 5-
12 and 5-13 show portion of the RCC_APB1ENR and RCC_APB2ENR
registers. The register is 32-bit wide but the figure only shows the bits that
are related to the TIMx timers.

Bit 8 TIM14EN: TIM14 clock enable This bit is set and cleared by
software. 0: TIM14 clock disabled
1: TIM14 clock enabled
Bit 7 TIM13EN: TIM13 clock enable This bit is set and cleared by
software. 0: TIM13 clock disabled
1: TIM13 clock enabled
Bit 6 TIM12EN: TIM12 clock enable This bit is set and cleared by
software. 0: TIM12 clock disabled
1: TIM12 clock enabled
Bit 5 TIM7EN: TIM7 clock enable This bit is set and cleared by software.
0: TIM7 clock disabled
1: TIM7 clock enabled
Bit 4 TIM6EN: TIM6 clock enable This bit is set and cleared by software.
0: TIM6 clock disabled
1: TIM6 clock enabled
Bit 3 TIM5EN: TIM5 clock enable This bit is set and cleared by software.
0: TIM5 clock disabled
1: TIM5 clock enabled
Bit 2 TIM4EN: TIM4 clock enable This bit is set and cleared by software.
0: TIM4 clock disabled
1: TIM4 clock enabled
Bit 1 TIM3EN: TIM3 clock enable This bit is set and cleared by software.
0: TIM3 clock disabled
1: TIM3 clock enabled
Bit 0 TIM2EN: TIM2 clock enable This bit is set and cleared by software.
0: TIM2 clock disabled
1: TIM2 clock enabled

Figure 5-12: RCC_APB1ENR Register is used to enable timer clock

Bit 18 TIM11EN: TIM11 clock enable This bit is set and cleared by
software. 0: TIM11 clock disabled

1: TIM11 clock enabled
Bit 17 TIM10EN: TIM10 clock enable This bit is set and cleared by
software. 0: TIM10 clock disabled
1: TIM10 clock enabled
Bit 16 TIM9EN: TIM9 clock enable This bit is set and cleared by software.
0: TIM9 clock disabled
1: TIM9 clock enabled
Bit 1 TIM8EN: TIM8 clock enable This bit is set and cleared by software.
0: TIM8 clock disabled
1: TIM8 clock enabled
Bit 0 TIM1EN: TIM1 clock enable This bit is set and cleared by software.
0: TIM1 clock disabled
1: TIM1 clock enabled

Figure 5-13: RCC_APB2ENR Register is used to enable timer clock
For example, we can use the following code to enable the clock to TIM2:
RCC->APB1ENR |= 1; /* enable TIM2 clock */
Timer counter clock

At the heart of each timer, there is a counter. The clock that drives the
counter (CK_CNT) may come from an event, external source, or an internal
clock (CK_INT) via the prescaler. We will discuss the event in the last
sections. Before that, we will focus on the clock from CK_INT.

The STM32F4xx clock system is very flexible and complex. Appendix C
describes it in more details. To simplify the discussion and programming
examples here, we use 16MHz as SYSCLK. This is done automatically upon
powered-up reset.

TIM2 32-bit Timer

While most of the timers in the STM32 Arm are 16-bit, there is also at least
one 32-bit timer. The 32-bit is called TIM2 and is present with the same
name in all family members of the STM32 Arm chips. Some of the
STM32F4 chips such as STM32F446RE have two 32-bit timers. They are
called TIM2 and TIM5. We can also create 32-bit timers by pairing together
two 16-bit timers.

Table 5-2 shows some of the TIMx registers. The size of registers varies.

Offset Register Name
0x00 TIMx_CR1 (Control 1)
0x04 TIMx_CR2 (Control 2)
0x10 TIMx_SR (Status)
0x18 TIMx_CCMR1
0x1C TIMx_CCMR2
0x20 TIMx_CCER
0x24 TIMx_CNT (Count)

0x28 TIMx_PSC(Presacler)

0x2C TIM_ARR (Auto Reload)
0x34 TIMx_CCR1
0x38 TIMx_CCR2

0x3C TIMx_CCR3
0x40 TIMx_CCR4
0x20 TIMx_CCER
Table 5-2: Some of the STM32F4xx Timer Registers

The STM32F4xx TIMx counter can be up-counter or down-counter. The
CK_INT goes through multiple prescalers before it is fed to the timer. The
last prescaler can divide CK_INT by values 1 to 65,536.

CONTROL 1 Register (CR1)
Using the CR1 (Control 1) register, we can control the counter direction,
one-shot, or
disable/enable. After TIMx configuration is done, the TIMx should be
enabled by writing a 1 to the CEN
(Counter Enable) bit to start its function. We can make the Counter to count
up (DIR=0, default) or down
(DIR=1) by using the DIR bit of CR1. See figure below and Table 5-3.

Figure 5-14: CR1 (Control 1) Register

0 CEN Counter enable
0: Counter disabled
1: Counter enabled

3 OPM One-pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

4 DIR Direction
0: Counter used as up counter
1: Counter used as down counter

Table 5-3: Some of the CR1 register bits
CEN (Counter Enable, D0): enables or disables the counter. When the CEN
bit is set, the timer starts to count. It counts up or down depending on the
DIR bit.
DIR (Direction, D4): This bit configures the Timer/Counter as an up or
down counter. If the DIR bit is 0, the timer counts up. If the DIR bit is 1, the
counter counts down.
Example 5-5
Find the value for CR1 register, to enable the TIM2 for up counter.
Solution:

TIM2_CR1 = 0b010001 = 0x0011
TIMxSR (Status Register)

UIF (D0): This is like overflow flag in other microcontrollers. When the
timer counts down from a starting value and reaches 0, the UIF is set high.
In the case of up counter, the UIF goes HIGH when it reaches the top value
and wraps around to zero. The UIF flag remains high until it is cleared by
software.

Figure 5-15: TIMxSR Register

0 UIF Update interrupt Flag This bit is set by hardware on an update event.
It is cleared by software. No update occurred.0: Update interrupt pending.1:

Table 5-4: TIMx_SR (Staus) Register UIF Bit
TIMx_CNT (COUNT) Register

COUNT) Register bit or 32-bit depending on which TIMx we are using. As
we mention earlier, timers are basically a counter. In the case of a 16-bit
timer, TIMx_CNT is a 16-bit counter and can take values between 0 to
0xFFFF. For the 32-bit timers such as TIM2, the TIM2_CNT is 32 bit wide.
The TIM2_CNT can take values between 0 and 0xFFFF FFFF. See Figure 5-
16.

Figure 5-16: TIMx counter (TIMx_CNT)

Timer Auto-reload Register (TIMxARR)
The counter is an up counter by default. It counts up from 0 to the auto-
reload value (content of The counter is an up counter by default. It counts up
from 0 to the auto-reload value (content of bit, TIMxARR count could be the
maximum count which is 0xFFFFFFFF. For 16-bit TIMx maximum count is
0xFFFF. See Figure 5-17. Notice that when the counter reaches the
TIM_ARR value, the UIF flag in TIM_SR (status) register is set HIGH, the
counter value is wrapped around to zero, then continues to count up

again. Figure 5-18 shows the up counting in 32-bit mode.

Figure 5-17: TIMx auto-reload register (TIMx_ARR)

Figure 5-18: TIM2_CNT counter counting for 32-bit

When the DIR bit of CR1 (Control 1) register is set (DIR=1), the counter
counts from the autoreload value (content of the TIMx_ARR register) down
to 0, then restarts from the auto-reload value and generates a counter
underflow and the UIF flag is set.

Timer Prescaler Register (TIMx_PSC)

TIMx_PSC: The prescaler slows down the counting speed of the timer by
dividing the input clock of the timer. As mentioned earlier and shown in
Figure 5-20, the CK_INT clock is divided by the prescaler to become
CK_INC, which drives the TIMx counter. The prescaler TIMx_PSC can be
programmed to divide the clock further. TIM_PSC can divide by 1 to
0xFFFF (65,535).

Figure 5-19: TIMx prescaler (TIMx_PSC)

Figure 5-20: TIMx Options for Prescaler
Example 5-6
In a STM32F4xx microcontroller with SYSCLK = 16MHz, calculate the
delay which is made by the following code. Assume counter clock comes
from the 16 MHz SYSCLK clock.

RCC->APB1ENR |= 1; TIM2->PSC = 1600 - 1; TIM2->ARR = 6;
TIM2->CNT = 0;
TIM2->CR1 = 1;
/* enable TIM2 clock */ /* divided by 1600 */

/* divided by 6 */
/* enable timer2 */
Solution:
Since the system clock is chosen as the clock source, each clock lasts 1 =1 =
62.5n��.������������ 16 ������
The prescaler (PSC) is set to divide by 1,600, so the timer makes a delay of
1,600 × 62.5n�� × 6 = 600,000n��.
Example 5-7

In an STM32F4xx microcontroller, the SYSCLK is chosen as the clock
source for the Timer/Counter. Derive the formula of delay which is made by
the timer if the TIMx_CNT register is loaded with N and the prescaler (PSC)
is divided by M.

Solution:

The timer is initialized with N. So, it goes through (N + 1) stages.
Since the SYSCLK clock is chosen as the clock source, each incoming clock
lasts (1 / SYSCLK). The PSC prescaler divides the incoming clock by M,

therefore, the counter clock period is (M / SYSCLK). So, the program makes
a delay of CNT × M / SYSCLK.

Example 5-8
Using TIM2, show the code that makes a delay of 20 ms. Assume SYSCLK
= 16 MHz.
Solution:

From the equation derived in Example 5-7
delay = N × M / SYSCLK
N = delay × SYSCLK / M = 0.020 sec × 16 MHz / M = 320,000 / M If we
choose the prescaler to divide by 64,
N = 320,000 / 64 = 5,000

RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 64 - 1; /*

divided by 64 */ TIM2->ARR = 5000 - 1; /* divided by 5000 */ TIM2-

>CNT = 0;

TIM2->CR1 = 1; /* enable timer2 */

The Program 5-4 uses the TIM2 to toggle the LED at 1 Hz. The 16MHz
SYSCLK is divided by 1600 by the PSC prescaler. The TIM2_ARR value is
set at (10,000 – 1) so that 16 MHz / 1600 / 10,000 = 1 Hz.

The 32-bit TIM2 is configured as up counter. Every time the counter
overflows, the UIF flag in TIM2_SR register is set. The program polls the
UIF flag. When the flag is set, the program clears it and toggles LED.

Program 5-4: Toggle the LED at 1 Hz using TIM2
/* p5_4.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 using TIM2
*
* This program configures TIM2 with prescaler divides by 1600 * and
counter wraps around at 10000. So the 16 MHz system clock * is
divided by 1600 then divided by 10000 to become 1 Hz. * Every time
the counter wraps around, it sets UIF flag * (bit 0 of TIM2_SR
register). The program waits for the * UIF to set then toggles the
LED (PA5).
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

int main(void) {
// configure PA5 as output to drive the LED
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

// configure TIM2 to wrap around at 1 Hz
RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 1600 - 1; /*
divided by 1600 */ TIM2->ARR = 10000 - 1; /* divided by 10000 */
TIM2->CNT = 0; /* clear timer counter */ TIM2->CR1 = 1; /* enable
TIM2 */

while (1) {
while(!(TIM2->SR & 1)) {} /* wait until UIF set */ TIM2->SR &= ~1;
/* clear UIF */ GPIOA->ODR ^= 0x00000020; /* toggle green LED */

}
}

Generating large time delays using 32-bit Timer

One way to prolong the delay is to repeat a short delay multiple times. This
method is used when the timer counter is 8-bit or 16-bit without much of the
prescaler. In the case of STM32F4xx, a 32-bit timer with all the prescalers
set to maximum will take more than 100 years to wrap around even when the
system clock is running at the top speed of 180 MHz. There seems no point
of employing other methods when the timers are capable of handling such a
large range of timing needs.

Example 5-9

(a) Calculate the largest delay time in 16-bit mode with and without
prescaler at clock = 16 MHz. (b) Calculate the largest delay time in 32-bit
mode with and without prescaler at clock = 16 MHz. (c) Find the
TIMx_CNT value with clock = 16 MHz to generate a delay of 2 minutes.
Use the smallest

divisor in the prescaler.

Solution:
(a) 1 / 16 MHz = 62.5 ns.
The largest TIMx_ARR count in 16-bit mode is 65,536.
Without prescaler, 65,536 × 62.5 ns = 4.096 ms

With prescaler, the largest divisor is 65536; 65536 × 65536 × 62.5 ns =
268.4 s

(b) The largest TIMxARR count in 32-bit mode is 232.
Without prescaler, 232 × 62.5 ns = 268.4 s
With prescaler, the largest divisor is 65535; 232 × 65,535 × 62.5 ns =
17,589,594 sec (That is 203 days!)

(c) With prescaler PSC set to 1 we have:
2 minutes = 120 sec
120 sec / 62.5 ns = 1,920,000,000.
The mode that can hold the number this large is 32-bit mode.

The next program uses TIM3 the same way as the previous program.
Because the value we need to set the AAR register is less than 16 bits, these
two programs are identical.
Program 5-5: Toggle LED using TIM3 in 16-bit mode
/* p5_5.c Toggle Green LED (LD2) on STM32F446RE Nucleo64 using TIM3
*
* This program configures TIM3 with prescaler divides by 1600 * and
counter wraps around at 10000. So the 16 MHz system clock * is
divided by 1600 then divided by 10000 to become 1 Hz. * Every time
the counter wraps around, it sets UIF flag * (bit 0 of TIM3_SR
register). The program waits for the * UIF to set then toggles the
LED (PA5).
*

* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/
#include "stm32f4xx.h"

int main(void) {
// configure PA5 as output to drive the LED
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

// configure TIM3 to wrap around at 1 Hz
RCC->APB1ENR |= 2; /* enable TIM3 clock */ TIM3->PSC = 1600 - 1; /*
divided by 1600 */ TIM3->ARR = 10000 - 1; /* divided by 10000 */
TIM3->CNT = 0; /* clear timer counter */ TIM3->CR1 = 1; /* enable
TIM3 */

while (1) {
while(!(TIM3->SR & 1)) {} /* wait until UIF set */ TIM3->SR &= ~1;

/* clear UIF */ GPIOA->ODR ^= 0x00000020; /* toggle green LED */

}
}

Review Questions
1. True or false. STM32F4xx Arm timers supports both up and down
counter.
2. True or false. Timers in STM32F4xx support maximum of 16-bit.
3. True or false. Timer PSC prescalers can divide the clock by maximum of
256.
4. In up mode, the 32-bit counter rolls over when the counter reaches ____.
5. Which register holds the UIF overflow flag?

Section 5.4: Compare Registers and Waveform Output

So far, we have been generating output waveform by monitoring the
overflow flag and toggling an output pin in software every time the UIF is
set. It is very inefficient to poll the status of the overflow flag or any other
status for that matter. In the next chapter, we will see how to use an interrupt
to notify the program when the status of the hardware changes. But for the
timers, we can generate output waveform without software intervention once
it is configured. The waveform output is accomplished by the compare
function.

The Compare function uses register called CCRx(Compare/Capture) register.
The size of the register is identical to the CNT and ARP. For a 16-bit timer,
they are 16-bit wide, and for a 32-bit timer, they are 32-bit wide. The CCRx
register content is compared with the value of the counter (CNT register)
continuously. When the values of the CNT register and CCRx register are
equal, the corresponding pin performs an action. Upon a match between the
CNT counter and the value in CCRx registers, the output pin associated with
this CCRx register can be configured to set, clear, or toggle depending on the

configuration. See Figure 5-21. Just like the previous cases, the ARP register
holds the original value. The compare function can be used to generate pulse
width modulation output (PWM), which we will discuss in details in chapter
11. In this section, we will limit the discussion to output compare

operation.

Figure 5-21: CNT, ARR and Compare registers (CCR) with Waveform Output

Figure 5-21: CNT, ARR and Compare registers (CCR) with Waveform Output bit timer
(TIM2) or a 16-bit timer (TIM3). The output pins are called TIMx_CHy, in
which the x is for TIMx and can be 1, 2, 3, 4, 5, 6, and so on depending on
how many on-chip timers a given STM Arm chip has. The CHy can be CH1,
CH2, CH3, and CH4 only, as we will see soon. Four channels of a given
timer can work independently of each other. They are shown below.

Figure 5-22: TIMx capture/compare registers (TIMx_CCRy)

Waveform Output
The OCxM bits in TIMx_CCMRy register are used to decide the output
operation. Here are the
options for output pin:
000: Frozen
001: Set output to active HIGH level when TIMx_CNT=TIMx_CCRy.
010: Set output to inactive LOW level when TIMx_CNT=TIMx_CCRy.
011: Toggle when TIMx_CNT=TIMx_CCRy.
100: Forced LOW.
101: Forced HIGH.
110: PWM mode 1. (See Chapter 11)
111: PWM mode 2. (See Chapter 11)

Notice we have two TIMx_CCMR1 and TIM_CCMR2 for each timer. The
TIMx_CCMR1 takes care of CH1 and CH2 and TIMx_CCMR2 is set aside
for the CH3 and CH4 of each timer.

OCxCE: Output compare x clear enable OCxM: Output
compare x mode

when TIMx_CNT=TIMx_CCRy.
010: Set output to inactive LOW level when TIMx_CNT=TIMx_CCRy.
011: Toggle when TIMx_CNT=TIMx_CCRy.
100: Forced LOW.
101: Forced HIGH.
110: PWM mode 1. (See Chapter 11)
111: PWM mode 2. (See Chapter 11)

OCxPE: Output compare x preload enable CCxS:
Capture/Compare x selection This bit-field defines the direction
of the channel (input/output) as well as the used input. 00: CCx
channel is configured as output

Fig 5-23: TIMx_CCMR1 for output option

OCxCE: Output compare x clear enable OCxM: Output
compare x mode

The OCxM bits in TIMx_CCMRy register are used to decide the output
operation. Here are the options for output pin:
000: Frozen
001: Set output to active HIGH level when TIMx_CNT=TIMx_CCRy.
010: Set output to inactive LOW level when TIMx_CNT=TIMx_CCRy.
011: Toggle when TIMx_CNT=TIMx_CCRy.
100: Forced LOW.
101: Forced HIGH.
110: PWM mode 1. (See Chapter 11)
111: PWM mode 2. (See Chapter 11)

OCxPE: Output compare x preload enable CCxS:
Capture/Compare x selection This bit-field defines the direction
of the channel (input/output) as well as the used input. 00: CCx
channel is configured as output

Fig 5-24 TIMx_CCMR2 for output option
Channel Enable

The TIMx_CCER (TIMx capture/compare enable register) is a 16-bit
register. It allows us to enable any of the 4 channels either as input capture or
output compare. Notice every 4 bits takes care of one of the channels. Also
notice this is different from the TIMx enable. See figure below.

Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP
description Bit 14 Reserved, must be kept at reset value.
Bit 13 CC4P: Capture/Compare 4 output Polarity. Refer to CC1P description
Bit 12 CC4E: Capture/Compare 4 output enable. Refer to CC1E description
Bit 11 CC3NP: Capture/Compare 3 output Polarity. Refer to CC1NP
description Bit 10 Reserved, must be kept at reset value.
Bit 9 CC3P: Capture/Compare 3 output Polarity. Refer to CC1P description
Bit 8 CC3E: Capture/Compare 3 output enable. Refer to CC1E description
Bit 7 CC2NP: Capture/Compare 2 output Polarity. Refer to CC1NP
description Bit 6 Reserved, must be kept at reset value.
Bit 5 CC2P: Capture/Compare 2 output Polarity. Refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable. Refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 output Polarity.
CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity.
Refer to CC1P description.

Bit 2 Reserved, must be kept at reset value.
Bit 1 CC1P: Capture/Compare 1 output Polarity.
CC1 channel configured as output:

0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture
operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode,
encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external

clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder
mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger
in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in
gated mode). This configuration must not be used for encoder mode.
Bit 0 CC1E: Capture/Compare 1 output enable.
CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done
into the input capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Fig 5-25: TIMx_CCER (TIMx capture/compare enable register)
Pin Selection for waveform Output

STMF4xx has many timer/counters and each one can have up to four
Compare channels. Now, Table 5-5 shows the output pins associated with the
Timer/Counter Compare channels for Ports A and B in an STMF466RE
chip. As we saw in Chapter 4, to use a PORT pin for a multiplex function,
the alternative function option in MODER register needs to be enabled. All
the Timer/Counters use of the alternative function for CH1-CH4 are shown
in Appendix B.
Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

Figure 5-26: MODER Register is used to select alternative pin functions

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12
0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

Figure 5-27: GPIOx_AFRL Register
Note: PA5 for Timer2_CH1 uses AF1
Note: PA6 for Timer3_CH1 uses AF2
Note: PB8 for Timer2_ETR uses AF1
Table 5-5: STMF466RE Alternative Function Table for Ports A and B (See Appendix B for other
Ports)

Program 5-6 below demonstrates the generation of waveform output using
the compare of TIM2 Channel 1. The counter clock uses the 16 MHz system
clock. The prescaler and the AAR register are set to count with wrapping
around between 0 and AAR value once per second as the previous program.
CH1 is configured to compare mode so when the counter CNT value
matches the value of CCR1 the corresponding output pin will perform the
function prescribed by CCMR register. In CCMR the CH1 is set to toggle
the output pin on a match. If the CCR1 register is programmed with any
value between 0 and the value of AAR, during the counting, the counter
value will have a match once every cycle.

In Program 5-6, you will see that once the TIM2_CCR1 is configured, the
waveform output generation does not require the software anymore.
Program 5-6: Generating Waveform Output Using Compare Mode
/* p5_6.c Toggle Green LED using TIM2 Compare mode
*

* This program configures TIM2 with prescaler divides by 1600 * and
counter wraps around at 10000. So the 16 MHz system clock * is
divided by 1600 then divided by 10000 to become 1 Hz. * The channel
1 is configured for compare mode to toggle the output * pin every
time the timer counter matches the CCR1 register. * The output pin
of TIM2 CH1 is PA5 and the alternate function * of PA5 should be set
to AF1.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

int main(void) {
// configure PA5 as output to drive the LED
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000800; /* set pin to alternate function */
GPIOA->AFR[0] &= 0x00F00000; /* clear pin AF bits */ GPIOA->AFR[0]
|= 0x00100000; /* set pin to AF1 for TIM2 CH1 */

// configure TIM2 to wrap around at 1 Hz
// and toggle CH1 output when the counter value is 0
RCC->APB1ENR |= 1; /* enable TIM2 clock */
TIM2->PSC = 1600 - 1; /* divided by 1600 */
TIM2->ARR = 10000 - 1; /* divided by 10000 */
TIM2->CCMR1 = 0x30; /* set output to toggle on match */
TIM2->CCR1 = 0; /* set match value */
TIM2->CCER |= 1; /* enable CH1 compare mode */
TIM2->CNT = 0; /* clear counter */
TIM2->CR1 = 1; /* enable TIM2 */

while (1) { }
}

Review Questions
1. True or false. The Timer also has the waveform Output feature.
2. In STMF4xx Timer, which pin is used for the TIM2_CCR1 waveform
Output?
3. Which register is used to configure the waveform Output option?
4. True or false. TIM2_CCR1 Compare/Capture register is 32-bit.

Section 5.5: Using Timer/Counter for Input Capture

The STMF4xx timer can be used for output compare and input capture. We
examined the output compare features in the last section. This section
examines the input capture feature. For most of the microcontrollers, in input

capture mode, the timer/counter is used to capture the signal transitions of an
I/O pin and take a timestamp of each transition. In this section, we will
describe how to capture the signal transitions of an I/O pin. We use many of
the same registers used in the output compare covered in the last section.

To use the input capture option of the STMF4xx, the CCxS
(Capture/Compare Selection) bits of the TIMx_CCMRx register are used.
Each of the four channels has its own input pin (TIx) and input channel(IC).
The inputs are designated as TI1, TI2, TI3, and TI4. TIx stands for timer
input. The channels are designated as ICx(input channel). Examining the
CCxS bits of TIMx_CCMR1 we see the following options for input capture:

01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC2 channel is configured as input, IC2 is mapped on TI2.
The following shows the options for TIMxCCMR2 register:
01: CC3 channel is configured as input, IC3 is mapped on TI3.
10: CC4 channel is configured as input, IC4 is mapped on TI4.

Notice in the last section we used the default option (00) of CCxS bits in
TIMx_CCMRx to select output compare. Now, to use the timer for input
capture we need to select the signal transitions of an input pin. The desired
transition is selected by two bits of CCxNP and CCP in TIMxCCER register.
The choices are in the table below. It may be rising edge or falling edge or
both.

CCxNP CCxP

0 0: rising edge
0 1: falling edge
1 0: reserved, do not use this configuration.
1 1: both edges

Table 5-6: Choices of input pin transition in TIMx_CCER register when timers are used for
Input capture The above choices are valid only wen the channels are used as
input capture.

Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP
description Bit 14 Reserved, must be kept at reset value.
Bit 13 CC4P: Capture/Compare 4 output Polarity. Refer to CC1P
description
Bit 12 CC4E: Capture/Compare 4 output enable. Refer to CC1E description
Bit 11 CC3NP: Capture/Compare 3 output Polarity. Refer to CC1NP
description Bit 10 Reserved, must be kept at reset value.
Bit 9 CC3P: Capture/Compare 3 output Polarity. Refer to CC1P description
Bit 8 CC3E: Capture/Compare 3 output enable. Refer to CC1E description
Bit 7 CC2NP: Capture/Compare 2 output Polarity. Refer to CC1NP
description Bit 6 Reserved, must be kept at reset value.
Bit 5 CC2P: Capture/Compare 2 output Polarity. Refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable. Refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 output Polarity.
CC1 channel configured as output:
CC1NP must be kept cleared in this case.

CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity.
See CC1P description. Bit 2 Reserved, must be kept at reset value.
Bit 1 CC1P: Capture/Compare 1 output Polarity.
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture
operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external
clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external
clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger

in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This
configuration
must not be used for encoder mode.
Bit 0 CC1E: Capture/Compare 1 output enable.
CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done
into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled
Figure 5-28: TIM_CCER Register (Notice the input capture)

Figure 5-29: TIMx_CCMR1 and TIMx_CCMR2 (register details are shown in the last section)

Timer Input Capture
To capture events by the timer/counter, these steps need to be followed:

 Enable and configure the input pin to timer alternate function
 Enable clock to timer
 Set the prescaler to desired value
 Set the capture mode in CCMRx register
 Set the capture edge(s) in CCER register
 Enable timer in CR1 register

In Program 5-7, TIM3 is configured to do input capture. Pin PA6 is
configured to be the input pin of TIM3 CH1. The prescaler of TIM3 is set to
divide by 16,000 to slow down the clock so that the captured result is easier

to see in the debugger. With the prescaler, the clock to the counter will be
running at 1 kHz. In TIM3_CCMR1, the timer is configured for capture
mode with no capture pre-scaling. CCMRx register also allows setting noise
filtering of the input signal but with a short jumper wire, noise should not be
an issue. The TIM3_CCER is used to enable the capture mode (CC1E bit)
and set the polarity and edge of capture (CC1P, CC1NP bits) to non-
inverting rising edge. Each time the input signal goes from low to high, a
capture occurs.

TIM2 is configured to toggle the output of PA5 as the same in Program 5-6
for a test signal. A jumper wire should be installed between the output PA5
pin and input PA6 pin. Since TIM2 toggles the output at 1 Hz, every two
seconds, there will be a rising edge.

In the program, the infinite loop waits for the capture flag to set in the TIM3
status register. When the capture occurs, the program reads the captured
counter value (TIM3_CCR1) and stores it in a global variable. You may put
a breakpoint in the infinite loop in the debugger. Right click the global
variable “timestamp” and add it to a watch window. Every time the
breakpoint is hit, the watch window is updated. Hit the Run button or F5 key
on the keyboard to continue program execution as soon as the breakpoint is
hit. You will see the value of “timestamp” is incrementing by 2000. The
TIM3 counter is driven by a 1 kHz clock. It counts up by 2000 for every two
seconds by a rising edge of the input signal.

ST-Link debugger does not do live watch of the variables. The program
execution must be stopped for the watch window to update its display. When
the CPU execution is stopped, the TIM2 output compare and the TIM3 input
capture do not stop. If you waited too long to resume the program execution,
you might miss reading one or more captured counter values. In that case,
you will see the value of “timestamp” incremented by a multiple of 2000.
The status register of TIM3 will have the overflow bit (CC1OF) set to alert
you that a captured value was lost.

The program could be tested by an external periodic signal. To do so, you
need to remove the jumper between PA5 and PA6 and drive the capture input
PA6 by a function generator. The STMF4xx operates on a 3.3V logic level.

The input test signal should be within 3.3V and 0V. Driving the pin beyond
that voltage range may damage the pin or the device.

Program 5-7: Using Timer input capture for the event of the rising
edges
/* p5_7.c TIM3 Input Capture

* This program configures TIM2 CH1 to toggle PA5 as was done in
p5_6. * The TIM3 CH1 is set to do Input Capture from PA6. The
program waits * for capture flag (CC1IF) to set then stores the
captured value in a * global variable to be watched by the debugger.
The flag is cleared * by reading CCR1.
* A jumper should be used to connect PA5 to PA6.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int timestamp = 0; int hold = 1;

int main(void) {
// configure PA5 as output of TIM2 CH1
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000800; /* set pin to alternate function */
GPIOA->AFR[0] &= ~0x00F00000; /* clear pin AF bits */ GPIOA->AFR[0]
|= 0x00100000; /* set pin to AF1 for TIM2 CH1 */

// configure TIM2 to wrap around at 1 Hz
// and toggle CH1 output when the counter value is 0
RCC->APB1ENR |= 1; /* enable TIM2 clock */
TIM2->PSC = 1600 - 1; /* divided by 1600 */
TIM2->ARR = 10000 - 1; /* divided by 10000 */
TIM2->CCMR1 = 0x30; /* set output to toggle on match */
TIM2->CCR1 = 0; /* set match value */
TIM2->CCER |= 1; /* enable ch 1 compare mode */
TIM2->CNT = 0; /* clear counter */
TIM2->CR1 = 1; /* enable TIM2 */

// configure PA6 as input of TIM3 CH1
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00003000; /* clear pin mode */
GPIOA->MODER |= 0x00002000; /* set pin to alternate function */
GPIOA->AFR[0] &= ~0x0F000000; /* clear pin AF bits */ GPIOA->AFR[0]
|= 0x02000000; /* set pin to AF2 for TIM3 CH1 */

// configure TIM3 to do input capture with prescaler ... RCC-
>APB1ENR |= 2; /* enable TIM3 clock */
TIM3->PSC = 16000 - 1; /* divided by 16000 */
TIM3->CCMR1 = 0x41; /* set CH1 to capture at every edge */ TIM3-

>CCER = 1; /* enable CH 1 capture rising edge */ TIM3->CR1 = 1; /*
enable TIM3 */

while (1) {
while (!(TIM3->SR & 2)) {} /* wait until input edge is captured */
timestamp = TIM3->CCR1; /* read captured counter value */

}
}

Applications of Input Capture

By calculating the time difference between two consecutive rising edges or
two consecutive falling edges, we can get the period of the input signal as
demonstrated in the program 5-8. With the period, the frequency can be
calculated. If we capture the pulses from the rotary encoder of the wheel
axle, the speed of the vehicle can be derived.

If we capture and calculate the time difference between a rising edge and the
following falling edge, the pulse width can be calculated. With period and
pulse width, the duty cycle can be calculated.
If two periodic signals of the same frequency are captured by two channels
of the same timer, the phase between these two signals can be calculated.

In Program 5-8, TIM2 is used to generate a signal that toggles every 300
milliseconds. TIM3 is configured to do input capture of both edges with the
clock running at 1 kHz. When a capture event occurs, the last captured value
is subtracted from the captured value to give the period of the 300
milliseconds. And since the TIM3 counter clock is running at 1 kHz with 1
millisecond period, the difference between two consecutive captured values
should be 300. The frequency of the capture (twice the frequency of the
input signal since both edges are captured) is 1000 / period, where 1000 is
the frequency of the TIM3 clock. Both period and frequency are stored in
global variables so that they can be observed by the debugger.

Figure 5-30: Inputing Signal

Figure 5-
31: Messuring Period and Puls Width
Program 5-8: Using Timer to measure period and frequency
/* p5_8.c TIM3 Measuring Period and Frequency

* This program configures TIM2 CH1 to toggle PA5 as was done in
p5_6. * The TIM3 CH1 is set to do Input Capture from PA6. The
program waits * for capture flag (CC1IF) to set then calculates the
period and * frequency of the input signal.
* A jumper should be used to connect PA5 to PA6.
*

* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int period;
float frequency;

int main(void) {
int last = 0;
int current;

// configure PA5 as output of TIM2 CH1
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000800; /* set pin to alternate function */
GPIOA->AFR[0] &= ~0x00F00000; /* clear pin AF bits */ GPIOA->AFR[0]
|= 0x00100000; /* set pin to AF1 for TIM2 CH1 */

// configure TIM2 to wrap around at 1 Hz
// and toggle CH1 output when the counter value is 0
RCC->APB1ENR |= 1; /* enable TIM2 clock */
TIM2->PSC = 1600 - 1; /* divided by 1600 */
TIM2->ARR = 3000 - 1; /* divided by 3000 */
TIM2->CCMR1 = 0x30; /* set output to toggle on match */
TIM2->CCR1 = 0; /* set match value */
TIM2->CCER |= 1; /* enable ch 1 compare mode */
TIM2->CNT = 0; /* clear counter */
TIM2->CR1 = 1; /* enable TIM2 */

// configure PA6 as input of TIM3 CH1
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00003000; /* clear pin mode */
GPIOA->MODER |= 0x00002000; /* set pin to alternate function */
GPIOA->AFR[0] &= ~0x0F000000; /* clear pin AF bits */ GPIOA->AFR[0]
|= 0x02000000; /* set pin to AF2 for TIM3 CH1 */

// configure TIM3 to do input capture with prescaler ...
RCC->APB1ENR |= 2; /* enable TIM3 clock */
TIM3->PSC = 16000 - 1; /* divided by 16000 */
TIM3->CCMR1 = 0x41; /* set CH1 to capture at every edge */ TIM3-
>CCER = 0x0B; /* enable CH 1 capture both edges */ TIM3->CR1 = 1; /*
enable TIM3 */

while (1) {
while (!(TIM3->SR & 2)) {} /* wait until input edge is captured */
current = TIM3->CCR1; /* read captured counter value */ period =
current - last; /* calculate the period */ last = current;
frequency = 1000.0f / period;
last = current;

}
}

Review Questions

1. True or false. To measure the frequency of a signal, the time interval
between a falling edge and a rising edge are needed.
2. True or false. If the time interval between two consecutive falling edges is
measured, the frequency of the periodic signal can be calculated.
3. True or False. The STMF4xx supports both rising and falling edge
detection.

Section 5.6: Pulse Counter programming

Another application of the timer is counting the number of external input
pulses. In other words, the external input signal becomes the clock for the
counter.

Internally, the timer counter is always clocked at the rising edge of the signal
but the external input signal can be inverted before feeding it to the counter
so that the counter may clock at the falling edge of the signal. A prescaler for
the external signal is available to divide the external signal by 1, 2, 4, or 8.
The timer counter prescaler has no effect on the external signal. All the
configuration bits for external pulse counting are in the Slave Mode Control
Register (TIMx_SMCR). Not all the timers support external input clock.
You need to consult the reference manual to find out which ones do.

The counter wraps around when the value matches the AAR on the up count
and set to the value of AAR when down count to 0. It sets the UIF when the
count wraps around. It sets CCxIF when the value matches the CCRx
register.

The external pulse counter mode can be used in conjunction with a rotary
encoder to count the revolutions per minute (RPM) of the engine or the
wheels. With the circumference of the wheel, the RPM can be used to
calculate the speed of the vehicle.

Program 5-9 below uses PB8 as the external input clock for STM2. The least
significant bit of the counter is used to turn on or off the LED. When the
counter is counting, the LSB of the counter is toggling at every clock. You

may use an external pulse generator to drive the clock input or you may use
a jumper between PC13 and PB8 and use the user push-button switch to
pulse the counter.

Figure 5-32: Counting
Pulses
Program 5-9: using Timer as an event counter
/* p5_9.c TIM2 External Event Counting

* This program configures TIM2 to use external input PB8 as the *
counter clock source. Each rising edge of the input signal *
increments the TIM2 counter by 1.
* Use an external signal to drive PB8 for testing or use a jumper *
between PC13 and PB8. PC13 is connected to the user switch. *
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int main(void) {
// configure PA5 output for the LED
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000400; /* set pin to output mode */

// configure PB8 as input of TIM2 ETR
RCC->AHB1ENR |= 2; /* enable GPIOB clock */ GPIOB->MODER &=
~0x00030000; /* clear pin mode */
GPIOB->MODER |= 0x00020000; /* set pin to alternate function */
GPIOB->AFR[1] &= ~0x0000000F; /* clear pin AF bits */ GPIOB->AFR[1]
|= 0x00000001; /* set pin to AF1 for TIM2 ETR */

// configure TIM2 to use external input as counter clock source RCC-
>APB1ENR |= 1; /* enable TIM2 clock */
TIM2->SMCR = 0x4377; /* use ETR input as clock, no prescaler */
TIM2->CNT = 0; /* clear counter */
TIM2->CR1 = 1; /* enable TIM2 */

while (1) {
// use bit 0 to turn LED on/off

if (TIM2->CNT & 1)

GPIOA->ODR |= 0x20; /* turn on LED */ else
GPIOA->ODR &= ~0x20; /* turn off LED */ }
}

Before we finish this section, we need to state an important point. You might
think to monitor the flags to toggle the LED (or other tasks) is a waste of the
CPU time. You are right. There is a solution to this: the use of interrupts.
Using interrupts enables us to do other things with the microcontroller while
waiting for the flag to change. When a timer interrupt flag such as UIF is
raised, it will trigger an interrupt. This important and powerful feature of the
microcontroller is discussed in Chapter 6.

Review Questions
1.True or false. The timer can also be used as an event counter.
2. True or false. The STMF4xx timer counts both rising and falling edges.
3. True or false. To use the timer as even-counter, we must configure it input
capture mode.
4. True or false. Any pin can be used for input capture to count pulses.

Answer to Review Questions

Section 5-1
11. 31
12. 32
13. event counter
14. Timer
15. 9

Section 5-2
1. 0xFFFFFF
2. 1/16MHz=62.5 nsec. Now, 5 msec/62.5nsec=80,000. Therefore,
RELOAD=80,000 – 1 =79,999
3. 24
4. The bit 0 of STCTRL (the Enable)
5. Down counter

Section 5-3
1. True
2. False, 32-bit
3. False, 65,536
4. the value of AAR register
5. TIMx_SR

Section 5-4
1. True
2. PA5
3. CCMR1
4. True

Section 5-5
1. False
2. True
3. True

Section 5-6
1. True, for some of the timers
2. True
3. True
4. True

Chapter 6 : Interrupt and Exception Programming

This chapter examines the interrupts in Arm. We also discuss sources of
hardware interrupts in the STM32 Arm chip. In Section 6.1 we discuss the
concept of interrupts in the Arm CPU, and then we look at the interrupt
assignments of the Arm Cortex-M. Section 6.2 examines the NVIC interrupt
controller and discusses the Thread and Handler mode in Arm Cortex-M.
The interrupts for I/O ports are discussed in Section 6.3. Section 6.4
examines the interrupt for UART. Timer’s interrupts are explored in Section
6.5. The SysTick interrupt is covered in Section 6.6. The interrupt priority is
discussed in Section 6.7.

Section 6.1: Interrupts and Exceptions in Arm Cortex-M

In this section, we examine the difference between polling and interrupt first
then describe the various interrupts of the Arm Cortex.
Interrupts vs. polling

A single microprocessor can serve several devices. There are two ways to do
that: interrupts and polling. In the interrupt method, whenever a device
needs service, the device notifies the CPU by sending an interrupt signal.
Upon receiving an interrupt signal, the CPU interrupts whatever it is doing
and serves the device. In polling, the CPU continuously monitors the status
of a given device; when the status condition is met, it performs the service.
After that, it moves on to monitor the next device until each one is serviced.
See Figure 6-1.

Figure 6-1: Polling vs. Interrupts

Although polling can monitor the status of several devices and serve each of
them as certain conditions are met, it is not an efficient use of the CPU time.
The polling method wastes much of the CPU’s time by polling devices when
they do not need service. So in order to avoid tying down the CPU,
interrupts are used. For example with polling, in Timer we might wait until a
determined amount of time elapses, and while we were waiting we do not do

anything else. That is a waste of the CPU’s time that could have been used to
perform some useful tasks. In the case of the Timer, if we use the interrupt
method, the CPU can go about doing other tasks, and when the time is up the
Timer will interrupt the CPU to let it know. See Figure 6-1.

Interrupt service routine (ISR)

For every interrupt, there must be a program associated with it. When an
interrupt occurs this program is executed to perform certain service for the
interrupt. This program is commonly referred to as an interrupt service
routine (ISR) or an interrupt handler. When an interrupt occurs, the CPU
runs the interrupt service routine. Now, the question is how the ISR gets
executed?

As shown in Figure 6-2, in the Arm CPU there are pins that are associated
with hardware interrupts. They are input signals into the CPU. When the
signals are triggered, CPU pushes the PC register onto the stack and loads
the PC register with the address of the interrupt service routine. This causes
the ISR to get executed.

Figure 6-2: NVIC in Arm Cortex-M
Interrupt Vector Table

Since there is a program (ISR) associated with every interrupt and this
program resides in memory (RAM or ROM), there must be a look-up table
to hold the addresses of these ISRs. This look-up table is called interrupt

vector table. In the Arm Cortex-M4 by default, the lowest 1024 bytes (256 ×
4 = 1024) of memory space are set aside for the interrupt vector table and
must not be used for any other function. Table 6-1 provides a list of
interrupts and their designated functions as defined by Arm Cortex-M4
products. Of the 47 interrupts, some are used for software interrupts and
some are for hardware IRQ interrupts.

NVIC (nested vector interrupt controller) In Arm Cortex-M

The Cortex-M has an on-chip interrupt controller called NVIC (Nested
Vector Interrupt Controller). See Figure 6-2. This allows some degree of
standardization among the Arm Cortex-M (M0, M0+, M1, M3, M4, and M7)
family members. The classical Arm chips and Cortex-A and Cortex-R series
do not have this NVIC interrupt controller, therefore Arm manufacturers’
implementation of the interrupt handling varies. This chapter focuses on the
interrupts for Arm Cortex-M series. It must be noted that there are
substantial differences between the Arm Cortex-M series and classical Arm
versions as far as interrupt handling are concerned. The study of classical
Arm and Arm Cortex A and R series interrupts are left to the reader since
they are used for high-performance systems using complex OS and real-time
system.

Interrupt and Exception assignments in Arm Cortex-M

The NVIC of the Arm Cortex-M4 has room for a total of 255 interrupts and
exceptions. The interrupt numbers are also referred to INT type (or INT#) in
which the type can be from 1 to 255 or 0x01 to 0xFF. That is INT1 to
INT255. The NVIC in Arm Cortex-M4 assigns the first 15 interrupts for
internal use. The memory locations 0-3 are used to store the value to be
loaded into the stack pointer when the device is coming out of reset. See
Table 6-1. Although Arm Cortex-M4 core allocates 255 interrupt numbers,
not all of them are used by the STMF4 devices. We will see the used
interrupts in Table 6-7.

INT # Interrupt Memory Location Stack Pointer initial value 0x00000000
1 Reset 0x00000004
2 NMI 0x00000008
3 Hard Fault 0x0000000C 4 Reserved 0x00000010

5 Reserved 0x00000014
6 Reserved 0x00000018
7 Reserved 0x0000001C 8 Reserved 0x00000020
9 Reserved 0x00000024
10 Reserved 0x00000028
11 SVCall 0x0000002C 12 Reserved 0x00000030
13 Reserved 0x00000034
14 PendSV 0x00000038
15 SysTick 0x0000003C 16 IRQ0 for peripherals 0x00000040
17 IRQ1 for peripherals 0x00000044
… … … 255 IRQ239 for peripherals 0x000003FC

Table 6-1: Interrupt Vector Table for Arm Cortex-M4
The predefined Interrupts (INT0 to INT15)
The followings are the first 15 interrupts in Arm Cortex-M:
Reset

Figure 6-3: Going from
Reset to Boot Program

The Arm devices have a reset pin. It is usually tied to a circuit that keeps the
pin low for a while when the power is coming on. This is the power-up reset
or power-on reset (POR). On the Arm trainer board, there is often a push-
button switch to lower the signal. The reset signal is normally high after the
power is on and when reset is activated during power-on or when the reset
button is pressed, it goes low and the CPU goes to a known state with all the

registers loaded with the predefined values. When the device is coming out
of reset, the Arm Cortex-M loads the program counter from memory
location 0x00000004. In Arm Cortex-M system we must place the starting
address of the program at the 0x00000004 to get the program running.
Notice in Table 6-1, the addresses 0x00000000 to 0x00000003 are set aside
for the initial stack pointer value. This ensures that the Arm has access to
stack immediately coming out of the reset.

Non-maskable interrupt

As shown in Figure 6-2, there are pins in the Arm chip that are associated
with hardware interrupts. They are IRQs (interrupt request) and NMI (non-
maskable interrupt). IRQ is an input signal into the CPU, which can be
masked (ignored) and unmasked through the use of software. However,
NMI, which is also an input signal to the CPU, cannot be masked by
software, and for this reason, it is called a nonmaskable interrupt. Arm
Cortex-M NVIC has assigned "INT02" into the Arm CPU to be used only
for NMI. Whenever the NMI pin is activated, the CPU will go to memory
location 0x00000008 to get the address of the interrupt service routine (ISR)
associated with NMI. Memory locations 0x00000008-0x0000000B contain
the 4 bytes of address associated with the ISR belonging to NMI.

Exceptions (Faults)

There is a group of interrupts belongs to the category referred to as fault or
exception interrupts. Internally, they are invoked by the microprocessor
whenever there are conditions (exceptions) that the CPU is unable to handle.

Hard Fault

One such situation is an attempt to execute an instruction that is not
implemented in this CPU. Since the result is undefined, and the CPU has no
way of handling it, it automatically invokes the invalid instruction exception.
The undefined instruction fault is an attempt to execute an instruction that is
not implemented in the CPU. As we discussed in Chapter 6 of Volume 1, the
unaligned data memory access for word or half-word can cause an exception
too.

Arm Cortex-M4 processor does not distinguish the source of these faults.
They share the same vector of HardFault.

SVCall An ISR can be called upon as a result of the execution of SVC
(supervisor call) instruction. This is
referred to as a software interrupt since it was invoked from software, not
from a fault exception, or any
peripheral IRQ interrupt. Whenever the SVC instruction is executed, the
CPU will go to memory location
0x0000002C to get the address of the ISR associated with SVC. The SVC is
widely used by the operating
system to call the OS kernel functions and services that can be provided only
by the privileged access
mode of the OS. In many systems, the API and function calls needed by
various User applications are
handled by the SVCall to make sure the OS is protected. In the classical Arm
literature, SVC was called SWI
(software interrupt), but the Arm Cortex-M has renamed it as SVC.

PendSV (pendable service call)

The PendSV (pendable service call) can be used to do the same thing as the
SVC to get the OS services. However, the SVC is an instruction and is
executed right away just like all Arm instructions. The PendSV is an
interrupt that waits until NVIC has time to service it after other urgent higher
priority interrupts are being taken care. Examine the concept of nested
interrupt and pending interrupts at end of this section to see how NVIC
handles multiple pending interrupts.

SysTick In the multitasking OS, we need a real-time interrupt clock to notify
the CPU that it needs to
service the other tasks. The clock ticks happen at a regular interval and are
used mainly by the OS system.
The SysTick in Arm Cortex is designed for this purpose.

IRQ Peripheral interrupts

An ISR can be launched as a result of an event at the peripheral devices such
as timer timeout or analog-to-digital converter (ADC) conversion complete.
The largest number of the interrupts in the Arm Cortex-M belongs to this
category. Notice from Table 6-1 that Arm Cortex-M NVIC has set aside the
first 15 interrupts (INT1 to INT15) for internal use and is not available to the
chip designer. The Reset, NMI, HardFault, and so on are part of this group of
exceptions. The rest of the interrupts are used for peripherals. INT16 to
INT47 (IRQ0 to IRQ31) are used by the chip manufacturer to be assigned to
various peripherals such as timers, ADC, Serial COM, external hardware
interrupts, and so on. There is no standard in assigning the INT16 to INT47
to the peripherals. Different manufacturers assign different interrupts to
different peripherals. Not all the interrupts are assigned. You need to
examine the datasheet for your Arm Cortex-M chip. Each peripheral module
has a group of special function registers that must be used to configure the
functions of the peripheral module. For a given peripheral interrupt to take
effect, the interrupt for that peripheral must be enabled. The special function
registers for that device provide the way to enable the interrupts.

Fast context saving in task switching

Most of the interrupts are asynchronous, that means they may happen
anytime in the middle of program execution. When the interrupt is
acknowledged and the interrupt service routine is launched, the interrupt
service routine will need some CPU resource, mainly the CPU registers, to
execute the code. In order not to corrupt the register content of the program
that was running before the interrupt occurs, these CPU registers need to be
preserved. This saving of the CPU contents before switching to interrupt
handler is called context switching (or context saving). The use of the stack
as a place to save the CPU’s contents is tedious and time-consuming. It takes
time to save all the registers. In executing an interrupt service routine, each
task generally needs some key registers such as PC (R15), LR (R14), and
CPSR (flag register) in addition to some working registers. For that reason
the Arm Cortex-M automatically saves the registers of CPSR, PC, LR, R12,
R3, R2, R1, and R0 on the stack when an interrupt is acknowledged. See
Figure 6-4 for the stack after the registers are saved. If the interrupt service
routine needs to use more registers than those preserved, the program has to
save the contents before using the other registers. The choice of the registers
automatically saved adheres to the Arm Architecture Procedure Call

Standard (AAPCS) so that an interrupt handler may be written as a plain C
function without the need of any special provision.

Figure 6-4: Arm Cortex-M
Stack Frame upon Interrupt

Processing interrupts in Arm Cortex-M
When the Arm Cortex-M processes any interrupt (from either Fault
Exceptions or peripheral
IRQs), it goes through the following steps:
1. The Current processor status register (CPSR) is pushed onto the stack and
SP is decremented by 4 since CPSR is a 4-byte register.
2. The current PC (R15) is pushed onto the stack and SP is decremented by
4.
3. The current LR (R14) is pushed onto the stack and SP is decremented by
4.
4. The current R12 is pushed onto the stack and SP is decremented by 4.
5. The current R3 is pushed onto the stack and SP is decremented by 4.
6. The current R2 is pushed onto the stack and SP is decremented by 4.
7. The current R1 is pushed onto the stack and SP is decremented by 4.
8. The current R0 is pushed onto the stack and SP is decremented by 4.
9. The CPU goes into the Handler Mode (details will be described later). LR

is loaded with a number with bits 31-5 all 1s.
10. The INT number (type) is multiplied by 4 to get the offset of the location
within the vector table to fetch the program counter of the interrupt service
routine (interrupt handler). 11. From the memory locations pointed to by this
new PC, the CPU starts to fetch and execute instructions belonging to the
ISR program.
12. When one of the return instructions is executed in the interrupt service
routine, the CPU recognizes that it is in the Handler Mode from the value of
the LR (LR is loaded with a number with bits 31-5 all 1s when entering
ISR). It then restores the registers saved when entering ISR including the
program counter from the stack and makes the CPU run the code where it
left off when the interrupt occurred. See Figure 6-5.

Figure 6-5: Main Program gets interrupted
Difference between interrupt and a subroutine call

If the execution of an interrupt saves the program counter of the following
instruction and jumps indirectly to the subroutine associated with the
interrupt, what is the difference between that and a BL instruction, which

also saves the program counter and jumps to the desired subroutine
(procedure)? The differences can be summarized as follows:

1. A "BL" instruction can take an argument and jump to any location within
the 4-gigabyte address range of the Arm CPU, but "INT" goes to a fixed
memory location in the interrupt vector table to get the address of the
interrupt service routine.

2. A "BL" instruction is used by the programmer in the sequence of
instructions in the program but an externally activated hardware interrupt
can come in at any time, requesting the attention of the CPU.

3. A "BL" instruction cannot be masked (disabled), but "INT#" belonging to
externally activated hardware interrupts can be masked.
4. A "BL" instruction automatically saves the PC of the next instruction in
register LR, while "INT#" saves SP, R12, R3–R0, CPSR (flag register) in
addition to PC of the next instruction.
5. An interrupt puts the CPU in the Handler Mode while the “BL”
instruction does not change the CPU execution mode.
6. When returning from the end of the subroutine that has been called by the
"BL" instruction, the PC is restored to the address of the next instruction
after the “BL” instruction. When returning from the interrupt handler, the
CPU will restore the registers saved when the CPU entered into ISR (the
CPSR, R15, R14, R12, R3–R0 registers) from the top of stack.
Interrupt priority
The next topic in this section is the concept of priority for exceptions and
IRQs. What happens if two interrupts want the attention of the CPU at the
same time? Which has priority? In the Arm Cortex-M the Reset, NMI and
Hard Fault exceptions have fixed priority levels and are set by the Arm itself
and not subject to change. Among the Reset, NMI, and Hard Fault, the Reset
has the highest priority. As we can see from Table 6-2, the NMI and Hard
Fault have lower priority than Reset, meaning if all three of them are
activated at the same time, the Reset will be executed first. If both NMI and
an IRQ are activated at the same time, NMI is acknowledged first since NMI
has a higher priority than IRQ. The rest of the exceptions and IRQs have
lower priority and are configurable, meaning their priority levels can be set
by the programmer. Programmable priority levels are values between 0 and 3
with 3 has the lowest priority.

INT # Interrupt
0 Stack Pointer initial value
1 Reset
2 NMI
3 Hard Fault
4 Memory Management Fault
5 Bus Fault
6 Usage Fault
7 Reserved
8 Reserved
9 Reserved
10 Reserved

Priority Level

-3 Highest
-2
-1
Reserved

Reserved Reserved Reserved Reserved Reserved Reserved 11 SVCall
12 Reserved 13 Reserved 14 PendSV
15 SysTick
16 IRQ 0 for peripherals 17 IRQ 1 for peripherals … …

255 IRQ 239 for peripherals Programmable Reserved Reserved
Programmable Programmable Programmable Programmable Programmable
Programmable

Table 6-2: Interrupt Priority for Arm Cortex-M4

Table 6-2 shows interrupt assignments for Arm Cortex-M4. Not all Cortex-
M4 chips have all the first 15 interrupts. For the hardware IRQs coming
through NVIC, the NVIC resolves priority depending on the way the NVIC
is programmed. Also, not all the IRQs are used in all the chips. The
STM32F466 uses IRQ0 to IRQ96 (INT16-INT112).

Interrupt latency

The time from the moment the event triggers an interrupt signal to the
moment the CPU starts to execute the ISR code is called the interrupt
latency. The duration of interrupt latency can also be affected by the type of
the instruction which the CPU was executing when the interrupt occurs. It
takes longer in cases where the instruction being executed lasts for many
instruction cycles compared to the instructions that last for only one
instruction cycle time. In the Arm Cortex-M, we also have extra clocks
added to the latency due to the fact that it saves the content of registers
CPSR, PC, LR, R12, and R0-R3 on the stack.

Another source of the interrupt latency is the interrupt priority. As mentioned
earlier, when several interrupts occur at the same time, the interrupt with the
highest priority is acknowledged first. All other interrupts have to wait. But
when a low priority interrupt is being served, a higher priority interrupt can
preempt it, which we will discuss next.

Interrupt inside an interrupt handler (nested interrupt)

What happens if the Arm is executing an ISR belonging to an interrupt and
another interrupt is activated? In many older CPUs when an interrupt service
routine is launched, all other interrupts are masked. All interrupts happened
at this time have to wait. If the interrupt service routine runs too long, there
is a risk some interrupts may be lost. The interrupt service routine may
unmask the interrupts. But in doing so, it will allow all the interrupts to
preempt itself. With Arm Cortex-M, the higher priority interrupt will stop
the lower priority interrupt handler and launch the higher priority interrupt
handler. In the Arm Cortex-M systems, it is up to the software engineer to
configure the priority level for each exception and IRQ (except NMI and
HardFault) and set the policy of how to support nested interrupt.

The Arm Cortex-M allows only the higher priority interrupts to preempt the
lower priority interrupt service routine. The programmer is responsible for
assigning the proper priority to each IRQ to determine whether an interrupt
may preempt the other’s interrupt handler. The NVIC in Arm Cortex-M has
the ability to capture the pending interrupts and keeps track of each one until
all are serviced.

Review Questions
1. True or false. When any interrupt is activated, the CPU jumps to a
predefined address.
2. There are _____ bytes of memory in the interrupt vector table for each
interrupt.
3. How many bytes of memory are used by the interrupt vector table for 48
interrupts, and what are the beginning and ending addresses of the table for
the first 48 interrupts?
4. The program associated with an interrupt is also referred to as
___________.
5. What is the function of the interrupt vector table?
6. What memory locations in the interrupt vector table hold the address for
INT16 ISR?
7. The Arm Cortex-M has assigned INT2 to NMI. Can that be changed?

Section 6.2: Arm Cortex-M Processor Modes

In this section, we examine various operation modes in Arm Cortex-M.

Arm Cortex Thread (application) and Handler (exception) modes
The Arm Cortex-M can run in one of the two modes at any given time. They
are (1) Thread
(Application) mode and (2) Handler (Exception) mode. The differences can
be stated as follows:

1. When the Arm Cortex-M is powered on and coming out of reset, it
automatically goes to the Thread mode. The Thread mode is the mode that
vast majority of the applications programs are executed in. The CPU spends
most of its time in Thread mode and gets interrupted only to execute ISR for
exceptions or peripheral IRQs.

2. The Arm Cortex-M switches to Handler mode only when an exception (of
course other than the Reset) or an IRQ interrupt from a peripheral is
activated to get the attention of the CPU to execute an ISR (interrupt
handler). Upon returning from ISR, the CPU automatically changes from
Handler mode back to Thread mode. It must be noted that of all the
exceptions and IRQs in the Table 6-1, only the Reset forces the CPU into

Thread mode and the rest of the interrupt handlers are executed in Handler
mode.

A big advantage of having Handler mode is that when returning from
Handler mode, the CPU will pop the stack and restore the registers saved
during entry to Handler mode. With this, the interrupt handlers are written
just like any other functions as we will see in the examples soon.

There are two Stacks in Arm Cortex

The classical Arm has a single stack pointer (R13) to be used to point to
RAM area for the purpose of the stack. With a multi-threaded operating
system, every thread should have their own stack so does the operating
system itself. It is much more efficient to have separate stack pointers for the
system and the thread. The Arm Cortex-M has two stack pointer registers.
They are called PSP (processor stack pointer) and MSP (main stack pointer).
Threads running in Thread mode should use the process stack and the kernel
and exception handlers should use the main stack.

The bit 1, ASP (active stack pointer), of the special function register, called
CONTROL register gives the option of choosing MSP or PSP for stack
pointer. Upon Reset the ASP=0, meaning that R13 is the Main Stack pointer
(MSP) and its value comes from the first 4 bytes of the interrupt vector table
starting at 0x00000000 address location. By making the ASP=1, the R13 is
the same as PSP (processor stack pointer). Next, we examine the privilege
levels in Arm Cortex-M.

nPRIV (Privilege): Defines the Thread mode privilege level
0: Privileged
1: Unprivileged
Active Stack Pointer (ASP): Defines the currently active stack pointer
(ASP = SPSEL)
0: MSP is the current stack pointer.
1: PSP is the current stack pointer. Floating Point Context Active (FPCA)

0: No floating point context active.
1: Floating point context active.

Figure 6-6: CONTROL Register in Arm Cortex-M4

Processor Mode Thread
Handler
Software

Applications
ISR for Exceptions and IRQs

Privilege level
Privileged and Unprivileged Always Privileged

In Thread mode, use bit 0 of the CONTROL register to select Privileged or
Unprivileged
Table 6-3: Privileged level Execution and Processor Modes in Arm Cortex-M
Privileged and Unprivileged levels in Arm Cortex-M

There are two privilege levels in Arm Cortex-M. They are called privileged
and unprivileged. The Privileged level in Arm Cortex-M can be used to limit
the CPU access to special registers and protected memory area to prevent the
system from getting corrupted due to error in coding or malicious user. Here
are summary of the Privileged level software:

1. The privileged level software has access to all registers including the
special function registers for interrupts.
2. The privileged level software has access to every region of memory.
3. The privileged level software has access to system timer, NVIC, and
system resources.
4. The Privileged level software can execute all the Arm Cortex-M
instructions including the MRS, MSR, and CPS.
5. The Handlers for fault exceptions and IRQs can be executed only in
Privileged level.
6. Only the Privileged software can access the CONTROL register to see
whether execution is in Privileged or Unprivileged mode. In Unprivileged
mode one can switch from unprivileged level to Privileged level by using

SVC instruction.
Processor Mode Software Thread Applications Handler ISR for
Exceptions and IRQs

Stack Usage MSP or PSP MSP

Note: In Thread mode, use bit 1 of the Control register to select MSP or
PSP for stack pointer.
Table 6-4: Processor Modes and Stack Usage in Arm Cortex-M
Here is the summary of the unprivileged level software:

1. The unprivileged level software has no access to some registers such the
special function registers for interrupts.
2. The unprivileged level software has limited access to some regions of
memory.
3. The unprivileged level software is blocked from accessing system timer,
NVIC, and system control block and resources.
4. The Unprivileged level software cannot execute some of the Arm
instructions such as CPS. It has limited access to the MRS and MSR
instructions.
5. While Handler mode is always executed in the Privileged level, the
Thread mode software can be executed in privileged or unprivileged level.
The bit 0 of the special a function register called CONTROL register gives
the option of running the software in Privileged or Unprivileged mode.
6. In the unprivileged mode, one can use SVC instruction to make a
supervisor call to switch from the unprivileged level to Privileged level.

Mode Handler Handler

Privilege Privileged Unprivileged

Stack Pointer Main
Any

Thread Thread Thread Thread

Privileged Privileged Unprivileged Unprivileged Main Process Main Process

Typical Example usage Exception Handling Reserved since Handler is
always Privileged Operating system kernel

Application threads
Table 6-5: Processor Mode, Privilege, and Stack in Arm Cortex Special Function
Registers in Arm Cortex

Besides the traditional general purpose registers of R0–R15, the Arm
Cortex-M core has several new special function registers. These registers are
used in programs written for the Cortex-M based embedded systems. See
Figure 6-7.

Figure 6-7: Arm Cortex-M Registers

While the general purpose registers of R0–R15 can be accessed using the
MOV, LDR, and STR instructions, these new special function registers can
be accessed only with the two new instructions MSR and MRS. To
manipulate (clear or set) the bits of special function registers, first we must

use the MSR to move them to a general purpose register and after changing
their values they are moved back by using MRS instruction. Table 6-6 shows
special function registers.

Register name
MSP (main stack pointer)
PSP (processor stack pointer)
PSR (Processor status register)
APSR (application processor status register) ISPR (interrupt processor status
register) EPSR (execution processor status register) PRIMASK (Priority
Mask register)
FAULTMASK (fault mask register)
BASEPRI (base priority register)
CONTROL (control register)

Privilege Usage
Privileged
Privileged or Unprivileged Privileged
Privileged or Unprivileged Privileged
Privileged
Privileged
Privileged
Privileged
Privileged

Note: We must use MSR and MRS instructions to access the above
registers
Table 6-6: Special function registers of Arm Cortex-M

Review Questions
1. True or false. After the Reset pin is activated, the Arm CPU wakes up in
Thread mode.
2. How many processor modes are in the Arm Cortex-M? Give their names.
3. How many bytes of data are fetched into CPU from interrupt vector table
when Arm Cortex-M is Reset, and what are they?
4. Another name for ISR is ___________.
5. True or false. When an interrupt comes in from an exception or IRQ, the
Arm CPU switches to Handler mode automatically.

Section 6.3: STM32 Arm I/O Port Interrupt Programming

In Chapter 2, we showed how to use GPIO ports for simple I/O. We also
showed a simple program polling an input switch status and using it to turn
on or off an LED. In this section, we will demonstrate how to program the
interrupt capability of the I/O pins of the STM32F4xx chip.

Let’s examine the interrupt vector table of the STM32F4xx microcontroller
first. Table 6-7 shows the peripheral interrupt assignments. The I/O pin
interrupts come through the External Interrupts (EXTIx), the peripheral
interrupt assignments. The I/O pin interrupts come through the External
Interrupts (EXTIx), 9), and IRQ40 (EXTI10-15). Notice the first five EXTIx
lines are mapped one to one to the interrupts but the last two interrupts each
handles a group of five EXTIx lines (IRQ23-EXTI9-5, IRQ40-EXTI15-10).

INT# IRQ# Vector location Device

1-15 0800 0000 to CPU Exception
0800 003C
16 0 0800 0040 Window Watchdog interrupt

17 1 0800 0044 PVD through EXTI line detection interrupt
18 2 0800 0048 Tamper and TimeStamp interrupts through the EXTI line
19 3 0800 004C RTC Wakeup interrupt through the EXTI line
20 4 0800 0050 Flash global interrupt
21 5 0800 0054 RCC global interrupt
22 6 0800 0058 EXTI Line0 interrupt (EXTI0)
23 7 0800 005C EXTI Line1 interrupt (EXTI1)
24 8 0800 0060 EXTI Line2 interrupt (EXTI2)
25 9 0800 0064 EXTI Line3 interrupt (EXTI3)
26 10 0800 0068 EXTI Line4 interrupt (EXTI4)
27 11 0800 006C DMA1 Stream0 global interrupt
28 12 0800 0070 DMA1 Stream1 global interrupt
29 13 0800 0074 DMA1 Stream2 global interrupt
30 14 0800 0078 DMA1 Stream3 global interrupt
31 15 0800 007C DMA1 Stream4 global interrupt
32 16 0800 0080 DMA1 Stream5 global interrupt
33 17 0800 0084 DMA1 Stream6 global interrupt

34 18 0800 0088 ADC1, ADC2 and ADC3 global interrupts
35 19 0800 008C CAN1 TX interrupts
36 20 0800 0090 CAN1 RX0 interrupts
37 21 0800 0094 CAN1 RX1 interrupt
38 22 0800 0098 CAN1 SCE interrupt
39 23 0800 009C EXTI9_5 (EXTI Line[9:5])
40 24 0800 00A0 TIM1_BRK_TIM9
41 25 0800 00A4 TIM1_UP_TIM10
42 26 0800 00A8 TIM1_TRG_COM_TIM11
43 27 0800 00AC TIM1_CC
44 28 0800 00B0 TIM2 (TIM2 global interrupt)
45 29 0800 00B4 TIM3 (TIM3 global interrupt)
46 30 0800 00B8 TIM4 (TIM4 global interrupt)
47 31 0800 00BC I2C1_EV (I2C1 event interrupt)
48 32 0800 00C0 I2C1_ER (I2C1 error interrupt)
49 33 0800 00C4 I2C2_EV (I2C2 event interrupt)
50 34 0800 00C2 I2C2_ER (I2C2 error interrupt)
51 35 0800 00CC SPI1 (SPI1 global interrupt)
52 36 0800 00D0 SPI2 (SPI2 global interrupt)
53 37 0800 00D4 USART1 (USART1 global interrupt)
54 38 0800 00D8 USART2 (USART2 global interrupt)
55 39 0800 00DC USART3 (USART3 global interrupt)
56 40 0800 00E0 EXTI15_10 (EXTI Line[15:10])
Table 6-7: IRQ assignment in STM32F4xx (Partial Listing – For complete list see STM32F4 ref.
manual)

STM32F4xx Memory Map
Arm vendors are free to implement the Arm memory and I/O map as they
please as long as they follow some guideline from the Arm Corp. We often
see the I/O map address locations for peripherals varies greatly among the
vendors. However, for the memory map locations, they mostly follow the
guideline set by Arm Corp. In the case of the memory map for the Flash
memory, most vendors use the location 0000 as the default starting location
after Power-on reset, as we saw in the earlier part of this section. For the
STM32F4xx Arm chip the Flash memory addresses are different than what
we saw in Section 6.1. Examine the memory locations below:
0x2000 0000 - 0x2001 BFFF SRAM
0x0800 0000 - 0x081F FFFF Flash memory

Notice the Flash memory starting address is 0x0800 0000 instead of 0x0000
0000.
When you start a project in the Keil MDK-Arm IDE, the memory addresses
will be handled by the project wizard when the project is created and the
linker will assign the memory addresses accordingly. As a C programmer,
you do not have to do anything to build the project properly but you do need
to be aware of the final memory locations when you debug the programs.
The memory addresses for STM32F4xx are much more complex. The
devices have several different boot modes and the memory allocations are
different in different boot mode. Although the default location of flash
memory starts at 0x0800 0000, it also has the alias address starting at 0. Last
but not least, the interrupt vector table starting address is relocatable. These
topics are all beyond the scope of this book so we will not elaborate further
here.

As discussed earlier, the peripheral interrupts are generated from the
peripheral modules. These interrupt signals enter the CPU by the Nested
Vector Interrupt Controller (NVIC). In case multiple interrupts occur at the
same time, NVIC determines which interrupt to be passed on to the CPU
according to the priority assigned to each interrupt. Finally, there is a global
mask that may block all the interrupts. Upon reset, all the interrupts are
disabled at the peripheral modules. To activate any interrupt, we need to
enable the interrupt generation for a specific peripheral module then enable
the interrupt at the NVIC module. We will go through each of these
components of interrupt handling in this section.

External Interrupt Controller

All the I/O pins of STM32F4xx may generate an external interrupt. To use
external interrupt lines, the port pin must be configured in input mode. As
we saw in Chap2, we use GPIOx_MODER to make a pin an input pin.

Each of the EXTI0 (External Interrupt 0) to EXTI15 (External Interrupt 15)
interrupt is assigned to a group of I/O pins. In STM32F4xx Arm chips, all
the Px0 (PA0, PB0, PC0,… and so on) pins are grouped together and fed to
EXTI0 (External Interrupt 0). In other words, there is not a separate interrupt
assigned to each I/O pin of each port. Table 6-7 shows IRQ6 is assigned
EXTI0 (External Interrupt 0) and IRQ7 is assigned to EXTI1 (External

Interrupt 1) and so on. That means if pin 0 of any port (Px0) is used for an
external interrupt it is directed to the EXTI0. Table 6-8 shows the External
interrupt line mapping of I/O pins to EXTIx signals. There are up to 16 pins
for each port, therefore there are 16 external interrupt lines (EXTIx). In
STM32F446 Arm chip we have 23 external interrupts. While 16 of them
(EXTI0-EXIT15) are dedicated to I/O pins of the ports, the other 7 are used
for functions such as than RTC0 wake-up and others.

Although multiple pins are mapped into a single EXTIx signal but only one
can be responded to at a time. The port pin that will be responded to is
selected by a multiplexer using bits from SYSCFG_EXTICRx registers.
There are four EXTICRx registers (EXTICR1 – EXTICR4). Each register
handles four EXTI lines and each EXTI line has four bits to select from up
to eight possible ports. For example, bits 3-0 of SYSCFG_EXTICR1 select
port for EXTI0 line, bits 7-4 of SYSCFG_EXTICR1 select port for EXTI1
line, and so on.

EXTIx[3:0] Port
0000 PAx pin
0001 PBx pin
0010 PCx pin
0011 PDx pin
0100 PEx pin
0101 PFx pin
0110 PGx pin
0111 PHx pin
Table 6-8: External Interrupts Assignments to various Ports

To configure PC13 to generate interrupts, we need to set bits 7-4 of
SYSCFG_EXTICR4 to 0010. We do that with the next two statements, the
first one clears all the four bits and the second statement sets the bits to
0010. Notice the register name in the C statement for SYSCFG_EXTICR4 is
SYSCFG->EXTICR[3].

SYSCFG->EXTICR[3] &= ~0x00F0;

SYSCFG->EXTICR[3] |= 0x0020;

To configure Px.y pin to generate interrupts, the pin needs to be configured
as an input. This is done by using GPIOx_MODER register of PORTx. The
statement below makes PC13 (which is connected to the user push button
switch on the Nucleo board) an input pin.

GPIOC->MODER &= ~0x0C000000; /* clear pin mode to input mode */

i 6 8

Figure 6-8: External
interrupt/event GPIO mapping

I/O Pin EXTIx I/O Pin EXTIx I/O Pin EXTIx I/O Pin EXTIx PA0
EXTI0 PA1 EXTI1 PA2 EXTI2 PA3 EXTI3
PB0 EXTI0 PB1 EXTI1 PB2 EXTI2 PB3 EXTI3
PC0 EXTI0 PC1 EXTI1 PC2 EXTI2 PC3 EXTI3
PD0 EXTI0 PD1 EXTI1 PD2 EXTI2 PD3 EXTI3
PE0 EXTI0 PE1 EXTI1 PE2 EXTI2 PE3 EXTI3
PF0 EXTI0 PF1 EXTI1 PF2 EXTI2 PF3 EXTI3
PG0 EXTI0 PG1 EXTI1 PG2 EXTI2 PG3 EXTI3
PH0 EXTI0 PH1 EXTI1

Table 6-9: Associations of I/O pins to EXTINT signals (External interrupt/event GPIO mapping)

To complete the configuration of an interrupt, we need the following
procedure:
1) Enable the mask bit of the interrupt line in EXTI_IMR register.
2) Select the trigger by the selection bits of the EXTI_RTSR (rising trigger
selection register) and/or EXTI_FTSR (falling trigger selection register)
registers.
3) Enable the interrupt in NVIC registers.

Bits 31:23 Reserved, must be kept at reset value.
Bits 22:0 MRx: Interrupt mask on line x
0: Interrupt request from line x is masked
1: Interrupt request from line x is not masked
Figure 6-9A: Interrupt Mask Register (EXTI_IMR)

Bits 31:23 Reserved, must be kept at reset value.
Bits 22:0 PRx: Pending bit on line x
0: No trigger request occurred
1: selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt
line. This bit is cleared by programming it to‘1’.
Figure 6-9B: Pending Interrupt Register (EXTI_PR)

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3)
These bits are written by software to select the source input for the EXTIx
external interrupt.
Note:
0000: PA[x] pin 0100: PE[x] pin 0001: PB[x] pin 0101: PF[x] pin 0010:
PC[x] pin 0110: PG[x] pin 0011: PD[x] pin 0111: PH[x] pin Figure 6-9C:
SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)

Rising or Falling Edge Trigger Interrupt
The input signal for external interrupt coming from I/O pins has edge
detectors for generating
event/interrupt requests. We can set to triggered on rising or falling edge or
both. See registers below.

Bits 31:23 Reserved, must be kept at reset value.
Bits 22:20 TRx: Rising trigger event configuration bit of line x
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line
Bit 19 Reserved, must be kept at reset value.
Bits 18:0 TRx: Rising trigger event configuration bit of line x
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line

Figure 6-10A: Rising trigger selection register (EXTI_RTSR)

Bits 31:23 Reserved, must be kept at reset value.
Bits 22:20 TRx: Falling trigger event configuration bit of line x
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.
Bit 19 Reserved, must be kept at reset value.
Bits 18:0 TRx: Falling trigger event configuration bit of line x
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.
Figure 6-10B: Falling trigger selection register (EXTI_FTSR)

To generate interrupts, the corresponding bit in Interrupt Mask (EXTI_IMR)
register needs to be set. Writing a 1 to the register will enable the
corresponding EXTIx interrupt. The interrupt can be disabled by writing 0 to
the same bit in (EXTI_IMR) register. We must also set the rising or falling
edge detection using EXTI_RTSR and EXTI_FTSR registers.

Notice again that the EXTI_IMR register is 32-bit wide but only bits D22-
D0 are used to enable the 23 external interrupts. The following program
statements configure EXTI13 as a rising-edge interrupt for pin PC13.

EXTI->IMR |= 0x2000; /* unmask EXTI13 */

EXTI->FTSR |= 0x2000; /* select falling edge trigger */ Nested
Vector Interrupt Controller

In Arm Cortex, all the peripheral interrupts enter NVIC where they may be
enabled or disable and also have their priority sorted out. There is an
interrupt enable bit for each IRQ. These enable bits are controlled by the
registers in NVIC. There is one register used for setting the enable bits
(Interrupt Set Enable Register or ISER[x]) and there is a register used for
clearing the enable bits (Interrupt Clear Enable Register or ICER[x]). Each
register covers 32 IRQ interrupts. See Figure 6-11. Each interrupt can be
enabled by writing a 1 to the corresponding bit in the ISER register. Writing
0 to the ISER register has no effect on its value.

Figure 6-11: Set Enable Register (ISER[1]) for IRQ 32–63
In a Cortex-M4 device, there are eight ISER registers. The same goes for the
Interrupt Clear Enable Register (ICER) that will be discussed later.
As we can see in the interrupt vector table in Table 6-3, EXTI13 is grouped
with EXTI15_10 for IRQ40. Therefore, to enable the interrupts associated
with PC13, we need the following statement:
NVIC->ISER[1] = 0x00000100; /* enable IRQ40 (bit 8 of ISER[1]) */
Alternatively, the interrupts can be enabled using the following function, as
well:
void NVIC_EnableIRQ(IRQn_Type IRQn);

This function is defined in the file core_cm4.h which is included in the
stm32f446xx.h header file. To enable an interrupt using this function, the
IRQ number of the interrupt should be passed as the argument to the

function. For example, the following statement enables EXTI15_10
interrupt:

NVIC_EnableIRQ(40);

Since the IRQ numbers for all the interrupts are defined in the
stm32f446xx.h, we can use their names instead of their numbers for a more
meaningful code. For example, to enable EXTI15_10 interrupt the following
statement can be used as well:

NVIC_EnableIRQ(EXTI15_10_IRQn);
To disable the same interrupt there is another register ICER1. See the Figure
6-12.

Figure 6-12: Clear Enable Register (ICER[1]) for IRQ 32–63

Each interrupt can be disabled by writing a 1 to the corresponding bit in the
ICER register. Writing 0 to the ICER register has no effect on their value.
For example, the following instruction disables EXTI15_10 interrupt,
keeping the other interrupts unchanged:

NVIC->ICER[1] = 0x00000100; /* enable IRQ40 (bit 8 of ISER[1]) */
For example, the following statement disables the EXTI15_10 interrupt:
NVIC_DisableIRQ(EXTI15_10_IRQn);
In fact, each bit of the ISER register together with its corresponding bit in
the ICER register is connected to a J-K Flip-Flop, as shown below:

Figure 6-13: Enabling and Disabling an Interrupt
Global Interrupt Enable

Global interrupt enable/disable allows us with a single instruction to mask
all interrupts during the execution of some critical task such as manipulating
a common pointer shared by multiple threads. In Arm Cortex-M devices, the
global interrupt mask is located in the PRIMASK register in the CPU. Two
special instructions are used to modify the mask bit in the PRIMASK
register, CPSID I (Change Processor State Interrupt Disable) and CPSIE I
(Change Processor State Interrupt Enable). To eliminate the need to write
assembly instructions in the program, the Keil MDK toolchain added two
pseudo-functions in C language which will be replaced by CPSIE I or
CPSID I instruction by the compiler:

__enable_irq(); /* Enable interrupt Globally */
and
__disable_irq(); /* Disable interrupt Globally */

It may not always be necessary but is a good idea to disable all interrupts
during the initialization and enable interrupts only after all the initializations
are complete especially when some other resources need to be initialized
before interrupt handler can run properly.

The following lines of code enable the interrupt for PA15 pin at all three
levels:
EXTI->IMR |= 0x2000; /* unmask EXTI13 */

NVIC_EnableIRQ(EXTI15_10_IRQn); /* enable interrupt in NVIC */

__enable_irq(); /* global enable IRQs */ IRQ Priority

As describe earlier, Arm Cortex-M supports nested interrupt handling,
higher priority interrupt may preempt the lower interrupt handler, it is
important that each interrupt is assigned a proper priority before they are
enabled. The IRQ interrupt priorities are controlled by the NVIC IPR
registers. For each IRQ number, there is one byte corresponding to that IRQ
to assign its priority. The priority levels are ranging from 0 to 7 in an
STM32F4 Arm device and they are defined by three bits left justified in that
byte. There are 60 IPR registers to hold the priority of 240 IRQs. One needs
to identify the byte and the register to set the IRQ priority. We will describe
it in more details in Section 6.7. If left untouched, these registers contain
zero, so all the interrupts have the same priority.

Interrupt Handler and Interrupt Vector

In program 6-1, the main function sets up the interrupt from pin PC13,
which is connected to the user switch on the STM32F446 Nucleo board.
Notice that in various STM32F4xx Discovery and Nucleo boards the user
switch is connected to a different pin. Check the user manual for your board
and modify the program. The Px.y pin is configured as input with pull-up
resistor so that the pin stays high when the switch is not pressed. The switch
when depressed will connect Px.y pin to the ground. There is a 100nF
capacitor in series with a 100 Ohm resistor across the switch to reduce the
contact bounce. The signal from the input pin is routed through External
Interrupt Controller to generate an EXTI interrupt. After the initialization,
the interrupt is enabled and the main function goes into an infinite loop
waiting for an interrupt to occur. When an interrupt happens, the interrupt
handler is called. The interrupt handler blinks the onboard LED twice using
a dummy loop delay. It is a very poor practice to do delay or wait for
something to happen in an interrupt handler because while the handler is
stalling, all other programs except higher priority interrupts are blocked. We
use it here just to simplify the example. It is important that the interrupt
source is cleared before leaving the interrupt handler, otherwise, the program
execution will return back to the interrupt handler immediately and no other
program except the handler is executed.

The interrupt vector for EXTI in the interrupt vector table needs to hold the
starting address of the interrupt handler. The task of installing the vector
turns out to be very simple with Keil MDK-Arm. As we discussed earlier, an
interrupt handler is written as a function in C. The name of the function in C
represents the starting address of the function execution. What needs to be
done is to put this address into the interrupt vector table. With Keil MDK-
Arm, when a new project is created, a startup assembly file
startup_STM32f446xx.s is added to the project. In this file, all the interrupt
vectors are initialized with a dummy interrupt handler. The dummy interrupt
handlers are declared with the attribute of “WEAK”, meaning they can be
overwritten by another interrupt handler. If an interrupt handler is written
with the same name as the dummy handler, the linker will change the
interrupt vector to point to the new interrupt handler instead of the dummy
handler. So the programmer only has to look up the interrupt handler name
in the file startup_STM32f446xx.s and reuse the name for a function that is

intended for an interrupt handler. In this case, the interrupt handler’s name is
EXTI15_10_IRQHandler.

Program 6-1: interrupt from the switch on the Nucleo Board
/* p6_1.c using SW0 interrupt
*
* User Switch B1 is used to generate interrupt through PC13. * The
user button is connected to PC13. It has a pull-up resitor * so PC13
stays high when the button is not pressed.
* When the button is pressed, PC13 becomes low.
* The falling-edge of PC13 (when switch is pressed) triggers an *
interrupt from External Interrupt Controller (EXTI).
* In the interrupt handler, the user LD2 is blinked twice. * It
serves as a crude way to debounce the switch.
* The green LED (LD2) is connected to PA5.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.

*/
#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
__disable_irq(); /* global disable IRQs */

RCC->AHB1ENR |= 4; /* enable GPIOC clock */ RCC->AHB1ENR |= 1; /*
enable GPIOA clock */ RCC->APB2ENR |= 0x4000; /* enable SYSCFG clock
*/

/* configure PA5 for LED */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */ GPIOA->MODER |=
0x00000400; /* set pin to output mode */

/* configure PC13 for push button interrupt */
GPIOC->MODER &= ~0x0C000000; /* clear pin mode to input mode */
SYSCFG->EXTICR[3] &= ~0x00F0; /* clear port selection for EXTI13 */
SYSCFG->EXTICR[3] |= 0x0020; /* select port C for EXTI13 */
EXTI->IMR |= 0x2000; /* unmask EXTI13 */
EXTI->FTSR |= 0x2000; /* select falling edge trigger */
// NVIC->ISER[1] = 0x00000100; /* enable IRQ40 (bit 8 of ISER[1]) */
NVIC_EnableIRQ(EXTI15_10_IRQn);
__enable_irq(); /* global enable IRQs */
while(1) { }
}

void EXTI15_10_IRQHandler(void) {
GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);
GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);

EXTI->PR = 0x2000; /* clear interrupt pending flag */ }

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

When a configured I/O pin signal meets the trigger condition, it sends an
EXTIx signal to set the corresponding bit in the Pending register
(EXTI_PR). If the associated bit in EXTI_IMR is set, an interrupt is
generated. If there are more than one pin with interrupt enabled in the group,
the interrupt handler should interrogate the EXTI_PR register to find which
EXTIx signal is interrupting. The sequence the interrupt handler polls the
EXTI_PR bits determines the priority the I/O pin is served. The Program 6-2
uses two pins (PC13 and PB10) to generate interrupts. PC13 is connected to
the user push button switch on the Nucleo board. PB10 has the pull-up
resistor enabled. Connect PB10 to ground will generate an interrupt. In the
interrupt handler, the PC13 interrupt blinks the LED twice and the PB10
interrupt blinks the LED three times.

Program 6-2: Rewrite of the interrupt handler in Program 6-1 to distinguish
the interrupt pin
/* p6_2.c Interrupts from two input pins
*
* User Switch PB10 is used to generate interrupt through PC13. *
PB10 is configured to generate interrupt. It is has the * pull-up
resistor enabled. Use a jumper wire to ground the * pin to generate
interrupts.
* In the interrupt handler, the interrupt pending bits are *
checked. If the interrupt is from PC13, the LED blinks twice. * If
the interrupt is from PB10, the LED blinks three times. * The green
LED (LD2) is connected to PA5.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
__disable_irq(); /* global disable IRQs */

RCC->AHB1ENR |= 4; /* enable GPIOC clock */ RCC->AHB1ENR |= 2; /*
enable GPIOB clock */ RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB2ENR |= 0x4000; /* enable SYSCFG clock */

/* configure PA5 for LED */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */ GPIOA->MODER |=
0x00000400; /* set pin to output mode */

/* configure PC13 for push button interrupt */
GPIOC->MODER &= ~0x0C000000; /* clear pin mode to input mode */
SYSCFG->EXTICR[3] &= ~0x00F0; /* clear port selection for EXTI13 */
SYSCFG->EXTICR[3] |= 0x0020; /* select port C for EXTI13 */
EXTI->IMR |= 0x2000; /* unmask EXTI13 */
EXTI->FTSR |= 0x2000; /* select falling edge trigger */

/* configure PB10 for interrupt */
GPIOB->MODER &= ~0x00030000; /* clear pin mode to input mode */
GPIOB->PUPDR &= ~0x00300000;

GPIOB->PUPDR |= 0x00100000; /* enable pull up resistor */
SYSCFG->EXTICR[2] &= ~0x0F00; /* clear port selection for EXTI10 */
SYSCFG->EXTICR[2] |= 0x0100; /* select port B for EXTI10 */
EXTI->IMR |= 0x0400; /* unmask EXTI10 */
EXTI->FTSR |= 0x0400; /* select falling edge trigger */
NVIC_EnableIRQ(EXTI15_10_IRQn); /* enable interrupt in NVIC */
__enable_irq(); /* global enable IRQs */
while(1) { }
}

void EXTI15_10_IRQHandler(void) {
if (EXTI->PR == 0x2000) { /* interrupt from PC13 */ GPIOA->BSRR =
0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);
GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);

EXTI->PR = 0x2000; /* clear interrupt pending flag */ }
else if (EXTI->PR == 0x0400) { /* interrupt from PB10 */

GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);
GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);
GPIOA->BSRR = 0x00000020; /* turn on green LED */ delayMs(250);
GPIOA->BSRR = 0x00200000; /* turn off green LED */ delayMs(250);

EXTI->PR = 0x0400; /* clear interrupt pending flag */ }
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Review Questions
1. IRQ6 is assigned to the interrupt of which device?
2. True or false. There is an interrupt assigned to each pin of every I/O pin.
3. True or false. The I/O ports in STM32F4xx support both level and edge
trigger interrupts.
4. We use ___________in C to enable the interrupts globally.
5. Show 3 levels of interrupt enabling we must go through before we start
using it.

Section 6.4: USART Serial Port Interrupt Programming

In Chapter 4, we showed the programming of USART2 in STM32F446 Arm
using polling. This chapter shows how to do the same thing using interrupts.
Using interrupt frees up the CPU from having to poll the status of USART.
From Table 6-7 interrupt vector table we see the IRQ38 is assigned to
USART2. The USART2 global interrupt is located at the address 0x0000
00D8 in the interrupt vector location. We use it next.

USART2 Interrupt Programming to receive data

Program 4-2 in Chapter 4 showed how USART2 receives data by polling
Receive Complete (RXNE) flag. The disadvantage with that program is that
it ties down the CPU while polling the flag. We can modify it to make it an
interrupt driven program. Examining the USARTx_CR1 (Control 1) register,
we see RXNEIE (RX No Empty Interrupt Enable) bit allows us to enable the
receive interrupt. If the RXNEI interrupt is enabled and a byte is received,
the receiver RXNEI flag goes high and that in turn generates an interrupt to
NVIC and causes the interrupt handler associated with the USART2 to be
executed. In the USART2 interrupt handler, we must read the received
character. Reading the received character from the DR (DATA Register)
clears the RXNE flag.

Bit 5 RXNEIE: RXNE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the
USART_SR register

Figure 6-14: USARTx_CR1 to Enable Register to Enable RX interrupt

The initialization of USART2 in Program 6-4 is identical to Program 4-2
except at the end, RXNEIE interrupt is enabled. The polling of the RXNE
flag is removed from the infinite loop. The USART2 interrupt handler is
added. In the interrupt handler, the data is read and used to blink the LEDs.
Reading the data automatically clears the interrupt flag. In this simple
example, only RXNE interrupt is enabled so there is no need to check other
flags. In real applications, it may be desirable to check the error flag and
handle the error conditions.

With Program 6-3, pressing a key at the terminal emulator causes the PC to
send the ASCII code of the key to the STM32F4xx board. When the
character is received by USART2, the interrupt handler blinks the LED.

Program 6-3: Using the USART2 interrupt
/* p6_3.c UART on USART2 Receive at 115200 Baud
*
* Receive key strokes from terminal emulator (Tera Term) of the *
host PC to the UART on USART2 of the Nucleo-F446RE board and * use
the key value to blink the LED.
* Same program as p4_2 but is interrupt driven.
*
* By default, the clock is running at 16 MHz.
* The UART is configured for 115200 Baud.
* PA3 - USART2 RX (AF7)
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"

void USART2_init(void); void LED_blink(int value); void
delayMs(int);

/*--
---------MAIN function

*---
---------*/ int main (void) {
__disable_irq(); /* global disable IRQs */

RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

USART2_init(); /* initialize USART2 */

USART2->CR1 |= 0x0020; /* enable Rx interrupt */
NVIC_EnableIRQ(USART2_IRQn); /* enable interrupt in NVIC */
__enable_irq(); /* global enable IRQs */

while(1) { /* Loop forever */ }
}
/*--
---------Initialize UART pins, Baudrate

*---
---------*/ void USART2_init (void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* Enable USART2 clock */
GPIOA->MODER |= 0x0080; /* enable alternate function for PA3 */

/* Configure PA2 for USART2 TX */
GPIOA->AFR[0] &= ~0xF000;
GPIOA->AFR[0] |= 0x7000; /* alt7 for USART2 */ GPIOA->MODER &=
~0x00C0;

USART2->BRR = 0x008B; /* 115200 baud @ 16 MHz */ USART2->CR1 =
0x0004; /* enable Rx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop
bit */ USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |=
0x2000; /* enable USART2 */

}
void USART2_IRQHandler(void) { char c;

if (USART2->SR & 0x0020) {
c = USART2->DR; /* Read a character from USART2 */ LED_blink(c); /*
blink the LED */

}
}
/* turn on or off the LEDs according to the value */ void
LED_blink(int value) {
value %= 16; /* cap the max count at 15 */

for (; value > 0; value--) {
GPIOA->BSRR = 0x00000020; /* turn on LED */ delayMs(200);
GPIOA->BSRR = 0x00200000; /* turn off LED */ delayMs(200);

}
delayMs(800);
}

void delayMs(int n) {
int i;
for (; n > 0; n--)

for (i = 0; i < 2000; i++) ; }

USART2 Interrupt Programming to transmit data

Also, notice that in Program 6-3 there is only a single interrupt for both
receiver and transmitter. If we want to implement both transmitter and
receiver interrupts, we also have to enable TXEIE (TXE interrupt enable) bit
in USARTx_CR1 register. This way a USART interrupt is generated
whenever TXE=1 in the USART_SR register. We can also use TCIE
(Transmission complete interrupt enable) in the USARTx_CR1 register then
a USART interrupt is generated whenever TC=1 in the USART_SR register.
In the interrupt handler, we must poll to see the source of the interrupt.

Using interrupts to transmit data is more complex than receiving data. The
program needs to create a first-in-first-out buffer to store the characters to be
transmitted. After the character is transmitted, the TXE or TC flag becomes
set and the interrupt is triggered. In the interrupt handler, the data in the
buffer is moved to the transmit DR (DATA) register. If the buffer is empty,
transmit interrupt needs to be disabled. When new data is added to the
buffer, the transmit interrupt is enabled again.

Review Questions
1. In STM32F4xx, Which IRQ is assigned to USART2?
2. True or false. There is only one interrupt for both Receiver and
Transmitter.
3. What address locations in vector table is assigned to USART2 in
STM32F4xx Arm chip?
4. We use register __________ to enable the interrupt associated with
USART2.
5. True or false. Upon Reset, USART2 is enabled and ready to go.

Section 6.5: SysTick Programming and Interrupt

Another useful interrupt in Arm is the SysTick. The SysTick timer was
discussed in Chapter 5. Next, you learn how to use the SysTick interrupt.
See figure below.

Figure 6-15: SysTick Internal Structure
If TICKINT=1, when the COUNT flag is set, it generates an interrupt.
TICKINT is D1 of the CSR register, as shown in Figure 6-16.

Figure 6-16: SysTick Control and Status Register (SYST_CSR)

The SysTick interrupt can be used to initiate an action on a periodic basis.
This action is performed at a fixed rate without external signal. For example,
in a given application we can use SysTick to read a sensor every 200 msec.
SysTick is used widely for an operating system so that the system software
may interrupt the application software periodically (often at 10 ms interval)
to monitor and control the system operations.

Using SysTick with Interrupt

The Program 6-4 uses the SysTick to toggle an LED every second. We need
the RELOAD value of 16,000,000-1. The CLK_SRC bit of CTRL register is
set so the system clock is used as the clock source of SysTick. In the
STM32F4xx Arm, the alternative clock for SysTick is connected to a
prescaler that divides the system clock by 16. The system clock is running at
16 MHz. The COUNT flag is raised every 16,000,000 clocks and an
interrupt occurs. Then the RELOAD register is loaded with 16,000,000-1
automatically.

The interrupt is enabled in SysTick Control and Status register. Examining
interrupt vector table for Arm Cortex, we see that the SysTick is assigned to
INT15. Because SysTick is an interrupt below INT16, the enable/disable and
the priority are not managed by the NVIC. Its priority is controlled by a
System Handler Priority register (SHPR) of System Control Block (SCB).
Instead for finding out which register to use, we may use
NVIC_SetPriority(SysTick_IRQn, prio) function defined in core_cm4.h to
change the priority. Although the function name has NVIC in it, it modifies
SHP registers for interrupts below 16. There is no need to clear interrupt flag
in the interrupt handler for SysTick.

Program 6-4: SysTick interrupt
/* p6_4.c Toggle the LED using the SysTick interrupt
*
* This program sets up the SysTick to interrupt at 1 Hz. * The
system clock is running at 16 MHz.
* 1 sec/1 us = 16,000,000-1 for RELOAD register.
* In the interrupt handler, the LED is toggled.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32F4xx.h"
int main(void) {
__disable_irq(); /* global disable IRQs */

RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

/* Configure SysTick */
SysTick->LOAD = 16000000-1; /* reload with number of clocks per

second */ SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable SysTick interrupt, use system clock */
__enable_irq();
void SysTick_Handler(void) {

while (1) { }
}
GPIOA->ODR ^= 0x00000020; /* turn on LED */ }

Review Questions
1. Which interrupt is assigned to SysTick in Arm Cortex M chip?
2. Which register of Systick is used to enable the interrupt associated with
SysTick.
3. True or false. We use ISER in NVIC register to enable SysTick interrupt.

Section 6.6: Timer Interrupt Programming

In Chapter 5, we showed how to program the timers. In those programming
examples, we used polling to see if a timer counter update occurred. In this
section, we give an interrupt-based version of that program.

Timer Counter Update Interrupt

Examine the programs in Section 5.3 of Chapter 5. In those programs, inside
the infinite loop, the program continuously polls the interrupt flag until the
flag is set. At the same time, the program does not do anything useful. In this
section, we are going to use the timer interrupt to notify the program that the
timer counter update happen. At the meantime, the program is free to do
other useful tasks. To do that, we use the TIMx DMA/Interrupt enable
register (TIMx_DIER). In the interrupt enable register, the UIE (Update
interrupt enable) is set to 1 to trigger an interrupt when timer counter update
occurs. From Table 6-7 we see the IRQ28 is assigned to TIM2 interrupt. The
IRQ28 (TIM2 global interrupt) is located at the vector table address of
0x0000 00B0.

Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled

1: Update interrupt enabled

Figure 6-17: TIMx DMA/Interrupt enable register (TIMx_DIER) to Enbale Timer interrupt
Program 6-5 is modified from the polling program 5-4. Timer interrupt is
enabled and an LED is blinked in the interrupt handler.
Program 6-5: Toggling the LED using the Timer 2 reload interrupt
/* p6_5.c Timer TIM2 interrupt
*
* Timer TIM2 is configured as an up-counter. By default, the system
clock is * running at 16 MHz. The prescaler is set to divide by
16,000 that gives a * 1 kHz clock to the counter. The counter auto-
reload is set to 999. When * the counter counts to 999, it updates
the counter to zero and sets the * update interrupt flag (UIF). The
UIE bit of TIM2->DIER is set so that * the UIF triggers a timer
interrupt. The interrupt frequency is 1 Hz. * In the timer interrupt
handler, the green LED (PA5) is toggled and

* the UIF is cleared.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
__disable_irq(); /* global disable IRQs */ RCC->AHB1ENR |= 1; /*
enable GPIOA clock */

GPIOA->MODER &= ~0x00000C00; GPIOA->MODER |= 0x00000400;

/* setup TIM2 */
RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 16000 - 1; /*
divided by 16000 */ TIM2->ARR = 1000 - 1; /* divided by 1000 */
TIM2->CR1 = 1; /* enable counter */

TIM2->DIER |= 1; /* enable UIE */
NVIC_EnableIRQ(TIM2_IRQn); /* enable interrupt in NVIC */
__enable_irq(); /* global enable IRQs */
while(1) { }
}

void TIM2_IRQHandler(void) {
TIM2->SR = 0; /* clear UIF */ GPIOA->ODR ^= 0x20; /* toggle LED */

}

Timer Output Compare Interrupt

Recall in Chapter 5, when operating in Output Compare operation, when the
counter value matches the content of CCRx register, the output of the
associated pin can be configured to change in several different ways. Here
we are going to trigger an interrupt in addition to the output change. In the
interrupt handler, a value in added to the CCRx register so that the output
compare match will occur after the number of the clocks determined by the
value added.

For example, when the CCR1 register contains 750, an output compare
match of channel 1 occurs when the counter counts to 750. If 345 is added to
CCR1, the CCR1 will have 1095. The next time an output compare match
occurs is when the counter reaches 1095, exactly 345 clock cycles after the
last output compare match. In the program 6-6 below, the output compare is
set to toggle the output and the output is connected to the LED. In the
interrupt handler, 1000 is added to the CCR1. The time clock is configured
to run at 1 kHz (with 16 MHz system clock and the prescaler divided by
16,000). The output compare occurs once every second.

We added a constant 1000 to the CCR1 to generate a square wave output. In
other applications, you may add a series of different intervals to create a
different waveform output.
Program 6-6: Toggling the yellow LED using two Timer interrupts
/* p6_6.c Timer TIM2 interrupt
*
* Timer TIM2 is configured as an up-counter. By default, the system
clock is * running at 16 MHz. The prescaler is set to divide by
16,000 that gives a * 1 kHz clock to the counter.
* The timer is set up for output compare interrupt for channel 1.
When the * counter matches the CCR1 register, the output toggles and
an interrupt * is triggered. In the interrupt handler, the PERIOR
value is added CCR1 * so that the next CCR1 match occurs after the
PERIOR count.
* When the PERIOD is set to 1000, the output toggles at 1 Hz.
* The output of TIM2 Channel 1 is PA5 which is connected to the LED.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define PERIOD 1000 void delayMs(int n);

int main(void) {
__disable_irq(); /* global disable IRQs */ RCC->AHB1ENR |= 1; /*

enable GPIOA clock */

GPIOA->MODER &= ~0x00000C00;
GPIOA->MODER |= 0x00000800; /* use alternate function */ GPIOA-
>AFR[0] = 0x00100000; /* PA5 TIM2-CH1 */

/* setup TIM2 */
RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 16000 - 1; /*
divided by 16000 */ TIM2->ARR = 0xFFFF; /* max count */
TIM2->CCR1 = PERIOD;
TIM2->CNT = 0;
TIM2->CCMR1 = 0x30; /* Output compare toggle */ TIM2->CCER = 1; /*
CC1 enable */ TIM2->CR1 = 1; /* enable counter */

TIM2->DIER |= 2; /* enable CC1IE */ NVIC_EnableIRQ(TIM2_IRQn); /*
enable interrupt in NVIC */
__enable_irq(); /* global enable IRQs */
while(1) { }
}

void TIM2_IRQHandler(void) {
TIM2->SR = 0; /* clear UIF */
TIM2->CCR1 = (TIM2->CCR1 + PERIOD) & 0xFFFF; /* update CCR1 */

}

Review Questions
1. For STM32F4xx chip, which IRQ is assigned to TIM2?
2. True or false. There is only one interrupt for both TIM2 and TIM3.
3. We use register __________ in TIM2 to enable the interrupt associated
with TIM2.
4. True or false. Upon Reset, TIM2 interrupt is enabled and ready to go.

Section 6.7: Interrupt Priority Programming in STM32 Arm

The implementation of interrupts varies from vendor to vendor. While Arm
has control over the standardization of the first 15 interrupts (INT1 to
INT15), the Arm licensees are free to implement the peripheral interrupts of
INT16 – INT255 (the IRQs). The first three interrupts are Reset, NMI, and
Hard Fault. For these three interrupts, Reset has the highest priority (with -3
priority number), then NMI (with
-2), and Hard Fault (with -1), in that order. In Arm, the lower value has
higher priority. The priorities of interrupts 11, 14, and 15 are controlled by
the System handler Priority Register 2 and 3 in the System Control Block.

We have talked about the priority setting of SysTick, which is INT15, in
Section 6.5. You can explore them by reading the Arm Cortex data sheet. In
this section, we deal with the priority of peripheral interrupts of INT16
(IRQ0) to INT56 (IRQ40). We must pay attention to the IRQ# since this is
used to index into the registers in the NVIC to change the priority of the
interrupt.

When more than one interrupt is pending, the interrupt with the highest
priority is acknowledged first. While an interrupt handler is running, another
interrupt with higher priority will interrupt the current interrupt handler and
start its own interrupt handler (nested interrupts).

The IPR registers and the Interrupt Priority

The priority of an IRQ is assigned in one of the interrupt priority registers
(IPRx) in NVIC. If we do not assign a priority to an IRQ, by default, it has
priority 0 that is the highest priority for the IRQ. Each IRQ uses one byte in
one of the interrupt priority registers. Therefore, each interrupt priority
register holds priorities for four IRQ. For example, IPR0 (IPR zero) register
holds the priorities of IRQ3, IRQ2, IRQ1 and IRQ0. In the same way, the
priorities of IRQ7, IRQ6, IRQ5 and IRQ4 are assigned in IPR1 register. For
240 IRQs, 60 interrupt priority registers are used. The STM32F4 Arm
devices use only the four most significant bits of the byte in the interrupt
priority register. With four bits, there can be 16 different priorities, 0 to 15.
The lower the number the higher the priority is.

Figure 6-18: IPRn
Registers
Notice, there is a pattern in the IPRn and IRQ# assignments. It follows the
following formula:
IPRn IRQ(4n+3), IRQ(4n+2), IRQ(4n+1), and IRQ(4n)

To find the IPR number simply divide the IRQ number by 4 and the
remainder will determine which byte it is in the register. Because only the
highest four bits are used for priority, the priority number needs to be
multiplied by 16 (or left shift 4 bits) before loading into the proper byte. For
example, for priority 2, the value 32 should be loaded. To ease the
calculation of finding the correct bits of the correct register to set the proper
value for the priority, the NVIC_IPRx registers are defined as an array of 8-
bit registers IP[x] in the core_cm4.h. This way, the priority of IRQx is
controlled by IP[x].

For example, if we want to set the TIM2 interrupt priority to 3, first we need
to find out the IRQ number of a TIM2 interrupt, which is IRQ28. Then the C
statement is simply:
NVIC->IP[28] = 3 << 4;
There is also a function NVIC_SetPriority(IRQ#) defined in core_cm4.h to
set the priority of an IRQ in NVIC. To set the priority of TIM2 to 3:
NVIC_SetPriority(TIM2_IRQn, 3);
TIM2_IRQn is defined in stm32f446xx.h.

Program 6-7 illustrates two interrupts with different priorities. In this
example, delay function is called in the interrupt handler to demonstrate the
preemption by a higher priority interrupt. (In the real world, it is a bad
practice to call delay function in an interrupt handler.) TIM3 is programmed
to interrupt at about 1-second interval. In the interrupt handler, pin PB3 is
turned on for 500 ms. TIM4 is programmed to interrupt at about 100 ms
interval and in its interrupt handler, pin PB4 and the LED are turned on for
25 ms. The frequencies of two interrupts are intentionally made slightly off
the multiple of 10 so that the phase relationship of two interrupts will be
changing and their interactions can be observed with an oscilloscope. Since
TIM3 has higher priority, you will observe that the LED is not blinking
when the TIM3 interrupt handler is running (once every second for half a
second). Now, change the priority of the TIM4 to be higher than TIM3 by
changing the lines from

#define PRIO_TIM3 3

#define PRIO_TIM4 4
to
#define PRIO_TIM3 4

#define PRIO_TIM4 3
You will see that the LED is blinking all the time even when the TIM3
interrupt handler is running.

The TIM3 interrupt handler is preempted by TIM4 interrupts. If you have an
oscilloscope, connect to PB3 and PB4 will give you a better picture.
Program 6-7: Interrupt priority demonstration
/* p6_7.c Demonstrate Nested Interrupts
*
* TIM3 is setup to interrupt at about 1 Hz. In the interrupt
handler,

* PB3 is turned on and a delay function of 500 ms is called. * PB3
is turned off at the end of the delay.
*
* TIM4 is setup to interrupt at about 10 Hz. In the interrupt
handler, * PB4 and the LED0 is turned on and a delay function of 25
ms is called. * PB4 and the LED0 is turned off at the end of the
delay.
*
* When TIM3 has the higher priority (the way this code is), the TIM4
* interrupts are blocked by TIM3 interrupt handler and the LED stops
* blinking intermittently. You can see their interactions better *
with an oscilloscope on PB3 and PB4.
*
* When TIM4 has the higher priority (you need to switch the priority
of * the two timers at the #define statements), the TIM3 interrupt
handler is * preempted by TIM4 interrupts and the LED is blinking
all the time. *
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);

/* priority of TIM3 and TTIM4 should be between 0 and 15 */ #define
PRIO_TIM3 3
#define PRIO_TIM4 4

int main (void) {
__disable_irq(); /* global disable IRQs */ RCC->AHB1ENR |= 1; RCC-
>AHB1ENR |= 2; /* enable GPIOA clock */ /* enable GPIOB clock */

GPIOA->MODER &= ~0x00000C00; /* pin PA5 (LED) output */ GPIOA->MODER
|= 0x00000400;
GPIOB->MODER &= ~0x000003C0; /* pins PB3, PB4 output */ GPIOB->MODER
|= 0x00000140;

/* setup TIM3 */
RCC->APB1ENR |= 2; /* enable TIM3 clock */ TIM3->PSC = 1000 - 1; /*
divided by 1000 */ TIM3->ARR = 15500 - 1; /* divided by 15500 */
TIM3->CR1 = 1; /* enable counter */

TIM3->DIER |= 1; /* enable UIE */
NVIC_SetPriority(TIM3_IRQn, PRIO_TIM3);
NVIC_EnableIRQ(TIM3_IRQn); /* enable interrupt in NVIC */

/* setup TIM4 */
RCC->APB1ENR |= 4; /* enable TIM4 clock */ TIM4->PSC = 1000 - 1; /*
divided by 1000 */ TIM4->ARR = 1562 - 1; /* divided by 1562 */ TIM4-
>CR1 = 1; /* enable counter */ __enable_irq(); /* enable interrupt
globally */

TIM4->DIER |= 1; /* enable UIE */
NVIC_SetPriority(TIM4_IRQn, PRIO_TIM4);
NVIC_EnableIRQ(TIM4_IRQn); /* enable interrupt in NVIC */

while(1) { }
}

void TIM3_IRQHandler(void) {
GPIOB->BSRR = 0x00000008; /* turn on PB3 */ delayMs(500);
GPIOB->BSRR = 0x00080000; /* turn off PB3 */ TIM3->SR = 0; /* clear
UIF */

}

void TIM4_IRQHandler(void) {
GPIOA->BSRR = 0x00000020; /* turn on LED */ GPIOB->BSRR =
0x00000010; /* turn on PB4 */ delayMs(25);
GPIOA->BSRR = 0x00200000; /* turn off LED */ GPIOB->BSRR =
0x00100000; /* turn off PB4 */ TIM4->SR = 0; /* clear UIF */

}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Review Questions
1. In Arm, which interrupt has the highest priority?
2. True or false. Upon Reset, all the IRQs have the same priority.
3. We use register __________ to modify the interrupt priority of IRQ28.
4. To assign priority to IRQ28, we need to write to the IP[__] register.

Answer to Review Questions

Section 6.1
1. True
2. 4
3. 192 byte beginning at 0x00000000 and ending at 0x000000BF
4. Interrupt service routine (ISR) or interrupt handler
5. To hold the starting address of each ISR
6. 0x00000040, 41, 42, and 43
7. No; it is embedded internally in the CPU.
Section 6.2
1. True
2. 2; Thread mode and Handler mode
3. 8 bytes. 4 bytes for the address of the stack (loaded into the Stack Pointer)
and 4 bytes for the address of beginning of the program (loaded in Program
Counter).
4. Interrupt handler
5. True
Section 6.3
1. EXTI0
2. False; all I/O pins are mapped to 16 EXTIx and all 16 EXTIx are mapped
to 7 IRQs.
3. True
4. __enable_irq();
5. (a) on the peripheral device module level. (b) on the system level with
ISER register in NVIC. (c) on the global level with the __enable_irq();
statement.
Section 6.4
1. IRQ38
2. True
3. 0x0800 00D8
4. USART2_CR1
5. False
Section 6.5
1. INT15
2. SYST_CSR
3. False. NVIC_ISER register is used for IRQs (external interrupts) and

SysTick is not part of them. Section 6.6
1. IRQ28
2. False
3. TIM2_DIER
4. False
Section 6.7
1. Reset
2. True, by default all IRQs have priority of 0.
3. NVIC_IPR7
4. IP[28]

Chapter 7: ADC, DAC, and Sensor Interfacing

Most of the things in the world is analog but the computer is digital. For the
computer to interact with the surrounding world, an analog-to-digital
converter (ADC) and a digital-to-analog converter (DAC) are needed. This
chapter explores ADC, DAC, and sensors and how to interface the STM
Arm to these devices. In Section 7.1, we describe analog-to-digital converter.
We will program the ADC module of the STM32 Arm chip in Section 7.2. In
Section 7.3, we show the interfacing of sensors and discuss the issue of
signal conditioning. The characteristics and programming of DAC chips are
discussed in Section 7.4.

Section 7.1: ADC Characteristics

This section will explore the ADC in general. First, we describe some
general aspects of the ADC itself, then focus on the functionality of some
important signals in an ADC.
ADC devices

Analog-to-digital converters are essential for data acquisition. Digital
computers use binary (discrete) values, but in the physical world, everything
is analog (continuous). Temperature, pressure, humidity, and velocity are a
few examples of physical quantities that we deal with every day. A physical
quantity is converted to electrical (voltage, current) signals using a device
called a transducer. Transducers used to generate electrical outputs are also
referred to as sensors. Sensors for temperature, velocity, pressure, light, and

many other physical quantities produce an output that is voltage (or current).
Therefore, we need an analog-to-digital converter to translate the analog
signals to digital numbers so that the microcontroller can read and process
the numbers. See Figures 7-1 and 7-2.

Figure 7-1: Microcontroller Connection to Sensor via ADC

Figure 7-2: An 8-bit
ADC Block Diagram
Some of the major characteristics of the ADC
Resolution

The ADC has an n-bit resolution, where n can be 8, 10, 12, 16, or even 24
bits. Higher-resolution ADCs provide a smaller step size, where step size is
the smallest change that can be discerned by an ADC. Some widely used
resolutions and their step sizes for ADCs are shown in Table 7-1. Although
the resolution of an ADC is decided at the time of its design and cannot be
changed, we can control the step size with the help of what is called Vref.
This is discussed below.

n-bit Number of steps Step size 8 256 5V /256 = 19.53 mV 10 1,024 5V
/1,024 = 4.88 mV 12 4,096 5V /4,096 = 1.22 mV

16 65,536 5V /65,536 = 0.0763 mV Note: Vref= 5V
Table 7-1: Resolution versus Step Size for ADC (Vref = 5V)

Vref Vref is an input voltage used for the reference of the converter. The
voltage connected to this pin,
along with the resolution of the ADC chip, determine the step size. For an 8-
bit ADC, the step size is Vref
/ 256 because it is an 8-bit ADC, and 2 to the power of 8 gives us 256 steps.
See Table 7-1. For example, if
the analog input range needs to be 0 to 4 volts, Vref is connected to 4 volts.
That gives 4 V / 256 = 15.62
mV for the step size of an 8-bit ADC. In another case, if we need a step size
of 10 mV for an 8-bit ADC,
then Vref = 2.56 V, because 2.56 V / 256 = 10 mV. For the 10-bit ADC, if the
Vref = 5V, then the step size is
4.88 mV as shown in Table 7-1. Tables 7-2 and 7-3 show the relationship
between the Vref and step size
for the 8- and 10-bit ADCs, respectively. In some applications, we need the
differential reference voltage
where Vref = Vref(+)– Vref(–). If differential reference is not necessary, the
Vref(–) pin is connected to ground
and the Vref(+) pin is used as the Vref. Voltage reference devices are
commonly available to be used.

Vref (V) Vin in Range (V) Step Size (mV)
5.00 0 to 5 5 / 256 = 19.53
4.00 0 to 4 4 / 256 = 15.62
3.00 0 to 3 3 / 256 = 11.71
2.56 0 to 2.56 2.56 / 256 = 10
2.00 0 to 2 2 / 256 = 7.81
1.28 0 to 1.28 1.28 / 256 = 5
1.00 0 to 1 1 / 256 = 3.90
Note: In an 8-bit ADC, step size is Vref/256

Table 7-2: Vref Relation to Vin Range for an 8-bit ADC

Vref (V) VinRange (V) Step Size (mV)
5.00 0 to 5 5 / 1024 = 4.88
4.96 0 to 4.096 4.096 / 1024 = 4
3.00 0 to 3 3 / 1024 = 2.93
2.56 0 to 2.56 2.56 / 1024 = 2.5
2.00 0 to 2 2 / 1024 = 2
1.28 0 to 1.28 1.28 / 1024 = 1.25 1.024 0 to 1.024 1.024 / 1024 = 1
Note: In a 10-bit ADC, step size is Vref/1024

Table 7-3: Vref Relation to Vin Range for an 10-bit ADC
Conversion time

In addition to resolution, conversion time is another major factor in selecting
an ADC. Conversion time is defined as the time it takes the ADC to convert
the analog input to a digital number. The conversion time is dictated by the
clock source connected to the ADC in addition to the method used for data
conversion and technology used in the fabrication of the ADC. Generally,
the higher the resolution, the longer it takes to do a conversion.

Digital data output
In an 8-bit ADC, we have an 8-bit digital data output of D0–D7, while in the
10-bit ADC the data
output is D0–D9. To calculate the output value, we use the following
formula:

Dout = Vin / StepSize

Where Dout is the digital data output (a numeric value) and Vin is the analog
input voltage. Figure 7-3 shows a simple 2-bit ADC. In the circuit, the
voltage between Vref(+) and Vref(-) is divided into 4 since resistors have the
same values. As a result, the step size is (Vref(+) - Vref(-)) / 4.

Figure 7-3: A Simultaneous 2-bit ADC
If Vin is below one step size all the comparators send out zeros. When Vinis
between one step size and step size × 2, the lowest comparator sends out 1
and the encoder gives 01.

If Vinis between step size × 2 and step size × 3, the second comparator and
the first comparator sends out 1. Since the encoder is a hierarchical priority
encoder, it sends out the highest value in cases that more than 1 input is high.
As a result, 2 (10 in binary) will be sent out.

When Vinis bigger than step size × 3, the third comparator becomes high and
3 will be sent out.
See Example 7-1. This data is brought out of the ADC chip either one bit at
a time (serially) or in one chunk, using a parallel line of outputs. This is
discussed next.

Example 7-1
For a given 8-bit ADC (e.g. ADC0848), we have Vref = 2.56 V. Calculate the
D0–D7 output if the analog input is: (a)1.7 V, and (b) 2.1 V.

Solution:

Since the step size is 2.56/256 = 10 mV, we have the following.
(a)Dout = 1.7V/10 mV = 170 in decimal, which gives us 10101011 in binary
for D7–D0. (b)Dout = 2.1V/10 mV = 210 in decimal, which gives us
11010010 in binary for D7–D0.

Parallel versus serial ADC

The ADC chips are either parallel or serial. In parallel ADC, we have 8 or
more pins dedicated to bringing out the binary data, but in serial ADC we
have only one pin for data out. The D0–D7 data pins of the 8-bit ADC
provide an 8-bit parallel data path between the ADC chip and the CPU. In
the case of the 16-bit parallel ADC chip, we need 16 pins for the data path.
In order to save pins, many 12- and 16-bit ADCs use pins D0–D7 to send out
the upper and lower bytes of the binary data. In recent years, for many
applications where space is a critical issue, using such a large number of pins
for data is not feasible. For this reason, serial devices such as the serial ADC
are common. While the serial ADCs use fewer pins and their smaller
packages take much less space on the circuit board, more CPU time is
needed to get the converted data from the ADC because the CPU must get
data one bit at a time, instead of in one single read operation as with the
parallel ADC. The Serial Peripheral Interface (SPI) module is designed to
clock in the data so that the CPU does not have to spend time directly on
acquiring the data. We will cover SP in Chapter 8. ADC0848 is an example
of a parallel ADC with 8 pins for the data output, while the MAX1112 is an
example of a serial ADC with a single pin for Dout. Figures 7-4 and 7-5
show the block diagram for ADC0848 and MAX1112, respectively.

Figure 7-4: ADC0848 Parallel ADC Block Diagram

Figure
7-5: MAX1112 Serial ADC Block Diagram
Analog input channels

Many data acquisition applications need more than one analog input. For this
reason, we see ADC chips with 2, 4, 8, or even 16 channels on a single chip.
Instead of having many ADCs, multiplexing of analog inputs is often used as
shown in the ADC848 and MAX1112. In these chips, we have 8 channels of
analog inputs, allowing us to monitor multiple quantities such as
temperature, pressure, flow, and so on. The SAMD2x devices have up to 20
single-ended input analog channels for the on-chip ADC.

Start conversion and end-of-conversion signals

For the conversion to be controlled by the CPU, there are needs for start
conversion (SC) and endof-conversion (EOC) signals. When SC is activated,
the ADC starts converting the analog input value of Vin to a digital number.
The amount of time it takes to convert varies depending on the conversion
method, clock speed, and resolution. When the data conversion is complete,
the end-of-conversion signal notifies the CPU that the converted data is
ready to be picked up.

Successive Approximation ADC

Successive Approximation is a broadly used method of converting an analog
input to digital output. It has three main components: (a) successive
approximation register (SAR), (b) comparator, and (c) control unit. See the
figure below.

Figure 7-6: Successive Approximation ADC

The successive approximation register is loaded with only the most
significant bit set at the start. An internal digital-to-analog converter converts
the value of SAR to an analog voltage which is used to compare to the input
voltage. If the input voltage is higher, the bit is kept. If the voltage is lower,
the bit is cleared. The next bit is tried and the DAC and compare are
exercised. This process is repeated for all bits of the SAR. Assuming a step
size of 10 mV, the 8-bit successive approximation ADC will go through the
following steps to convert an input of 1 Volt:

(1) It starts with binary number 10000000. Since 128 × 10 mV = 1.28 V is
greater than the 1 V input, bit 7 is cleared (dropped).
(2) 01000000 gives us 64 × 10 mV = 640 mV and bit 6 is kept since it is
smaller than the 1 V input. (3) 01100000 gives us 96 × 10 mV = 960 mV and
bit 5 is kept since it is smaller than the 1 V input, (4) 01110000 gives us 112
× 10 mV = 1120 mV and bit 4 is dropped since it is greater than the 1 V
input. (5) 01101000 gives us 108 × 10 mV = 1080 mV and bit 3 is dropped
since it is greater than the 1 V input. (6) 01100100 gives us 100× 10 mV =
1000 mV = 1 V and bit 2 is kept since it is equal to input. Even though the
answer is found it does not stop.
(7) 011000110 gives us 102 × 10 mV = 1020 mV and bit 1 is dropped since
it is greater than the 1 V input. (8) 01100101 gives us 101 × 10 mV = 1010
mV and bit 0 is dropped since it is greater than the 1 V input.

Notice that the Successive Approximation method goes through all the steps
even if the answer is found in one of the earlier steps. The advantage of the
Successive Approximation method is that the conversion time is fixed since
it has to go through all the steps. Also, it only takes one more clock cycle to
get one more bit of resolution.

Review Questions
1. Give two factors that affect the step size calculation.
2. The ADC0848 is a(n) _______-bit converter.
3. True or false. While the ADC0848 has 8 pins for Dout, the MAX1112 has
only one Dout pin.
4. Find the step size for an 8-bit ADC, if Vref = 1.28 V.
5. For question 4, calculate the output if the analog input is: (a) 0.7 V, and
(b) 1 V.

Section 7.2: ADC Programming with STM32 Arm

In this section, we discuss the ADC features of the STM32F4xx Arm and
show how it is programmed.

The STM32F4xx Arm chip has three on-chip ADC modules. It can support
up to 16 external analog input channels and three internal sources using
multiplexing. The ADC has 12-bit resolution. To program them, we need to
understand some of the major registers. Figure 7-7 shows a simplified block
diagram of the main (master) ADC in STM32F4xx chip. In the reference
manual the ADCs are designated as ADC1 (master), ADC2 (slave) and
ADC3 (slave). In this chapter we focus on the ADC1, the main one since it
has everything we need.

The base address of the ADC is located at 0x4001 2000. Below are some of
the major registers and their offset addresses of STM32F4xx ADC.

Offset Address
0x00
0x04
0x08
0x0C
0x10
0x4C
Register
ADC_SR (Status Register) ADC_CR1(Control Register1)
ADC_CR2(Control Register2) ADC_SMPR1
ADC_SMPR2
ADC_DR (Data Register)

Table 7-4: Some of the STM32F4xx Registers

Figure 7-7: Simplified Block Diagram of STM32F4xx chip
Configure Clock Sources

Like other peripheral modules, the ADC needs a clock to drive the
conversion. The ADC clock is enabled by bits of RCC_APB2ENR (RCC
APB2 peripheral clock enable register) register in the Reset and Control
(RCC) section of the CPU. The conversion clock is derived from the
SYSCLK. The following statement enables the clock to ADC1.

RCC_APB2ENR |= 0x00000100; /* enable clock for ADC1 */

Bit 10 ADC3EN: ADC3 clock enable
This bit is set and cleared by software.
0: ADC3 clock disabled
1: ADC3 clock disabled

Bit 9 ADC2EN: ADC2 clock enable
This bit is set and cleared by software.
0: ADC2 clock disabled
1: ADC2 clock disabled

Bit 8 ADC1EN: ADC1 clock enable
This bit is set and cleared by software.
0: ADC1 clock disabled
1: ADC1 clock disabled

Fig 7-8: RCC_APB2ENR (RCC APB2 peripheral clock enable register) to enable clock to ADC
Conversion Clock

The SYSCLK clock source may be divided by the divider chosen by AHB
and APB prescalers before it is fed to the ADC. The output of the APB1
divider is used to clock the ADC core and the sample timer. See Appendix
C.

ADC Conversion Time

The conversion time for the ADC has two parts, the time to sample the input
signal, and the time to do the conversion. Most of the ADC does not work
well when the input signal is changing during conversion. A sample and
hold circuit is added between the input signal and the converter. The input
signal is sampled and held in a capacitor. The input is disconnected from the
holding capacitor for the duration of the conversion so that the fluctuation of
the input signal does not affect the input of the converter. During the
sampling phase, the input signal is charging the holding capacitor. The
longer the sampling time, the closer the holding voltage is to the input
signal. But the longer the sampling time also decreases the conversion rate.
If the input is from a single channel and the sampling rate is high, the
consecutive samples have very close voltages, short sampling time will
suffice. On the other hand, if two or more different input signals are sampled
alternatively, the sampling time needs to be lengthened to reduce the
crosstalk between input channels.

The number of clock cycles for sampling time can be programmed using
ADC_SMPRx (Sample Time Register) register. We have two ADC_SMPRx
registers to covers all the 18 ADC channels. The ADC_SMPR2 is used for
channels 0 to 9 and ADC_SMPR1 is used for channels 10 to 18. The
sampling time length can go from 3 clocks (default upon reset) to 480
clocks. See Figures 7-9A and 7-9B.

000: 3 cycles 100: 84 cycles
001: 15 cycles 101: 112 cycles
010: 28 cycles 110: 144 cycles
011: 56 cycles 111: 480 cycles
Fig 7-9A: ADC sample time register (ADC_SMPR1) to set sampling time

000: 3 cycles 100: 84 cycles
001: 15 cycles 101: 112 cycles
010: 28 cycles 110: 144 cycles
011: 56 cycles 111: 480 cycles
Fig 7-9B: ADC sample time register (ADC_SMPR2) to set sampling time In the conversion
phase, the analog input is converted to binary numbers. In this phase, the
number of clocks required depends on ADC resolution namely the number
of bits of the binary output 6, 8, 10, or 12. For a successive approximation
converter in the STM32F4xx chips, the time is proportional to the number of
bits. For example, if we use the default of 3 clock cycle for sample time with
the 8-bit ADC resolution, the total number of clocks needed for ADC
conversion is 11 clocks.

Selecting Bit Resolution
We use RES bits (D25-D24) of ADC_CR1 register to select 6, 8, 10, or 12-
bit ADC resolution. The
default is 12-bit. See Figure 7-10 and Table 7-5.

Bit 26 OVRIE: Overrun interrupt enable
This bit is set and cleared by software to enable/disable the Overrun
interrupt. 0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is
set. Bits 25:24 RES[1:0]: Resolution
These bits are written by software to select the resolution of the conversion.
00: 12-bit (minimum 15 ADCCLK cycles)
01: 10-bit (minimum 13 ADCCLK cycles)

10: 8-bit (minimum 11 ADCCLK cycles)
11: 6-bit (minimum 9 ADCCLK cycles)
Bit 23 AWDEN: Analog watchdog enable on regular channels
This bit is set and cleared by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels
Bit 5 EOCIE: Interrupt enable for EOC
This bit is set and cleared by software to enable/disable the end of
conversion interrupt. 0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.
Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits
These bits are set and cleared by software. They select the input channel to
be guarded by the analog watchdog.
Note: 00000: ADC analog input Channel0
00001: ADC analog input Channel1
...
01111: ADC analog input Channel15
10000: ADC analog input Channel16
10001: ADC analog input Channel17
10010: ADC analog input Channel18
Other values reserved

Figure 7-10: Control 1 (ADC_CR1) Register (Not all bits are shown)

RES (bits 25-24) Description
0x0 12-bit result
0x1 10-bit result
0x2 8-bit result
0x3 6-bit result

Table 7-5: ADC bit Resolution Selection in ADC_CR1 register
Choosing input channel

The STM32F4xx Arm chip supports up to 16 ADC Input (AIN0-AIN15)
single-ended channel pins connected to external analog signals. It also
supports few more internal ADC options such as on-chip temperature sensor.
In order to disable the digital functions, the pins selected as analog input
must have their pin multiplexing (discussed in Chapter 2) set as analog input

(option 11 in GPIOx_MODER). Just like other cases, we use
GPIOx_MODER registers to select pin multiplexing. After making sure that
the input pin is set for the analog option, we use the ADC_CR1 register to
select the desired channel to convert to digital. The AWDCH (Analog
watchdog channel select) bits (D4-D0) of ADC_CR1 register shows all the
ADC options supported by the STM32F4xx. Notice that in addition to
STM32F4xx pins usable for analog input, it also supports the temperature
and VBAT use by ADC. We will discuss the temperature option at the end of
this section. Table 7-8 lists the mapping between the analog input channels
to the I/O pins.

Bit Description

ADC Channel Input Selection
AWDCH[4:0] Port PIN Analog Input Channel 0x00 PA0 ADC AIN0 0x01
PA1 ADC AIN1 0x02 PA2 ADC AIN2 0x03 PA3 ADC AIN3 0x04 PA4
ADC AIN4 0x05 PA5 ADC AIN5 0x06 PA6 ADC AIN6 0x07 PA7 ADC
AIN7

4-0 0x08 PB0 ADC AIN8 0x09 PB1 ADC AIN9 0x0A PC0 ADC AIN10
0x0B PC1 ADC AIN11 0x0C PC2 ADC AIN12 0x0D PC3 ADC AIN13
0x0E PC4 ADC AIN14 0x0F PC5 ADC AIN15 0x10 Temperature (internal)
ADC AIN16 0x11 VREFINT (internal) ADC AIN17 0x12 VBAT (internal)
ADC AIN18

Table 7-6: Control R1 (ADC_CR1) Register bits for ADC Channel Selection

I/O Pin ADC I/O Pin ADC PA0 AIN[0] PC0 AIN[10] PA1 AIN[1] PC1
AIN[11] PA2 AIN[2] PC2 AIN[12] PA3 AIN[3] PC3 AIN[13] PA4 AIN[4]
PC4 AIN[14]
PA5 AIN[5] PC5 AIN[15]
PA6 AIN[6]
PA7 AIN[7]
PB0 AIN[8]
PB1 AIN[9]

Table 7-7: Analog input pin assignment in STM32F4xx

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

Figure 7-11: GPIO_MODER Register ADC Conversion Result Register

Upon the completion of a conversion, the result is placed in the DATA
registers. Although the DATA register is a 32-bit wide but only the lower 12
bits are used and upper 18 bits are unused. For the ADC, we have the options
of 6- ,8-, 10-, and 12-bit for a single-ended unsigned result. When ADC is
ADC, we have the options of 6- ,8-, 10-, and 12-bit for a single-ended
unsigned result. When ADC is bit option the bits D11-D0 hold the binary
output result of ADC conversion and D31-D12 bits are zeroes. In the case of
10-bit, D31-D10 bits are zeroes, and D9-D0 has the result. For 8-bit the D7-
D0 is our converted data while D31-D8 are all 0s. See Figure 7-14.

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 DATA[15:0]: Regular data
These bits are read-only. They contain the conversion result from the regular
channels. The data are left- or right-aligned.

Figure 7-12: ADC_DR (ADC Data Register) register holds conversion result
Right or Left Justified Result

Another important bit of the Control 2 (ADC_CR2) register is the ALIGN
bit. The ALIGN bit in CR2 register allows the binary output result of ADC
conversion to be moved to the left. The left justified option makes the signed
value calculation easier. The default is right justified. See figure below.

Figure 7-13: ADC_DR (DATA) Register has the result and can be Right and Left Justified

Enable the ADC
The ADC is “off” upon reset. Bit D0 of ADC_CR2 register is used to turn on
the ADC module. See
Figure 7-14.

Bit 11 ALIGN: Data alignment
This bit is set and cleared by software. Refer to Figure 75 and Figure 76. 0:
Right alignment
1: Left alignment

Bit 10 EOCS: End of conversion selection
This bit is set and cleared by software.
0: The EOC bit is set at the end of each sequence of regular conversions.
Overrun detection is enabled only if DMA=1.
1: The EOC bit is set at the end of each regular conversion. Overrun
detection is enabled.

Bit 1 CONT: Continuous conversion
This bit is set and cleared by software. If it is set, conversion takes place
continuously until it is cleared.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF
This bit is set and cleared by software.
Note: 0: Disable ADC conversion and go to power down mode

1: Enable ADC
Figure 7-14: ADC_CR2 (ADC Control 2) register Start Conversion trigger options

There are two ways to start an A-to-D conversion in STM32F4xx. They are
manually and automatically. The manual trigger is done by writing a 1 to the
SWSTART (Start conversion of regular channels) in ADC_CR1 register. The
ADC can also be triggered automatically by an event. Using a timer event to
trigger the conversion will give a more precise sampling interval.

A free-running mode could be used by setting the CONT (Continuous
conversion) bit in ADC_CR1 register. This bit is set and cleared by software.
If it is set, a conversion takes place continuously of an input channel. There
is no need for a trigger to start the conversion. It will start automatically at
the end of the previous conversion.

Conversion Complete (End of Conversion, EOC)

The end-of-conversion (EOC) is indicated by the EOC flag bit in ADC_SR
(ADC Status Register) register. This bit is set by ADC itself at the end of
each conversion of a channel. It is cleared by software or by reading the
ADC_DR (ADC Data) register. See Figure 7-15 and Table 7-8.

Figure 7-15: ADC_SR(ADC Status g) Register for End-of-Conversion (See table below)

Bit Field Descriptions
5 OVR Overrun This bit is set by hardware when data are lost. This happens
if we do not read the result of the last conversion from the Data Register
(ADC_DR). It is cleared by software.
0: No overrun occurred
1: Overrun has occurred
1 EOC End of Conversion
0: Conversion not complete
1: Conversion complete
Writing a zero to this bit will clear it or by reading the ADC_DR register.
Table 7-8: ADC_SR (Status) Register Bits

Upon the completion of a conversion, the EOC flag bit goes high indicating
that the conversion Data result register is loaded with a new value. By
polling this flag, we know if the conversion is complete and we can read the
value in the DATA register. This flag bit is cleared (goes LOW) when the
result in ADC_DR (ADC Data register) register is read. In this section, we
use polling to see if the conversion result is ready. We can also use an

interrupt to inform us that the conversion is complete. We can use EOCIE
(EOC Interrupt enable) bit in ADC_CR1 register to enable the interrupt
option. By default, the interrupt option is not enabled since an interrupt
handler is required before the interrupt can be enabled.

To avoid data loss if more than one conversion is enabled, the conversion
result must be read as it becomes available (EOC is set in ADC_SR register).
Failing to do so will result in an overrun error condition, indicated by the
OVR (Overrun) flag bit in the ADC_SR status register.

Vref in STM32F4xx

In the STM32F4xx Arm chip, the reference voltage pins for ADC are called
VREF+ and VREF-. The external reference VREF+ can be connected to
external reference voltage such as VDD and the VREF- is connected to
ground. Notice that ADC input(Vin) range must not exceed VREF– ≤ VIN≤
VREF+. There is also internal reference voltage, which can be programmed.
See the STM32F4xx reference manual.

If we connect the VREF(+) to an external voltage other than the VDD of the
chip, it cannot go beyond the VDD voltage. The positive reference voltage
(VREF+) for the ADC must be in the range of 1.8 V ≤ VREF+ ≤ VDDA
while the negative reference voltage for the ADC is VREF– = VSSA. With
VREF+=3.3V, VDDA while the negative reference voltage for the ADC is
VREF– = VSSA. With VREF+=3.3V, bit. See Example 7-2.

Example 7-2
Give the digital converted output if the ADC input channel voltage is 1.2V
for the STM32F4xx with VREF+ = 3.3V.
Solution:

Since the step size is 3.3V / 4,096 = 0.8 mV, we have 1.2V / 0.80 mV =
1,489 = 0x5D1 as ADC output.

Configuring ADC and reading ADC channel
The following steps are used to configure the ADC to perform A-to-D
conversion on analog
channel x (pin Px.y). These steps are implemented in Program 7-1.

1. Enable ADC clock to ADC in RCC_APB2ENR register.
2. Configure ADC right adjusted result (ALIGN), free running conversion
(CONT, continuous conversion) using ADC_CR2 register.
3. Using ADC_CR1 register, select the resolution and the analog input
channel.
4. Use GPIOx_MODER register to configure input pin for analog input
channel.
5. Using ADC_CR2 register Enable the ADC (ADON) and START
(SWSTART) to start the conversion.
6. Monitor the EOC flag in the ADC_SR register for end-of-conversion.
7. When the EOC flag goes HIGH, read the ADC data result from the
ADC_DR register and save it.
8. Repeat steps 6 through 7 for the next conversion.
Program 7-1 illustrates the steps for ADC conversion shown above. Figure
7-16 shows the hardware connection for Program 7-1.

Program 7-1: Using ADC to convert an input channel
/* p7_1.c: A to D conversion of channel 1

* This program converts the analog input from channel 1. * Channel 1
is connected to input from PA1.
* Clock prescaler is left at 0 (divided by 2) and Sampling * time is
also left at default of 3 cycles.
* Software trigger is used. The bit 8 of the conversion * result is
used to turn on/off the LED0. For the full
* scale of the reference voltage, the LED0 should be on * for 8
times.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h"
int main (void) { int result;

/* set up pin PA5 for LED */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

/* set up pin PA1 for analog input */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER |= 0xC; /*
PA1 analog */

/* setup ADC1 */
RCC->APB2ENR |= 0x00000100; /* enable ADC1 clock */
ADC1->CR2 = 0; /* SW trigger */

ADC1->SQR3 = 1; /* conversion sequence starts at ch 1 */ ADC1->SQR1
= 0; /* conversion sequence length 1 */ ADC1->CR2 |= 1; /* enable
ADC1 */

while (1) {
ADC1->CR2 |= 0x40000000; /* start a conversion */ while(!(ADC1->SR &
2)) {} /* wait for conv complete */ result = ADC1->DR; /* read
conversion result */ if (result & 0x100)

GPIOA->BSRR = 0x00000020; /* turn on LED */ else
GPIOA->BSRR = 0x00200000; /* turn off LED */ }
}

Figure 7-16: ADC Connection for Program 7-1
Internal Temperature sensor

The STM32F4xx chip comes with an internal temperature sensor on-chip. It
is connected to channel 0x16. The on-chip temperature sensor is controlled
by the ADC_CCR register. In order to use the temperature sensor, we need
to turn on the TSVREFE (Temperature Sensor and VREF internal) bit in the
ADC common control register (ADC_CCR) register. See Figure 7-17 and
Table 7-9.

Figure 7-17: ADC common control register (ADC_CCR) register (See table below)
Bit Field Descriptions
22
TSVREFE: Temperature Sensor and VREINT Enable

This bit is set and cleared by software to enable/disable the temperature sensor and the VREFINT
channel.
0: Temperature sensor and VREFINT channel disabled.
1: Temperature sensor and VREFINT channel enabled.

23
VBATE: VBAT enable

VBAT 0: VBAT channel disabled.
enable 1: VBAT channel enabled.
17:16 ADCPRE: ADC prescaler
Set and cleared by software to select the frequency of the clock to the ADC.

The clock is common for all the ADCs.

00: PCLK2 divided by 2
01: PCLK2 divided by 4
10: PCLK2 divided by 6
11: PCLK2 divided by 8
Table 7-9: ADC common control register (ADC_CCR) register

To use the sensor:
1. Select ADC1_ 18 input channel.
2. Select a sampling time greater than the minimum sampling time specified
in the datasheet.
3. Set the TSVREFE bit in the ADC_CCR register to wake up the
temperature sensor from power down mode
4. Start the ADC conversion by setting the SWSTART bit (or by external
trigger)
5. Read the resulting VSENSE data in the ADC data register
6. Calculate the temperature using the following formula:
Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25
Where:
– V25 = VSENSE value for 25° C
– Avg_Slope = average slope of the temperature vs. VSENSE curve (given
in mV/°C or μV/°C) The next program shows how to convert the internal
temperature sensor output. The conversion result is stored in a global
variable result for observation by the debugger.

Program 7-2: Converting the on-chip temperature sensor with timer trigger
/* p7_2.c: On-chip temperature sensor
* This program converts the on-chip temperature sensor output * and
display the temperture in Celcius on the console. * Timer TIM2 is

configured to generate 1 Hz output, which is * used to trigger the
A/D conversion. The internal temperature * sensor is connected to
channel 18 of ADC1 Master. The sensor * is turned on at bit 23 of
ADC_CCR register.
*
* The conversion result is displayed as Celcius using the * formula
and parameters in the datasheet on the console. * The console UART
driver is from Program 4-5.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h" #include <stdio.h>
void USART2_init(void); int USART2_write(int c);

int main(void) {
int data;
double volt, temp;

RCC->AHB1ENR |= 1; /* enable GPIOA clock */ TIM2->CCER = 0x0010; /*
ch2 enable */ TIM2->CCR2 = 50 - 1;
TIM2->CR1 = 1; /* enable timer2 */

/* setup TIM2 */
RCC->APB1ENR |= 1; /* enable TIM2 clock */
TIM2->PSC = 1600 - 1; /* divided by 1600 */
TIM2->ARR = 10000 - 1; /* divided by 10000, sample at 1 Hz */ TIM2-
>CNT = 0;
TIM2->CCMR1 = 0x00006800; /* pwm1 mode, preload enable */

/* setup ADC1 */
RCC->APB2ENR |= 0x00000100; /* enable ADC1 clock */
/* turn on the temp sensor */
ADC->CCR |= 0x800000;
ADC->CCR &= ~0x400000; /* VBATE must be disabled for temp sensor */
/* configure A to D converter */
ADC1->SMPR1 = 0x4000000; /* sampling time minimum 10 us */ ADC1-
>SQR3 = 18; /* ch18 - internal temp sensor, single channel */ ADC1-
>CR2 = 0x13000000; /* trigger: EXTEN rising edge, EXTSEL 3 = tim2.2

*/
ADC1->CR2 |= 1; /* enable ADC1 */

/* initialize USART2 for output */
USART2_init();
printf("ADC internal temperature sensor \r\n");

while(1) {
while(!(ADC1->SR & 2)) {}
data = ADC1->DR;
/* Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25 */ /* V25
= 0.76V, slope = 2.5 mV/C */

volt = (double)data / 4095 * 3.3; /* convert ADC output to voltage
/ temp = (volt - 0.76) / 0.0025 + 25; / convert voltage to
temperature C */ printf("%d, %.2f\370C\r\n", data, temp); /* octal
370 is degree sign in

extended ASCII */
}
}

/* initialize USART2 to transmit at 9600 Baud */ void USART2_init
(void) {
RCC->AHB1ENR |= 1; /* Enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* Enable USART2 clock */

/* Configure PA2 for USART2_TX */
GPIOA->AFR[0] &= ~0x0F00;
GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x0030;
GPIOA->MODER |= 0x0020; /* enable alternate function for PA2 */

USART2->BRR = 0x0683; /* 9600 baud @ 16 MHz */ USART2->CR1 = 0x000C;
/* enable Tx, Rx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop bit
*/
USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |= 0x2000;
/* enable USART2 */

}
/* The code below is the interface to the C standard I/O library. *
All the I/O are directed to the console, which is UART2. */

/* Write a character to USART2 */
int USART2_write (int ch) {
while (!(USART2->SR & 0x0080)) {} /* wait until Tx buffer empty */
USART2->DR = ch;
return ch;
}

struct __FILE { int handle; };
FILE __stdout = {1};
/* Called by C library console/file output */
int fputc(int c, FILE *f) {
return USART2_write(c); /* write the character to console */ }

Multiple Conversions Accumulation and Averaging

The ADC in STM32F4xx is capable of performing sequences of multiple
conversions of a given channel and provides the average of the results.
Signal averaging is a way of increasing the signal to noise ratio for random
noise. When multiple samples are added together, the random noise tends to

cancel each other. The cost of doing signal averaging is the reduced
maximum sampling rate because multiple conversions are needed for one
result. For the details of programming the multiple conversion option, we
will leave it to the reader.

Analog Comparator

In some applications such as a thermostat, the actual value of the analog
input signal is not important rather whether the input voltage is higher or
lower than a preset value is essential for the operation. In these cases, a
comparator is more efficient than doing a conversion than compare the result
against the preset value.

Many microcontrollers come with analog comparator for monitoring an
analog input voltage. Using the analog comparator, we can monitor an
analog input against two threshold values to determine whether the analog
input value is above the high threshold, between the two threshold values, or
below the low threshold. When the analog input falls in the selected region,
the comparator may trigger an interrupt to get the attention of the CPU.
Using analog comparator, the software does not have to continuously
monitor the analog input.

For example, we may program the comparator for the on-chip temperature
sensor. When the temperature exceeds a preset threshold, the cooling fan is
turned on. When the temperature drops below the threshold, the cooling fan
is turned off. The software only has to set the thresholds once and handle the
interrupts. It does not have to use the ADC to monitor the temperature
continuously. If the microcontroller has no other tasks to run, it may go into
the low power mode to conserve energy.

For the details of programming the analog comparator unit, we will leave it
to the reader.
Differential versus Single-Ended

In some applications, our interest is in the differences between two analog
signal voltages (the differential voltages). Rather than converting two
channels and calculate the differences between them, the STM32F4xx has
the option of converting the differential voltages of two analog channels.

Upon Reset, the default is the single-ended input and we will leave it at that.
In single-ended mode, the input voltage must be positive and can use the full
12-bit conversion output. The negative input should be connected to ground.

Review Questions
1. The ADC in STM32F4xx is _______bit.
2. In STM32F4xx, the highest number we can get for the ADC output
is__________ in hex.
3. Assume VREF+= 3.3V. Find the ADC output in decimal and hex if Vin of
analog input is 1.9V. Assume 12-bit resolution.
4. In STM32F4xx, which register provides the ADC output converted data?
5. In STM32F4xx, we have resolution choices of __________.

Section 7.3: Sensor Interfacing and Signal Conditioning

This section will show how to interface external sensors to the
microcontroller. We examine some popular temperature sensors and then
discuss the issue of signal conditioning. Although we concentrate on
temperature sensors, the principles discussed in this section are the same for
other types of sensors such as light or pressure sensors.

Temperature sensors

Sensors convert physical parameters such as temperature, light intensity,
flow, and speed to electrical signals. Depending on the sensor, the output
produced is in the form of voltage, current, resistance, or capacitance. For
example, the temperature may be converted to electrical signals using a
sensor called thermistor. A thermistor responds to temperature change by
changing its resistance, but its response is not linear, as seen in Table 7-10
and Figure 7-18.

Temperature ('C) Tf (K ohms)
0 29.490
25 10.000
50 3.893
75 1.700
100 0.817

Table 7-10: Thermistor Resistance vs. Temperature

Figure 7-18: Thermistor (Copied from
http://www.maximintegrated.com)

The resistance of a thermistor is typically modeled by Steinhart-Hart
equation and requires a logarithmic amplifier to produce a linear output. The
complexity associated with the circuit for such nonlinear devices has led
some manufacturers to market linear temperature sensors. Simple and widely
used linear temperature sensors include the LM34 and LM35 from Texas
Instruments. They are discussed next.

LM34 and LM35 temperature sensors

The LM34 sensor is a precision integrated-circuit temperature sensor whose
output voltage is linearly proportional to the temperature in Fahrenheit. See
Figure 7-19. The LM34 requires no external calibration because it is
internally calibrated. It outputs 10 mV for each degree of Fahrenheit
temperature.

Figure 7-19: LM34 and LM35
The LM35 sensor is similar to LM34 except that the output voltage is
linearly proportional to the temperature in Celsius (centigrade). It outputs 10
mV for each degree of Celsius temperature.
Signal conditioning

The common transducers produce an output in the form of voltage, current,
charge, capacitance, or resistance. In order to perform A-to-D conversion on
these signals, they need to be converted to voltage unless the transducer
output is already voltage. In addition to the conversion to voltage, the signal
may also need gain and offset adjustments to achieve optimal dynamic
range. A low-pass analog filter is often also need gain and offset adjustments
to achieve optimal dynamic range. A low-pass analog filter is often 20
shows a block diagram of the input of a data acquisition system.

Figure 7-20: Getting analog data to the CPU
Interfacing the LM34 to the STM32F4xx Arm Microcontroller

The A/D of STM32F4xx Arm Microcontroller has 12-bit resolution with a
maximum of 4,096 steps, and the LM34 produces 10 mV for every degree of
temperature change. The maximum operating temperature of the LM34 is
300 degrees F, so the highest output will be 3,000 mV (3.00 V), which is
below 3.3V of Vref+. The LM34/35 can be connected to the microcontroller
as shown in Figure 7-21.

Figure 7-21: LM34/35 Connection to Arm and Its Pin Configuration
To convert the ADC result to temperature in degree, use the following
equation:
����������������������

=������������ × 330
4096
Reading and displaying temperature
Programs 7-3 shows the code for reading and displaying temperature in F
with the LM34. Notice that in Figure 7-21, the LM34 (or LM35) must be
connected to PC0 (channel 10) 12-bit conversion is used.
Program 7-3: Reading Temperature Sensor of LM34
/* p7_3.c: LM34 Fahrenheit temperature sensor
*
* LM34 is a Fahrenheit temperature sensor with the output of * 10
mV/degreeF. The program assumes an LM34 connected to * pin PC0
(channel 10). The conversion result is displayed one * the console
as degree Fahrenheit.
* The console UART driver is from Program 4-5.
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h" #include <stdio.h>

void USART2_init(void); int USART2_write(int c); void delayMs(int
n);

int main (void) { int result; double temp;

/* set up pin PC0 for analog input */
RCC->AHB1ENR |= 4; /* enable GPIOC clock */ GPIOC->MODER |= 3; /*
PC0 analog */

/* setup ADC1 */
RCC->APB2ENR |= 0x00000100; /* enable ADC1 clock */ ADC1->CR2 = 0;
/* SW trigger */
ADC1->SQR3 = 10; /* single conversion ch 10 */ ADC1->SQR1 = 0; /*
conversion sequence length 1 */ ADC1->CR2 |= 1; /* enable ADC1 */

/* initialize USART2 for output */ USART2_init();
printf("LM34 Temperature Sensor\r\n");

while (1) {
ADC1->CR2 |= 0x40000000; /* start a conversion */ while(!(ADC1->SR &
2)) {} /* wait for conv complete */ result = ADC1->DR; /* read
conversion result */ temp = (double)result / 4095 * 330;
printf("%d, %.2f\r\n", result, temp);
delayMs(1000);

}
}
/* initialize USART2 to transmit at 9600 Baud */
void USART2_init (void) {

RCC->AHB1ENR |= 1; /* Enable GPIOA clock */ RCC->APB1ENR |= 0x20000;
/* Enable USART2 clock */ USART2->BRR = 0x0683; /* 9600 baud @ 16
MHz */ USART2->CR1 = 0x000C; /* enable Tx, Rx, 8-bit data */ USART2-
>CR2 = 0x0000; /* 1 stop bit */
USART2->CR3 = 0x0000; /* no flow control */
USART2->CR1 |= 0x2000; /* enable USART2 */

/* Configure PA2 for USART2_TX */
GPIOA->AFR[0] &= ~0x0F00;
GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x0030;
GPIOA->MODER |= 0x0020; /* enable alternate function for PA2 */

}
/* Write a character to USART2 */
int USART2_write (int ch) {

while (!(USART2->SR & 0x0080)) {} // wait until Tx buffer empty
USART2->DR = ch;
return ch;

}
/* The code below is the interface to the C standard I/O library. *
All the I/O are directed to the console, which is UART2. */
struct __FILE { int handle; };
FILE __stdout = {1};

/* Called by C library console/file output */
int fputc(int c, FILE *f) {
return USART2_write(c); /* write the character to console */ }

/* 16 MHz SYSCLK */

void delayMs(int n) {

int i;

for (; n > 0; n--)

for (i = 0; i < 3195; i++) ;

}
Review Questions
1. True or false. The transducer must be connected to signal conditioning
circuitry before its signal

is sent to the ADC.
2. The LM35 provides ____ mV for each degree of ______ (Fahrenheit,
Celsius) temperature.
3. The LM34 provides ____ mV for each degree of ______ (Fahrenheit,

Celsius) temperature.
4. What is the temperature if the ADC output is 0000 0011 1110?

Section 7.4: Interfacing to a DAC

This section will discuss the fundamentals of a digital-to-analog converter
(DAC). Then we demonstrate how to generate a sawtooth wave and a sine
wave using the DAC.

Digital-to-analog (DAC) converter
The digital-to-analog converter (DAC) is a device used to convert digital
signals to analog signals.
In this section we discuss the basics of a DAC.

Recall from digital electronics, the two methods of making a DAC: binary
weighted and R/2R ladder. The vast majority of integrated circuit DACs,
including the DAC0808 in this section, use the R/2R method since it can
achieve a much higher degree of precision. The first criterion for selecting a
DAC is its resolution, which is a function of the number of bits of the digital
input. The common ones are 8, 10, and 12 bits. The number of digital input
bits decides the resolution of the DAC since the number of analog output
levels is equal to 2n, where n is the number of digital input bits. Therefore,
the 8-bit DAC such as the DAC0808 provides 256 discrete voltage (or
current) levels of output. See Figure 7-22.

Figure 7-22: DAC
Block Diagram
Figure 7-22: DAC Block Diagram
bit DACs, they are much more expensive.
DAC0808

In the DAC0808, the digital inputs are converted to current (IOUT). By
connecting a resistor to the IOUT pin, we convert the conversion result
current to voltage. The total current provided by the IOUT is a function of the
binary numbers at the D0–D7 inputs of the DAC0808 and the reference
current (Iref), and is as follows:

�������� = ��������× (��72 +��64 +��58
+��416+��332+��264+��1128+��0256) =

��������×��������
256

where D0 is the LSB, D7 is the MSB for the inputs, and Iref is the reference
input current that must be applied to pin 14. The Iref current is generally set
to 2.0 mA. Figure 7-23 shows the generation of current reference (setting Iref
= 2 mA) by using the standard 5-V power supply and 5K ohm resistors.

Figure 7-23: Microcontroller Connection to DAC0808

Some also use the Zener diode reference voltage device (LM336), which
overcomes fluctuations associated with the power supply voltage. Now
assuming that Iref = 2 mA, if all the input bits to the DAC are high, the
maximum output current is 1.99 mA (verify this for yourself).

Converting Iout to voltage in DAC0808

We connect the output pin IOUT to a resistor, convert this current to voltage,
and monitor the output on the scope. However, in real life this can cause
inaccuracy since the input resistance of the load will also affect the output
voltage. For this reason, the Iref current output is buffered by connecting it to
an op-amp with Rf = 5K ohms for the feedback resistor. Assuming that R =
5K ohms, by changing the binary input, the output voltage changes as shown
in Example 7-4.

Example 7-4
Assuming that R = 5K and Iref = 2 mA, calculate Vout for the following
binary inputs: (a) 10011001 binary (0x99) (b) 11001000 (0xC8)

Solution:
(a) Iout = 2 mA (153/255) = 1.195 mA and Vout = 1.195 mA × 5K = 5.975 V

(b) Iout = 2 mA (200/256) = 1.562 mA and Vout = 1.562 mA × 5K = 7.8125
V

STM32 Arm On-chip DAC

Many of the STM32F4xx Arm chips have on-chip digital-to-analog
converters (DACs). The STM32F446RE comes with two on-chip DACs.
They can be configured for independent or simultaneous conversions. They
are designated as DAC1 and DAC2. Each one has its own analog output pin.
In STM32F446RE, the analog out pins are PA4 and PA5 for chan1 and
chan2, respectively. On-chip DAC has 12-bit resolution but it can also be
configured as an 8-bit DAC too. That means digital data loaded into DAC
register can be 8- or 12-bit. The digital data can be right-justified or left-
justified. The on-chip DACs use the same Vref+ voltage source as the ADC.
See figure below.

Figure 7-24: STM32F4xx DAC Block Diagram
The output voltage from the DAC can be calculated using the following
formula:

The on-chip DACs use the same Vref+ voltage source as the ADC. Just like
ADC, the reference voltage can internal or can come from outside source.
Figure below shows the ADC_CR (ADC Control Register) register.

Bit 18 TEN2: DAC channel2 trigger enable
This bit is set and cleared by software to enable/disable DAC channel2
trigger 0: DAC channel2 trigger disabled and data written into the
DAC_DHRx register are transferred one APB1 clock cycle later to the
DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are
transferred three APB1 clock cycles later to the DAC_DOR2 register

Bit 17 BOFF2: DAC channel2 output buffer disable
This bit is set and cleared by software to enable/disable DAC channel2
output buffer. 0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Bit 16 EN2: DAC channel2 enable
This bit is set and cleared by software to enable/disable DAC channel2. 0:
DAC channel2 disabled
1: DAC channel2 enabled

Figure 7-25: DAC_CR (DAC Conntrol Register)

The most important bit in DAC_CR is the enable bit. From DAC_CR
register notice each channel has its own Enable bit of EN1 and EN2. The
conversion can be triggered a) internally by software, b) an external signal,
or c) by one of the timers such as TIM2. The default is internally by
software. The TENx bits in DAC_CR register is used to enable/disable DAC
channelx trigger. In DAC_CR register, only if we make TENx=1, the TSELx
(trigger selection) bits in DAC_CR are used for DAC trigger selection. If
TENx=0, then we use bits of DAC software trigger register
(DAC_SWTRIGR) to trigger the conversion from digital data to analog
output.

To make programming easier, the STM32 Arm uses a large number of data
registers. We separate registers for each of 12-bit right and left justified. The
same for 8-bit option. The registers are called DAC Data Holding Registers
(DAC_DHR). Writing new data into DAC holing register starts a
conversion. Beside, holding register, we also have DAC Data Output
registers (DAC_DOR). We can only write to DAC_DHR register. According
to STM32 reference manual “Data stored in the DAC_DHRx register are
automatically transferred to the DAC_DORx register after one clock cycle.”
Again according to refrence manual “The Digital inputs are converted to
output voltages on a linear conversion between 0 and VREF+. The analog
output voltages on each DAC channel pin are determined by the following
equation:

DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)

DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)

Figure 7-26: DAC channel-x data holding- register (DAC_DHRx)
It must be emphasized that “The DAC_DORx cannot be written directly and
any data transfer to the DAC channelx must be performed by loading the
DAC_DHRx register.”
DAC output buffer enable

According to the reference manual” The DAC integrates two output buffers
that can be used to reduce the output impedance, and to drive external loads
directly without having to add an external operational amplifier. Each DAC
channel output buffer can be enabled and disabled using the corresponding
BOFFx bit in the DAC_CR register.”

Figure 7-27: DAC channel1 data output register (DAC_DOR1)

Figure 7-28: DAC channel2 data output register (DAC_DOR2)

Bit 1 SWTRIG2: DAC channel2 software trigger
This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled
Note: This bit is cleared by hardware (one APB1 clock cycle later) once the
DAC_DHR2 register value has been loaded into the DAC_DOR2 register.

Bit 0 SWTRIG1: DAC channel1 software trigger
This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled
Note: This bit is cleared by hardware (one APB1 clock cycle later) once the
DAC_DHR1 register value has been loaded into the DAC_DOR1 register.

Figure 7-29: DAC software trigger register (DAC_SWTRIGR)

Enabling Clock to DAC
To save power no clock is fed to DAC upon Reset. To use the on-chip, DAC
we must enable the
clock to DAC using RCC APB1 peripheral clock enable register
(RCC_APB1ENR). See Figure 7-30.

Bit 29 DACEN: DAC interface clock enable
This bit is set and cleared by software.

0: DAC interface clock disabled
1: DAC interface clock enable

Figure 7-30: RCC APB1 Peripheral Clock Enable Register (RCC_APB1ENR) to enable clock to
DAC Generating a sawtooth ramp

Program 7-4 uses the on-chip DAC to generate a sawtooth waveform. The
loop counter i is incremented every iteration and written into the DAC_DHR
register to create the ramp. To see the resulting waveform, connect the
output to an oscilloscope. Figure 7-31 shows the output. Checking the
STM32F446RE datasheet, we see the analog output pins are PA4 and PA5
for DAC1_output and DAC2_output, respectively. Check the analog output
pin for your STM32F4 Arm device using the datasheet. It might not be the
same as STM32F446RE chip.

Program 7-4: Generating Sawtooth Waveform
/* p7_4.c: Use DAC to generate sawtooth waveform
* The DAC is initialized with no buffer or trigger, so every
* write to the DAC data register will change the analog output.
* The data is incremented in the loop and written to the DAC.
* The output of DAC is on pin PA4.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h"

int main(void) {
int data;
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER |= 0x00000300; /* PA4 analog */
/* setup DAC */
RCC->APB1ENR |= 1 << 29; /* enable DAC clock */
DAC->CR |= 1; /* enable DAC */

while(1) {
DAC->DHR12R1 = data++ & 0x0FFF;
}

Figure 7-31: Saw
Tooth Wave Form
Generating a sine wave

To generate a sine wave, we first need a table whose values represent the
magnitude of the sine of angles between 0 and 360 degrees. The values for
the sine function vary from -1.0 to +1.0 for 0 to 360 degree angles.
Therefore, the table values are integer numbers representing the voltage
magnitude for the sine of the angle. This method ensures that only integer
numbers are output to the DAC by the processor. Table 7-11 shows the
angles, the sine values, the voltage magnitudes, and the integer values
representing the voltage magnitude for each angle with 30-degree
increments.

AngleƟ SinƟ VOUT (Voltage Magnitude) Values Sent to DAC (decimal)
(degrees) 1. 65V + (1. 65V × sinƟ) (Voltage Mag. × 310)

0 0 1.65 2048
30 0.5 2.475 3071
60 0.866 3.0789 3821
90 1.0 3.3 4095
120 0.866 3.0789 3821
150 0.5 2.475 3071
180 0 1.65 2048
210 -0.5 0.825 1024
240 -0.866 0.2211 274 270 -1.0 0 0 300 -0.866 0.2211 274 330 -0.5 0.825
1024
360 0 1.65 2048

Table 7-11: Angle vs. Voltage Magnitude for Sine Wave

To generate Table 7-11, we assumed the full-scale voltage of 3.3V for the
DAC output. The fullscale output of the DAC is achieved when all the data
input bits of the DAC are high. Therefore, to achieve the full-scale 3.3V
output, we use the following equation:

��������= 1.65�� + (1.65�� × ��������)

To find the value sent to the DAC for various angles, we simply multiply the
VOUT voltage by 1,241
because the digital input range is 0-4095 (12-bit) and full-scale VOUT is 3.3
volts. Therefore, 4095/3.3 =1241
steps per volt. To further clarify this, look at Example 7-5.

Example 7-5 Verify the values of Table 7-11 for the following angles: (a) 30
(b) 60.
Solution:
(a) VOUT = 1.65 V + (1.65 V ×sin Ɵ) = 1.65 V + 1.65 × sin 30 = 1.65 V
+1.65 × 0.5 = 2.475 V

DAC input values = 2.475 V × 1241 = 3071 (decimal)
(b) VOUT = 1.65 V + (1.65 V ×sin Ɵ) = 1.65 V +1.65 × sin 60 = 1.65 V +
1.65 × 0.866 = 3.079 V
DAC input values = 3.079 V × 1241 = 3821 (decimal)

The following program sends the values of Table 7-11 to the DAC.
Program 7-5: Generating Sine Wave
/* p7_5.c: Use DAC to generate sine waveform
*
* This program uses a pre-calculated lookup table to generate a *
sine wave output through a DAC.
* The DAC is initialized with no buffer or trigger, so every * write
to the DAC data register will change the analog output. * The index
of the lookup table is incremented in the loop and * the data is
written to the DAC.
* The output of DAC is on pin PA4.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h"
void delayUs(int n);

int main(void) {
int i;
const static int sineWave[] =

{2048,3071,3821,4095,3821,3071,2048,1024,274,0,274,1024};
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER |=
0x00000300; /* PA4 analog */

/* setup DAC */
RCC->APB1ENR |= 1 << 29; /* enable DAC clock */ DAC->CR |= 1; /*
enable DAC */

while(1) {
for (i = 0; i < sizeof(sineWave)/sizeof(int); i++) {

DAC->DHR12R1 = sineWave[i]; /* write value of sinewave to DAC */
delayUs(10);
}
}
}

/* 16 MHz SYSCLK */
void delayUs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3; i++) ;

Figure 7-32: Angle vs. Voltage Magnitude for Sine Wave (for 3V)
Program 7-6 uses the C math library functions to generate the lookup table at
initialization time.
Program 7-6: Generating Sine Wave Using Math Functions
/* p7_6.c: Use DAC to generate sine waveform
*
* This program calculates a lookup table at the initialization to be
used * to generate a sine wave output through a DAC.
* The DAC is initialized with no buffer or trigger, so every
* write to the DAC data register will change the analog output.

* The index of the lookup table is incremented in the loop and
* the data is written to the DAC.
* The output of DAC is on pin PA4.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0.
*/

#include "stm32f4xx.h"
void delayUs(int n);
#include <math.h>
#define WAVEFORM_LENGTH 256
int sinewave[WAVEFORM_LENGTH];

int main (void) {
int i;
double Radians;
const double M_PI = 3.1415926535897;

/* construct data table for a sine wave */
Radians = 2 * M_PI / WAVEFORM_LENGTH;

for (i = 0; i < WAVEFORM_LENGTH; i++) {
sinewave[i] = 2000 * (sin(Radians * i) + 1);
}

RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER |= 0x00000300; /* PA4 analog */
/* setup DAC */
RCC->APB1ENR |= 1 << 29; /* enable DAC clock */ DAC->CR |= 1; /*
enable DAC */

while (1) {
for (i = 0; i < WAVEFORM_LENGTH; i++) {
DAC->DHR12R1 = sinewave[i]; /* write value of sinewave to DAC */
delayUs(10);

}
}
}

/* 16 MHz SYSCLK */
void delayUs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3; i++) ; }

See Chapter 8 for the Arm connection and programming of LTC1661 DAC
using SPI bus.

Review Questions
1. In a DAC, input is ______ (digital, analog) and output is _____ (digital,
analog).
2. DAC0808 is a(n) ____-bit D-to-A converter.
3. The output of DAC808 is in ______ (current, voltage).
4. The on-chip DAC of STM32F4xx has ______-bit resolution.
5. True or false. The on-chip DAC for STM32F446RE chip has two channels
of DAC1 and DAC2.

Answers to Review Questions

Section 7.1
1. Number of steps (resolution) and Vref voltage
2. 8
3. True
4. 1.28 V / 256 = 5 mV
5.
(a) 0.7 V / 5 mV = 140 in decimal and D7–D0 = 10001100 in binary (b) 1 V/
5 mV = 200 in decimal and D7–D0 = 11001000 in binary.

Section 7.2
1. 12
2. 0xFFF
3. Step size is 3.3V / 4096 = 0.8057 mV and 1.9V / 0.8057mv = 2,358 in
decimal or 0x936.
4. ADC_DR
5. 6-, 8-, 10-, and 12-bit.
Section 7.3
1. False, if the output of the sensor is a voltage in the range of the ADC input
and there is no concern of aliasing such as the temperature sensor example
here, the signal conditioning circuitry may be omitted.
2. 10, Celsius
3. 10, Fahrenheit
4. 00111110 (binary) = 62 → Temperature = 62 × 330 / 4096 = 5
Section 7.4
1. Digital, analog
2. 8

3. Current
4. 12
5. True

Chapter 8 : SPI Protocol and DAC Interfacing

The SPI (serial peripheral interface) is a bus interface incorporated in many
devices such as ADC, DAC, and EEPROM. In Section 8.1 we will examine
the signals of the SPI bus and show how the read and write operations in the
SPI work. Section 8.2 examines the STM32 Arm SPI registers. In Section
8.3 we show LTC1661 DAC interfacing to Arm using SPI bus.

Section 8.1: SPI Bus Protocol

The SPI bus was originally started by Motorola (later became Freescale then
acquired by NXP), but in recent years has become widely used by many
semiconductor chip companies. SPI devices use only 2 pins for data transfer,
called SDI (Din) and SDO (Dout), instead of the 8 or more pins used in
traditional buses. This reduction of data pins reduces the package size and
power consumption drastically, making them ideal for many applications in
which space or pin count is a major concern. The SPI bus has the SCLK
(serial clock) pin to synchronize the data transfer between two chips. The
last pin of the SPI bus is CE (chip enable), which is used to initiate and
terminate the data transfer. These four pins, SDI, SDO, SCLK, and CE,
make the SPI a 4-wire interface. See make the SPI a 4-wire interface. See .

Figure 8-1: SPI Bus vs. Traditional
Parallel Bus Connection to Microcontroller

In many chips, the SDI, SDO, SCLK, and CE signals are alternatively
named as MOSI, MISO, SCK,

In many chips, the SDI, SDO, SCLK, and CE signals are alternatively
named as MOSI, MISO, SCK, wire interface bus. In a 3-wire interface bus,
we have SCLK and CE, and only a single pin for data transfer. The SPI 4-
wire bus can become a 3-wire interface when the SDI and SDO data pins are
tied together. However, there are some major differences between the SPI
and 3-wire devices in the data transfer However, there are some major
differences between the SPI and 3-wire devices in the data transfer wire
device. Many devices support both SPI and 3-wire protocols.

How SPI works
SPI consists of two shift registers, one in the master and the other in the
slave. Also, there is a clock generator in the master side that generates the
clock for the shift registers.

Figure 8-2: SPI Architecture

Figure 8-3: Master SPI Connection to multiple slaves SPI in Parallel

Figure 8-4: Master SPI Connection to multiple slaves SPI in serial

Figures 8-2, 8-3 and 8-4 shows SPI Master and Slave connections. As you
can see in Figure 8-2, serial-out pin of the master shift register is connected
to the serial-in pin of the slave shift register by MOSI (Master Out Slave In)
and the serial-in pin of the master shift register is connected to the serial-out
pin of the slave shift register by MISO (Master In Slave Out). The master
clock generator provides a clock to shift register in both master and slave
shift registers. The clock input of the shift registers can be falling- or rising-
edge triggered. This will be discussed shortly.

In SPI, the shift registers are 8 bits long. It means that after 8 clock pulses,
the contents of the two shift registers are interchanged. When the master
wants to send a byte of data, it places the byte in its shift register and
generates 8 clock pulses. After 8 clock pulses, the byte is transmitted to the
slave shift register. When the master wants to receive a byte of data, the
slave side should place the byte in its shift register and after 8 clock pulses,
the data will be received by the master shift register. It must be noted that
SPI is full duplex meaning that it may send and receive data at the same
time.

Clock polarity and phase in SPI device

As we mentioned before in UART communication, transmitter and receiver
must agree on a clock frequency (baud rate). In SPI communication, both
master and slave use the same clock but the master and slave must agree on
the clock polarity and phase with respect to the data. Clock polarity implies
the clock signal level when the clock is idling. Each clock pulse has two
edges, the leading edge, and the trailing edge. Clock phase determines
whether leading edge or trailing edge is used to sample the data.

With clock polarity as 0, the idle value of the clock is zero while with clock
polarity as 1 the idle value of the clock is one. When clock phase is 0, data is
sampled on the leading (first) clock edge; while clock phase is 1, data is
sampled on the trailing (second) clock edge. Notice that if the idle value of
the clock is zero the leading (first) clock edge is a rising edge but if the idle
value of the clock is one, the leading (first) clock edge is a falling edge. See
Table 8-1 and Figure 8-4 and 8-5.

Figure 8-5: SPI Clock Polarity and phase Mode 0 (CPOL = 0, CPHA = 0) and Mode 2 (CPOL =
1, CPHA = 0)

Figure 8-6: SPI Clock Polarity and phase Mode 1 (CPOL = 0, CPHA = 1) and Mode 3 (CPOL =
1, CPHA = 1)

Clock Clock Data read and change time SPI Mode Polarity Phase
0 0 read on rising edge, changed on a falling edge 0 0 1 read on falling edge,
changed on a rising edge 1 1 0 read on falling edge, changed on a rising edge
2 1 1 read on rising edge, changed on a falling edge 3

Table 8-1: SPI Clock Polarity and phase Review Questions

1. True or false. SPI is an asynchronous protocol.
2. True or false. In the SPI protocol, the clock is always generated by the
master device.
3. True or false. SPI shares a clock while USART does not.
4. True or false. To connect multiple devices to a single master we use chip
select.

Section 8.2: SPI programming in STM32 Arm

The STM32F4xx chip comes with multiple on-chip SPI modules.
STM32F4xx Arm SPI module also supports the I2S (Inter IC Sound)
protocol. The I2S is used for serial connection of digital audio devices. In
this section, we examine the SPI module and show how to program it. The
exploration of the I2S feature is left to the readers. The SPI modules are
located at the following base addresses:

SPI Module Base Address SPI1 0x4001 3000 - 0x4001 33FF SPI2 0x4000
3800 - 0x4000 3BFF SPI3 0x4000 3C00 - 0x4000 3FFF

Table 8-2: STM32F4xx Arm SPI Module Base Addresses SPI Register

To program the SPI, we need to examine the registers associated with it.
Table 8-3 shows some of the registers. Notice that SPI is called synchronous
since a clock used to synchronize the data transfer between the CPU chip
and SPI devices such as DAC, as we will see soon. Recall from Chapter 4
that there was no such a clock for UART. UART used TxD and RxD and
common ground between the STM32F4xx chip and the PC for terminal
emulator such as the TeraTerm.

Register Name Register Function Register Address Offset SPI_CR1
Control 1 0x00
SPI_CR2 Control 2 0x04
SPI_SR Status 0x08
SPI_DR Data 0x0C

Table 8-3: STM32F4xx SPI Registers
Configuring the SPI Module

Enabling the clock to SPI
The SPI clock must be enabled before the registers in the SPI module
become accessible. The SPI
is connected to the APBx peripheral clock. The STM32F4xx Arm chip
comes with four on-chip SPI
modules. They are SPI1, SPI2, SPI3, and SPI4. Depending on which of SPIx
we want to use, we use either
RCC_APB1ENR or RCC_APB2ENR registers to enable the clock to the
desired SPI module. The SPI2 and
SPI3 are controlled by the RCC_APB1ENR register and The SPI1 and SPI4
are controlled by the
RCC_APB2ENR register. See figures below.

Bit 15 SPI3EN: SPI3 clock enable
This bit is set and cleared by software.
0: SPI3 clock disabled

Bit 14 SPI2EN: SPI2 clock enable
This bit is set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled 1: SPI3 clock enabled

Figure 8-7: RCC APB1 peripheral clock enable register
(RCC_APB1ENR)

Bit 13 SPI4EN: SPI4 clock enable
This bit is set and cleared by software.
0: SPI4 clock disabled
1: SPI4 clock enabled

Bit 12 SPI1EN: SPI1 clock enable
This bit is set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled

Figure 8-8: RCC APB2 peripheral clock enable register
(RCC_APB2ENR)
The SPI Control Registers

The SPI_CR1 (Control 1) and CR2 (Control 2) registers set the SPI
configurations. See Figures 8-9 and 8-10. They describe the function of each
bit for these registers. Although the conventional SPI uses only 8-bit data,
the SPI module allows transfer of data for 16 bits too, as shown in by DFF
(Data Frame Format) CR1 register. The SPI module in STM32F4xx supports
both the Motorola and the TI protocols. The default is Motorola and we will
leave it at that since it is the most common one.

Bit 13 CRCEN: Hardware CRC calculation enable
0: CRC calculation disabled
1: CRC calculation enabled
Bit 12 CRCNEXT: CRC transfer next
0: Data phase (no CRC phase)

1: Next transfer is CRC (CRC phase). See STM32F4xx Ref. Manual
Bit 11 DFF: Data frame format
0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception
Bit 6 SPE: SPI enable
0: Peripheral disabled
1: Peripheral enabled
Bits 5:3 BR[2:0]: Baud rate control
000: fPCLK/2 100: fPCLK/32
001: fPCLK/4 101: fPCLK/64
010: fPCLK/8 110: fPCLK/128
011: fPCLK/16 111: fPCLK/256 Bit 2 MSTR: Master selection
0: Slave configuration
1: Master configuration
Bit1 CPOL: Clock polarity
0: CK to 0 when idle
1: CK to 1 when idle
Bit 0 CPHA: Clock phase
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Figure 8-9: SPI Control 1 (SPI_CR1) Register in STM32F4xx

Bit 7 TXEIE: Tx buffer empty interrupt enable
0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the
TXE flag is set. Bit 6 RXNEIE: RX buffer not empty interrupt enable
0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when
the RXNE flag is set. Bit 5 ERRIE: Error interrupt enable
This bit controls the generation of an interrupt when an error condition
occurs (OVR, CRCERR, MODF, FRE in SPI mode, and UDR, OVR, FRE in
I2S mode).
0: Error interrupt is masked
1: Error interrupt is enabled

Bit 4 FRF: Frame format
0: SPI Motorola mode
1: SPI TI mode

Figure 8-10: SPI_CR2 (Contolr 2) Registers in STM32F4xx
When SPE is set (SPE=1), the SPI module is enabled.
Clock Polarity and Clock Phase

As discussed in Section 8.1, we need to choose clock polarity and clock
phase that agree with the devices connected to the SPI. In the STM32F4xx,
the clock polarity is determined by CPOL bit and the clock phase is
determined by CPHA bit both in the SPI_CR1 register.

Master or Slave

Master or Slave 11B. A master is a device that generates the clock and
drives the SCLK pin. A slave is a device that uses the SCK pin as the SPI
clock. We use MSTR (Master Selection) bit in SPI Control register 1
(SPI_CR1) to designate the SPI Module in the STM32F4xx chip as an SPI
master or an SPI slave. Each module is independent of others. Some of them
may be configured as masters and the others as slaves.

Figure 8-11A: Using STM32F4xx SPI module as Master

Figure 8-11B: Using STM32F4xx SPI module as Master
Setting Bit Rate

Like some other peripherals, the SPI clock is derived from the APBx clock
which comes from SYSCLK through AHB and APBx prescalers. In SPI
module, the BR bits in the SPI_CR1 register are used to set the clock rate.
See Examples 8-1 and 8-2.

Example 8-1
Assume the SYSCLK clock frequency of 16MHz is fed to SPI module. Find
the values for the BR (baud rate) bits of the SPI_CR1 register for the bit rate
of (a) 1M, (b) 500K, and (c) 62,500.
Solution

(a) 16 MHz / 1MHz = 16, then we use 011 (in binary) for BR bits in
SPI_CR1 register. (b) 16 MHz / 500KHz = 32, then we use 100 for BR bits
in SPI_CR1 register.
(c) 16 MHz / 62,500 = 256, then we use 111 for BR bits in SPI_CR1 register.

Example 8-2
In a given STM32F4xx trainer board, The BR bits are set to 110 (binary) and
the SYSCLK is 16MHz. What is the baud rate for the SPI?

Solution:
16MHz / 128 = 125KHz
Data Register

The transmit data register and the receive data register share the same
address and the same name in the programs. The data is written into the
SPI_DR register for transmission and the received data is read from the
SPI_DR register. The transmit register is double buffered, meaning there is a
transmit data register in addition to the transmit shift register. When a byte of
data is written to the SPI_DR register, it will be loaded into the shift register
and makes the transmit data register empty to be ready to accept another
byte of data.

Notice in the SPI_DR register, we have the options of 8-bit or 16-bit data
frame size. The DFF bit in the SPI_CR1 register is used to set the data frame
size of 8 or 16. In 8-bit data size selection, the data must be placed into the
lower 8-bits of the register and the rest of the register is unused. In the
receive mode, the received data is held in the lower 8-bit of the register. Also
notice, data can be shifted out either MSB-first or LSB-first depending on
the value of the LSBFIRST bit in the SPI_CR1 Register. The default is
MSB-first.

Bits 15:0 DR[15:0]: Data register
Data received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit Buffer)
and another one for reading (Receive buffer). A write to the data register will
write into the Tx buffer and a read from the data register will return the
value held in the Rx buffer.

Figure 8-12: SPI_DR (Data) register
SPI Status Flag Register

In master mode, we can monitor the TXE (Transmit buffer empty) flag in the
SPI_SR (Status) register to see whether the transmit data register is empty
and can accept another byte of data for transmission. When the first byte of
data is written to the SPI_DR register, it is transferred to the shift register
immediately and the data register remains empty and the TXE flag stays set.
When another byte of data is written to the Data register while the shift
register is occupied, the TXE is cleared.

When data is loaded into the receive buffer register from the shift register,
the RXNE (Receive buffer not empty) bit of SPI_SR register flag is set. The
software must poll the RXNE flag or set up the RXNE interrupt to read the
SPI_DR register as soon as possible to avoid the loss of data. See Figure 8-
13 and Table 8-4.

Figure 8-13: SPI_SR (Status) Register Bits Name

1 TXE: Transmit buffer empty
0 RXNE: Receive buffer not empty

Function
Data Register Empty
Receive Complete

Description
The bit is 1 when the transmit data is empty and can accept another byte of
data. The bit is 1 when there is new data in the receive buffer registers. It is
cleared when data are read.

Table 8-4: SPI_SR (Status) Register

Configuring GPIO for SPI In using SPI, we must also configure the GPIO
pins to allow the connection of SPI module signals
to the external pins of the device. The input/output pin multiplexing has two
levels. The SPI I/O functions
are mapped to the four pins using function multiplexing. They are mapped
according to Table 8-5. The
mapping of input pins and output pins are independent of each other so that
the data out pin may be
mapped to the same pin as the input pin, effectively creates a local loop-
around path for testing while the
output data can still be monitored at the pin.

Not all the pins need to be configured. For example, if the program only
writes to the slave device and never reads it, the MISO pin is not used. The
slave select pin is designated for hardware slave select. If software slave
select is used, any available GPIO output pin can be used for slave select.
Because the use of hardware slave select of STM32F devices is rather
limited, we will only use software slave select.

For the pin selection, we first must use GPIOx_MODER to select the
alternate function. After that, we use GPIOx_AFRL to select AF4 or AF5
from Table 8-5 depending on which pin we use.

Table 8-5: Alternate pin Function multiplexing for STM32F446RE (See Appendix B for

complete list)

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode. 00:
Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

Figure 8-14A: GPIOx_MODER

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10
0011: AF3 1011: AF11
0100: AF4 1100: AF12
0101: AF5 1101: AF13
0110: AF6 1110: AF14
0111: AF7 1111: AF15

Figure 8-14B: GPIOx_AFRL Register
Transmitting data using software controlled slave select

The hardware slave select signal of STM32F devices is asserted when the
SPI module is enabled and de-asserted when the SPI module is disabled.

This does not work with many peripheral slave devices that require the
trailing edge of the slave select for the data transfer to take effect. The
peripheral transmission slave select is only available in STM32F7 family
devices. So we will only discuss software controlled slave select here.
Besides, there are several advantages of using software controlled slave
select.

Using software to control slave select allows us to share one SPI module
with multiple slave devices in parallel. Each slave has a separate slave select
signal. Only when its slave select is enabled, the clock and data will affect
the slave. The other advantage of software controlled slave select is that
several bytes of data may be transmitted in one transaction, which may be
necessary for some slave devices as we will see in next section.

For software controlled slave select, the program needs to assert the slave
select signal first before writing data to the Data register to initiate a
transmission. After all the bytes in a transmission are written, the program
needs to wait until the Busy flag (BSY bit 7) is set in SPI_SR (status
register) before taking away the slave select. Slave select signal is usually
low active but not always so.

Here are the steps to configure an SPI to transmit a byte of data for
STM32F4xx using software controlled slave select.

1) Enable the SPI clock at RCC_APBxENR register
2) Enable the GPIOx clock at RCC_AHB1ENR register
3) Configure the port pins for SPI by GPIOx_MODER and GPIOx_AFRy
registers
4) Configure a port pin for Slave Select by GPIOx_MODER register
5) Configure SPI_CR1 register to select data bit ordering, clock polarity,
clock phase, Baud rate, SPI master mode, data frame size, and others.
6) Clear or leave SPI_CR2 in default
7) Enable the SPI by setting SPE (SPI enable) bit of SPI_CR1 register
8) Monitor the TXE (Transfer buffer Empty) flag bit of the SPI_SR (status)
register until the transmit data register is empty
9) Assert slave select pin
10) Write data to SPI_DR (data) register to be transmitted

11) Wait until BSY flag is cleared in SPI_SR then deassert slave select
10) To transmit another character, go to step 8

See figure below for signal connections.

Program 8-1: sending A
to Z characters via an SPI port
/* p8_1.c: Using SPI1 to send A to Z characters
*
* SPI1 is configured as master with software slave select. * Clock
rate is set to 1 MHz. Polarity/Phase are 0, 0
*
* PA7 MOSI
* PA5 SCK
* PA4 SS
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

void delayMs(int n);
void SPI1_init(void);
void SPI1_write(unsigned char data);

int main(void) { char c;
SPI1_init();

while(1) {
for (c = 'A'; c <= 'Z'; c++) {
SPI1_write(c); /* write the letter through SPI1 */ delayMs(100);

}
}
}

/* enable SPI1 and associated GPIO pins */
void SPI1_init(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB2ENR |= 0x1000; /* enable SPI1 clock */

/* PORTA 5, 7 for SPI1 MOSI and SCLK */
GPIOA->MODER &= ~0x0000CC00; /* clear pin mode */ GPIOA->MODER |=
0x00008800; /* set pin alternate mode */ GPIOA->AFR[0] &=
~0xF0F00000; /* clear alt mode */ GPIOA->AFR[0] |= 0x50500000; /*
set alt mode SPI1 */

/* PORTA4 as GPIO output for SPI slave select */ GPIOA->MODER &=
~0x00000300; /* clear pin mode */ GPIOA->MODER |= 0x00000100; /* set
pin output mode */

SPI1->CR1 = 0x31C; /* set the Baud rate, 8-bit data frame */ SPI1-
>CR2 = 0;
SPI1->CR1 |= 0x40; /* enable SPI1 module */

}
GPIOA->BSRR = 0x00100000; /* assert slave select */ SPI1->DR = data;
/* write data */
while (SPI1->SR & 0x80) {} /* wait for transmission done */ GPIOA-
>BSRR = 0x00000010; /* deassert slave select */

/* This function enables slave select, writes one byte to SPI1, wait
for transmission complete and deassert slave select. */
void SPI1_write(unsigned char data) {
while (!(SPI1->SR & 2)) {} /* wait until Transfer buffer Empty */

}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Review Questions

1. True or false. SPI Master shares a clock with SPI device.
2. True or false. SPI module can also be used as USART too.
3. In SPI, which signal is used to enable a slave device?
4. In STM32F4xx, which register is used to enable the SPI module?
5. In STM32F4xx, which register is used to set the master mode?

Section 8.3: LTC1661 SPI DAC

Sending Control/Data to LTC1661 in 8-bit Mode

In Chapter 7, we examined the DAC concepts. In this section, we show an
SPI-based DAC and its interfacing to STM32F4xx Arm MCU. LTC1661 is a
10-bit SPI serial DAC from Linear Technology. It has two separate output
channels, named A and B, as shown in Figure 8-15.

Figure 8-15: LTC1661 Internal Block Diagram
The relation between the input number and the output voltage is as follows:
�������� =(�������� × ������)
1024

1024 bit data is made of 3 parts: control code (4 bits), data (10 bits), and 2
padded bits. The control codes are used to control the internal parts of the
LTC1661.

Figure 8-16: Sending a Packet of Data to LTC166x

As shown in Figure 8-15, each DAC is double buffered to provide a
simultaneous update. To do so, we load input buffers with proper values in

two transactions and then load the DAC buffers from the input buffers
simultaneously. Table 8-6 shows the list of available control codes. To
decrease power consumption, the DAC has a sleep mode, as well. We can
switch between sleep and awake modes using proper control code.

A3 A2 A1 A0 Interrupt Register 0 0 0 0 No Change

DAC
Register No Update

Power Down Status
No Change

0 0 0 1 Load DAC A No Update No Change
0 0 1 0 Load DAC B No Update

No Change No operation. power-down status unchanged
Load input register A with data. DAC outputs unchanged. power-down
Status unchanged
Load input register B with data. DAC outputs unchanged. power-down
status unchanged

0 0 1 1 -
0 1 0 0 -
0 1 0 1 -
0 1 1 0 -
0 1 1 1 -
1 0 0 0 No Change
-
-
-
-
-
Update Outputs
-
-
-
-

-
Wake

1 0 0 1 Load DAC A Update Outputs Wake
1 0 1 0 Load DAC B Update Outputs Wake

1 0 1 1 -
1 1 0 0 -
-
-
-
-

Comments

Reserved Reserved Reserved Reserved Reserved

Load both DAC Regs with existing contents of input Regs. Outputs update.
Part wakes up
Load input Reg A. Load DAC Regs with new contents of input Reg A and
existing contents of Reg B. Outputs update. Load input Reg B. Load DAC
Regs with existing contentsof input Reg A and new contents of Reg B.
Outputs update

Reserved
Reserved
1 1 0 1 No Change No Update
1 1 1 0 No Change No Update

1 1 1 1 Load ADCs A, B with same 10-bit code Update Outputs

Wake Part wakes up. Input and DAC Regs unchanged. DAC outputs reflect
existing contents of DAC Regs

Sleep Part goes to sleep. Input and DAC Regs unchanged. DAC outputs set
to high impedance state

Wake Load both input Regs. Load both DAC Regs with new contents of
input Regs. Outputs update. Part wakes up

Table 8-6: LTC1661 DAC Control Functions See Examples 8-4 and 8-5.
Example 8-4 Assuming that VREF= 3.3 V, find the result of sending the
following packets to LTC1661:
a) 0001 0001 0000 0000 binary (0x1100) b) 1010 1000 1111 1100 binary
(0xA8FC)

Solution:
a) In 0001 0001 0000 0000, control code is 0001. As a result, it loads data =
0001 0000 00 (decimal 64) to the input buffer register for channel A. Note
the output is not updated with this control code. The output will be updated
after a control code of 1000 is sent. Therefore VOUTA = VREF * DIN/ 1024 =
3.3 * 64 / 1024 = 0.206V.

b) In 1010 1000 1111 1100, the control code is 1010. As a result it loads data
1000 1111 11 (decimal 575) to the input buffer register of channel B and also
updates the output. Therefore, VOUTB = VREF * DIN / 1024 = 3.3 * 575 /
1024 = 1.853V.

Example 8-5
Assuming that VREF= 3.3 V, find the packets that should be sent to LTC1661
to:

a) send out 0.5V from channel A
b) send out 1.0V from channel B
c) send out 0.5V and 1.0V from channels A and B, simultaneously

Solution:

a) VOUTA = VREF× DIN / 1024
0.5V = 3.3 × DIN / 1024
DIN = 155 (binary 0010 0110 11). We send 1001 0010 0110 1100 binary
(0x926C) since control code 9 loads input buffer register of channel A and
updates the channel output.

b) VOUTB = VREF× DIN / 1024
1.0V = 3.3 × DIN / 1024
DIN= 310 (binary 0100 1101 10)

We send 1010 0100 1101 1000 binary (0xA4D8) since control code 1010
loads input buffer register of channel B and updates the channel output.

c) In order to change the outputs simultaneously, we need to load the input
buffer register for channel A without updating the output first then load the
input buffer register for channel B and update the outputs at the same time.
First, we load channel A input buffer register using control code 0001 0010
0110 1100 binary (0x126C). Note it is the same code as (Part a) without the
most significant bit set. Then, we load channel B input buffer register, and
update the outputs using control code 1010 0100 1101 1000 binary
(0xA4D8)

Figure 8-17: Connecting LTC1661
to the STM32F4xx

In the following program, we demonstrate a program to generate a sawtooth
waveform using LTC1661 via SPI. The LTC1661 expects the chip select to
stay low for the duration of the whole 16-bit transmission, so we use the
software controlled slave select and use a GPIO pin PA4 as the chip select
signal. From the timing diagram (shown earlier), we see the clock is idling
low and the low to high transition (the leading edge) of the clock latches the
data bit, so the clock polarity is set to 0 and the clock phase is 0 (SPI Mode
0).

The loop count ‘i’ of the for-loop is counting from 0 to 1023 and the values
are sent to LTC1661 DAC. For each transmission of the value, first the chip
select is asserted, the command 9 (write to register A and update the analog
output) with the most significant four bits (i >> 6) are sent first, then the
least significant six bits padded with two 0s ((i << 2) & 0xFF) are sent. The
program waits for the transmission to complete before removing the chip
select.

Program 8-2: Generating a sawtooth waveform at LTC1661 DAC
through SPI in 8-bit mode
/* p8_2.c: Using SPI1 to generate a sawtooth waveform on LTC1661 *
* SPI1 is configured as master with software slave select. * Clock
rate is set to 1 MHz. Polarity/Phase are 0, 0
*
* PA7 MOSI
* PA5 SCK
* PA4 SS
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void SPI1_init(void);
void DAC_write(short data);
int main(void) { short i;
SPI1_init();
while(1) {
for (i = 0; i < 1024; i++) {
DAC_write(i); /* write the letter through SPI1 */ }
}
}

/* enable SPI1 and associated GPIO pins */
void SPI1_init(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB2ENR |= 0x1000; /* enable SPI1 clock */

/* PORTA 5, 7 for SPI1 MOSI and SCLK */
GPIOA->MODER &= ~0x0000CC00; /* clear pin mode */ GPIOA->MODER |=
0x00008800; /* set pin alternate mode */ GPIOA->AFR[0] &=
~0xF0F00000; /* clear alt mode */ GPIOA->AFR[0] |= 0x50500000; /*
set alt mode SPI1 */

/* PORTA4 as GPIO output for SPI slave select */ GPIOA->MODER &=
~0x00000300; /* clear pin mode */ GPIOA->MODER |= 0x00000100; /* set
pin output mode */

SPI1->CR1 = 0x31C; /* set the Baud rate, 8-bit data frame */ SPI1-
>CR2 = 0;
SPI1->CR1 |= 0x40; /* enable SPI1 module */

}
SPI1->DR = 0x90 | (data >> 6); /* write command and upper 4 bits of
data */ while (!(SPI1->SR & 2)) {} /* wait until Transfer buffer
Empty */ SPI1->DR = (data << 2) & 0xFF;
while (SPI1->SR & 0x80) {} /* wait for transmission done */ GPIOA-
>BSRR = 0x00000010; /* assert slave select */

/* This function enables slave select, writes one byte to SPI1, wait
for transmit complete and deassert slave select. */
void DAC_write(short data) {
data &= 0x03FF; /* make sure data is 10-bit */ while (!(SPI1->SR &
2)) {} /* wait until Transfer buffer Empty */ GPIOA->BSRR =
0x00100000; /* deassert slave select */

}

Figure 8-18: The
Generated Sawtooth waveform
Sending Control/Data to LTC1661 in 16-bit Mode

In the earlier discussion, we mentioned that the DFF bit in SPI_CR1 register
may be used to select 8-bit data frame format or 16-bit data frame format.
Since LTC1661 requires a 16-bit transaction, it is natural to use the 16-bit
data frame format. The program below uses 16-bit data frame format to
perform the task as the previous program 8-2. You will see the code that
sends data through SPI is simpler and more efficient.

Program 8-3: Generating a sawtooth waveform at LTC1661 DAC
through SPI in 16-bit mode
/* p8_3.c: Using SPI1 to generate a sawtooth waveform on LTC1661
*
* SPI1 is configured as master with software slave select.
* Clock rate is set to 1 MHz. Polarity/Phase are 0, 0.
* This program is similar to p8_2 except the data frame size
* is set to 16-bit.
*
* PA7 MOSI
* PA5 SCK
* PA4 SS
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void SPI1_init(void);
void DAC_write(short data);

int main(void) {
short i;
SPI1_init();
while(1) {
for (i = 0; i < 1024; i++) {
DAC_write(i); /* write the letter through SPI1 */ }
}
}

/* enable SPI1 and associated GPIO pins */
void SPI1_init(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB2ENR |= 0x1000; /* enable SPI1 clock */

/* PORTA 5, 7 for SPI1 MOSI and SCLK */
GPIOA->MODER &= ~0x0000CC00; /* clear pin mode */ GPIOA->MODER |=
0x00008800; /* set pin alternate mode */ GPIOA->AFR[0] &=
~0xF0F00000; /* clear alt mode */ GPIOA->AFR[0] |= 0x50500000; /*
set alt mode SPI1 */

/* PORTA4 as GPIO output for SPI slave select */ GPIOA->MODER &=
~0x00000300; /* clear pin mode */ GPIOA->MODER |= 0x00000100; /* set
pin output mode */

SPI1->CR1 = 0xB1C; /* set the Baud rate, 16-bit data frame */ SPI1-
>CR2 = 0;
SPI1->CR1 |= 0x40; /* enable SPI1 module */

}

/* This function enables slave select, writes one byte to SPI1, wait
for transmit complete and deassert slave select. */
void DAC_write(short data) {
while (!(SPI1->SR & 2)) {} /* wait until Transfer buffer Empty */
GPIOA->BSRR = 0x00100000; /* deassert slave select */ SPI1->DR =
0x9000 | ((data << 2) & 0x0FFF); /* write command and data */ while
(SPI1->SR & 0x80) {} /* wait for transmission done */ GPIOA->BSRR =
0x00000010; /* assert slave select */
}

Now you may be wondering if using 16-bit data frame format is simpler and
more efficient, why would we want to use the 8-bit format? The answer lies
in the portability. Because 8-bit SPI is common to all the devices from all the
manufacturer, the code written for 8-bit format can be easily ported to a
different device. If you want to reuse the 16-bit program in a device that
does not support the 16-bit format, the changes to the program will be larger.

Review Questions

1. True or false. LTC1661 is an ADC.
2. True or false. LTC1661 is a 10-bit DAC.
3. True or false. There are 4 output channels in the LTC1661.

Answers to Review Questions

Section 8.1
1. False
2. True
Section 8.2
1. True
2. False
3. Slave Select (SS)
4. SPIx_CR1
5. SPIx_CR1
Section 8.3
1. False
2. True
3. False, it has only two analog output channels

Chapter 9 : I2C Protocol and RTC Interfacing

This chapter covers I2C bus interfacing and programming. Section 9.1
examines the I2C bus protocol. Section 9.2 shows the inner working of I2C
module in STM32F4xx Arm devices. The DS1337 RTC and its I2C
interfacing and programming are covered in Section 9.3.

Section 9.1: I2C Bus Protocol

The IIC (Inter-Integrated Circuit) is a bus interface connection incorporated
into many devices such as sensors, RTC, and EEPROM. The IIC is also
referred to as I2C, I2C, or I square C in many technical literatures. In this
section, we examine the signals of the I2C bus and focus on I2C terminology
and protocols.

I2C Bus

The I2C bus was originally started by Philips, but in recent years has become
a widely used standard adopted by many semiconductor companies. I2C is
ideal to attach low-speed peripherals to a motherboard or embedded system
or anywhere that a reliable communication over a short distance is required.
As we will see in this chapter, I2C provides a connection oriented
communication with acknowledgement. I2C devices use only 2 pins for data
transfer, instead of the 8 or more pins used in traditional parallel buses.
These two signals are called SCL (Serial Clock) which synchronizes the data
transfer between two chips, and SDA (Serial Data). The reduction of
communication pins reduces the package size and power consumption
drastically, making them ideal for many applications in which space is a
major concern. These two pins, SDA, and SCK, make the I2C a 2-wire
interface. In some application notes, I2C is referred to as Two-Wire Serial
Interface (TWI).

I2C line electrical characteristics

I2C devices use only 2 bidirectional open-drain pins for data
communication. To implement I2C, a 4.7k ohm pull-up resistor for each of
bus lines is needed (see Figure 9-1). This implements a wired-AND which is
needed to implement I2C protocols. It means that if one or more devices pull
the line to low (zero) level, the line state is zero. The level of the line will be
1 only if none of the devices pull the line to low level.

Figure 9-1: I2C
Bus Characteristics

I2C Nodes In I2C protocol, more than 100 devices can share an I2C bus.
Each of these devices is called a node.
In I2C terminology, each node can operate as either master or slave. Master

is a device that generates the Clock for the system, it also initiates and
terminates a transmission. Slave is a node that receives the clock and is
addressed by the master. In I2C, both master and slave can receive or
transmit data. So there are 4 modes of operation for each node. They are:
master transmitter, master receiver, slave transmitter and slave receiver.
Notice that each node can have more than one mode of operation at different
times but it has only one mode of operation at any given time. See Example
9-1

Example 9-1
Give an example to show how a device (node) can use more than one mode
of operation. Solution:
If you connect a microcontroller to an EEPROM with I2C, the
microcontroller does master transmit operation to write to EEPROM and
master receive operation to read from EEPROM

In next sections, you will see that a node can do the operations of master and
slave at a different time.
Bit Format

I2C is a synchronous serial protocol; each data bit transferred on the SDA
line is synchronized by a high to low pulse of the clock on SCL line.
According to I2C protocols, the data line cannot change when the clock line
is high, it can change only when the clock line is low. See Figure 9-2. STOP
and START condition are the only exceptions to this rule.

Figure 9-2: I2C Bit Format
START and STOP conditions

As we mentioned before, I2C is a connection oriented communication
protocol, it means that each transmission is initiated by a START condition
and is terminated by STOP condition. Between the START and STOP, a

connection is established between the master and the slave. Remember that
the START and STOP conditions are generated by the master.

STOP and START conditions must be distinguished from bits of address or
data and that is why they do not obey the bit format rule that we mentioned
before.

START and STOP conditions are generated by keeping the level of the SCL
line to high and then changing the level of the SDA line. START condition is
generated by a high-to-low change in SDA line when SCL is high. STOP
condition is generated by a low-to-high change in SDA line when SCL is
high. See Figure 9-3.

Figure 9-3: START and STOP Conditions
The bus is considered busy between each pair of START and STOP
conditions and no other master tries to take control of the bus when it is
busy. If a master, which has the control of the bus, wishes to initiate a new
transfer and does not want to release the bus before starting the new transfer,
it issues a new START condition between a pair of START and STOP
condition. It is called REPEATED START condition or simply RESTART
condition. See Figure 9-4.

Figure 9-4:
REPEATED START Condition
Example 9-2 shows why REPEATED START condition is necessary.

Example 9-2
Give an example to show when a master must use REPEATED START
condition. What will happen if the master does not use it?

Solution:
If you connect two microcontrollers (uA and uB) and an EEPROM with I2C,
and the uA wants to display the sum of the contents at address 0x34 and
0x35 of EEPROM, it has to use REPEATED START condition. Let’s see
what may happen if the uA does not use REPEATED START condition. uA
transmit a START condition, reads the content of address 0x34 of EEPROM
and transmit a STOP condition to release the bus. Before uA reads the
contents of address 0x35, the uB seize the bus and change the contents of
address 0x34 and 0x35 of EEPROM. Then uA reads the content of address
0x35, adds it to last content of address 0x34 and display the result to LCD.
The result on the LCD is neither the sum of old values of address 0x34 and
0x35 nor the sum of the new values of address 0x34 and 0x35 of EEPROM!

Message format in I2C

In I2C, each address or data to be transmitted must be framed in 9 bit long.
The first 8 bits are put on SDA line by the transmitter and the 9th bit is the
acknowledgment by the receiver or it may be NACK (negative
acknowledge). Notice that the clock is always generated by the master,
regardless of it being transmitter or receiver. To allow acknowledge, the
transmitter release the SDA line during the 9th clock so the receiver can pull
the SDA line low to indicate an ACK. If the receiver doesn’t pull the SDA
line low, it is considered as NACK. See Figure 9-5.

Figure 9-5: Byte Format in I2C
In I2C, each byte may contain either address or data. Also, notice that:
START condition + slave address byte + one or more data byte + STOP
condition together form a complete data transfer. Next, we will study slave
address and data byte formats and how to combine them to make a complete
transmission.

Address Byte Format
Like any other bytes, all address bytes transmitted on the I2C bus are nine
bits long. It consists of
seven address bits, one READ/WRITE control bit, and an acknowledge bit.
(See Figure 9-6)

Figure 9-6: Address Byte Format in I2C
Slave address bits are used to address a specific slave device on the bus.
Seven bit address let the master to address maximum of 128 slaves on the
bus. Although address 0000 000 is reserved for general call and all address
of the format 1111 xxx are reserved for many devices. There are 8 more

reserved addresses. That means 111 (128-1-8-8) devices can share an I2C
bus. In I2C bus the MSB of the address is transmitted first. The I2C bus also
supports 10-bit address where the address is split into two frames at the
beginning of the transmission. For the rest of the discussion, we will focus
on 7 bit address only.

The 8th bit in the address byte is READ/WRITE control bit. If this bit is
high, the master will read the next byte from the slave, otherwise, the master
will write the next byte on the bus to the slave. When a slave detects its
address on the bus, it knows that it is being addressed and it should
acknowledge in the ninth clock cycle by pulling SDA to low. If the
addressed slave is not ready or for any reason does not want to respond to
the master, it should leave the SDA line high in the 9th clock cycle. It is
considered as NACK. In case of NACK, the master can transmit a STOP
condition to terminate the transmission, or a REPEATED START condition
to initiate a new transmission.
Example 9-3 shows how a master says that it wants to write to a slave.

Example 9-3 Show how a master initiates a write to a slave with address
1001101? Solution:

The following actions are performed by the master:

1) The master put a high to low pulse on SDA while SCL is high to generate
a start condition to start the transmission
2) The master transmits 1001101 0 into the bus. The first seven bits
(1001101) indicates the slave address and the 8th bit (0) indicate write
operation and the master will write the next byte (data) to the slave.

An address byte consisting of a slave address and a READ is called SLA+R
while an address byte consisting of a slave address and a WRITE is called
SLA+W.

As we mentioned before, address 0000 000 is reserved for a general call. It
means that when a master transmits address 0000 000 all slaves respond by
changing the SDA line to zero for one clock cycle for an ACK and wait to
receive the data byte. It is useful when a master wants to transmit the same
data byte to all slaves in the system. Notice that the general call address
cannot be used to read data from slaves because no more than one slave is
able to write to the bus at a given time. Also, not all the devices respond to a
general call.

Data Byte Format

Like other bytes, data bytes are 9 bits long too. The first 8 bits are a byte of
data to be transmitted and the 9th bit, is for ACK. If the receiver has
received the last byte of data and does not wish to receive more data, it may
signal a NACK by leaving the SDA line high. The master should terminate
the transmission with a STOP after a NACK appears. In data bytes, like
address bytes, MSB is transmitted first.

Combining Address and Data Bytes into a Transmission

In I2C, normally, a transmission is started by a START condition, followed
by an address byte (SLA+R/W), one or more data bytes and finished by a
STOP condition. Figure 9-7 shows a typical data transmission. Try to
understand each element in the figure. (See Example 9-4)

Figure 9-7: Typical Data Transmission

Example 9-4
Show how a master writes data value 1111 0000 to a slave with an address
1001 101? Solution:

The following actions are performed by the master:

1) The master puts a high to low transition on SDA while SCL is high to
generate a START condition to start the transmission
2) The master transmits 1001 101 0 on the bus. The first seven bits (1001
101) indicate the slave address and the 8th bit (0) indicates a write operation
and says that the master will write the next byte (data) to the slave.
3) The slave pulls the SDA line low at the 9th clock pulse to signal an ACK
to say that it is ready to receive data
4) After receiving the ACK, the master will transmit the data byte (1111
0000) on the SDA line. (MSB first)
5) When the slave device receives the data, it leaves the SDA line high to
signal NACK and inform the master that the slave received the last data byte
and does not need any more data
6) After receiving the NACK, the master will know that no more data should
be transmitted. The master changes the SDA line from low to high when the
SCL line is high to transmit a STOP condition and then releases the bus.

Clock stretching

One of the features of the I2C protocol is clock stretching. It is used by a
slow slave device to synchronize with the master. If an addressed slave
device is not ready to process more data it will stretch the clock by holding
the clock line (SCL) low after receiving (or sending) a bit of data so the
master will not be able to raise the clock line (because devices are wire-
ANDed) and will wait until the slave releases the SCL line to show it is
ready for the next bit. See Figure 9-8. Clock stretching can be used to slow

down the clock for each bit or it can be used to temporarily halt the clock at
the end of a byte while the receiver is processing the data.

Figure 9-8: Clock Stretching

Arbitration I2C protocol supports multi-master bus system. It doesn’t mean
that more than one master can
use the bus at the same time. Each master waits for the current transmission
to finish and then start to
use the bus. But it is possible that two or more masters initiate a transmission
at about the same time. In
this case, the arbitration happens.

Each master has to check the level of the bus and compare it with the levels
it is driving; if it doesn't match, that master has lost the arbitration and will
switch to slave mode. In the case of arbitration, the winning master will
continue the transmission. Notice that neither the bus is corrupted nor the
data is lost. See Example 9-5

Example 9-5
If two master A and B start at about the same time, what happens if master A
wants to write to slave 0010 000 and master B wants to write to slave 0001
111?
Solution:
Master A will lose the arbitration in the third clock because the SDA line is
different from the output of master A at the third clock. Master A switches to
slave mode and stops driving the bus after losing the arbitration.

Multi-byte burst write

Burst mode writing is an effective means of loading data into consecutive
memory locations. It is supported in I2C, SPI, and many other serial
protocols. In burst mode, we provide the address of the first memory
location, followed by the data for that location. From then on, consecutive
bytes are written to consecutive memory locations. In this mode, the I2C
device internally increments the address location as long as STOP condition
is not detected. The following steps are used to send (write) multiple bytes of
data in burst mode for I2C devices.

1. The master generates a START condition.
2. The master transmits the slave address followed by a zero bit (for write).
3. The master transmits the memory address of the first location.
4. The master transmits the data to the first memory location and from then
on, the master simply provides consecutive bytes of data to be placed in
consecutive memory locations in the slave.
5. The master generates a STOP condition.
Figure 9-9 shows how to write 0x05, 0x16, and 0x0B to 3 consecutive
locations starting from location 00001111 of slave 1111000.

Figure 9-9: Multi-byte Burst Write
Multi-byte burst read

Burst mode reading is an effective means of bringing out the contents of
consecutive memory locations. In burst mode, we provide the address of the
first memory location only. From then on, contents are brought out from
consecutive memory locations. In this mode, the I2C device internally
increments the address location as long as STOP condition is not detected.
The following steps are used to get (read) multiple bytes of data using burst
mode for I2C devices.

1. The master generates a START condition.
2. The master transmits the slave address followed by a zero bit (for writing
the memory address).
3. The master transmits the memory address of the first memory location.
4. The master generates a RESTART condition to switch the bus direction
from write to read.
5. The master transmits the slave address followed by a one bit (for read).
6. The master clocks the bus 8 times and the slave device provides the data
for the first location.
7. The master provides an ACK.
8. The master reads the consecutive locations and provides an ACK for each
byte.
9. The master gives a NACK for the last byte received to signal the slave
that the read is complete.
10. The master generates a STOP condition.
Figure 9-10 shows how to read three consecutive locations starting from
location 00001111 of slave number 1111000.

Figure 9-10: Multi-byte Burst Read

Review Questions
1. True or false. I2C protocol is ideal for short distance.
2. How many bits are there in a frame? Which bit is for acknowledgement?
3. True or false. START and STOP conditions are generated when the SDA
is high.
4. What is the name of the procedure a slow slave device uses to synchronize
with a fast master?
5. True or false. After arbitration of two masters, both of them must start
transmission from beginning.

Section 9.2: I2C Programming in STM32F4xx Arm

The STM32F4xx chip comes with several on-chip I2C modules. In this
section, we examine the registers and features of I2C module. The I2C
modules are located at the following base addresses:

I2C Module Base Address I2C1 0x4000 5400 - 0x4000 57FF I2C2 0x4000
5800 - 0x4000 5BFF I2C3 0x4000 5C00 - 0x4000 5FFF

Table 9-1: I2C Module Base Address for STM32F4xx

Figure 9-11: I2C Master Slave connection

Enabling clock to I2C
Just like other peripherals we must enable the clock to the I2C modules
before we can use it. This
is done with RCC APB1 peripheral clock enable register (RCC_APB1ENR).
See Figure 9-12:

Bit 23 I2C3EN: I2C3 clock enable
This bit is set and cleared by software.
0: I2C3 clock disabled
1: I2C3 clock enabled

Bit 22 I2C2EN: I2C2 clock enable
This bit is set and cleared by software.
0: I2C2 clock disabled
1: I2C2 clock enabled

Bit 21 I2C1EN: I2C1 clock enable
This bit is set and cleared by software.
0: I2C1 clock disabled
1: I2C1 clock enabled

Figure 9-12: RCC APB1 peripheral clock enable register (RCC_APB1ENR) to enable clock to
I2C I2C Registers

To program the I2C module, we need to examine the registers associated
with it. Table 9-2 shows some of the registers. Notice that I2C and SPI are
called synchronous since a single clock is used to synchronize the data
transfer between the STM32F4xx and I2C (or SPI) devices. Recall from
Chapter 4 that there was no such a clock for asynchronous USART. USART
used only TxD and RxD and common ground between the Arm and other
devices.

Register Name I2C_CR1
I2C_CR2
I2C_DR
I2C_SR1
I2C_SR2

I2C_CCR
I2C_TRISE

Register Function Register Address Control 1 0x0000
Control 2 0x0004
Data 0x0010
Status 1 0x0014
Status 2 0x0018
Clock Control 0x001C
SCL Rising Time 0x0020

Table 9-2: Some I2C Registers in STM32F4xx

Configuring the I2C Module
Both I2C_CR1 (Control 1) and I2C_CR2 (Control 2) registers are used to
configure the I2C. See
figures below.

Bit 15 SWRST: Software reset
When set, the I2C is under reset state. Before resetting this bit, make sure the
I2C lines are released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Bit 10 ACK: Acknowledge enable
This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation
The bit is set and cleared by software, cleared by hardware when a Stop
condition is detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.

1: Stop generation after the current byte transfer or after the current Start
condition is sent. In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 8 START: Start generation
This bit is set and cleared by software and cleared by hardware when start is
sent or PE=0. In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 0 PE: Peripheral enable
0: Peripheral disable
1: Peripheral enable

Figure 9-13A: I2C_CR1 (Control 1) Register

Bits 5:0 FREQ[5:0]: Peripheral clock frequency
The FREQ bits must be configured with the APB clock frequency value (I2C
peripheral connected to APB). The FREQ field is used by the peripheral to
generate data setup and hold times compliant with the I2C specifications.
The minimum allowed frequency is 2 MHz,
the maximum frequency is limited by the maximum APB frequency (42
MHz) and cannot exceed 50 MHz (peripheral intrinsic maximum limit).
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b110010: 50 MHz
Higher than 0b101010: Not allowed

Figure 9-13B: I2C_CR2 (Control 2) Register
Master or Slave

The I2C Module is in slave mode when it is enabled by writing a ‘1’ to the
PE (Peripheral Enable) bit of I2C_CR1 (Control 1) register. When the
software writes a ‘1’ to the START bit of I2C_CR1 register, a start condition
is generated on the I2C bus and the I2C module becomes the master. The
I2C module stays as the master until it issues a STOP condition or the bus
arbitration failed then it returns to slave mode. When the I2C module is in
master mode, it is responsible to generate the bus clock signal.

Bus Clock Speed

Because the I2C bus is an open-drain bus, the I2C module has limited
control over the clock speed. The I2C module controls how much time it
holds the clock signal low and how long it leaves the clock signal high
before driving it low again. Because of the clock stretching mentioned in the
previous section, slave is allowed to stretch the clock by keeping the signal
low longer, the period of SCL may also vary from cycle to cycle. The rise
time of the signal depends on the pull-up resistor value and the stray
capacitance of the circuit. On the other hand, for a synchronous
communication, the precision of the clock frequency is usually not important
because all the devices are driven by the same clock.

In the STM32F4xx I2C module, the I2C module supports both standard
mode (Sm) of 100KHz and Fast mode (Fm) of 400KHz. There are three
registers involved in configuring the I2C bus clock. Standard mode or fast
mode is selected by F/S bit of the I2C Clock control register (I2C_CCR).
See the Figure 9-14. Note that The I2C_CCR register can be configured only
when the I2C is disabled, which is done by setting the PE (Peripheral
Enable) bit to ‘0’ in the I2C_CR1 register.

Bit 15 F/S: I2C master mode selection
0: Sm mode I2C
1: Fm mode I2C

Bit 14 DUTY: Fm mode duty cycle
0: Fm mode tlow/thigh = 2
1: Fm mode tlow/thigh = 16/9 (see CCR)
Bits 13:12 Reserved, must be kept at reset value
Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode)
Controls the SCL clock in master mode.
Sm mode or SMBus:
Thigh = CCR * TPCLK1
Tlow = CCR * TPCLK1

Figure 9-14: I2C Clock Control register (I2C_CCR)
The I2C clock is derived from the APB peripheral clock which is the system
clock (SYSCLK) going through AHB and APB prescaler just like other
peripherals such as USART, SPI, ADC and so on. We have used the default
16 MHz as SYSCLK and also 16 MHz APB clock so far in this book. The
low-time and the high-time of the SCL are specified in the CCR bits of the
I2C_CCR register. They are the period of APB clock multiplied by the value
of CCR bits.

The value of the FREQ bits of the I2C_CR2 register should match the APB
clock frequency in MHz. The minimum APB frequency is 2MHz and the
maximum is 50MHz as shown in Table 9-3.

FREQ[5:0] in binary Allowed Freq
000000 Not allowed
000001 Not allowed
000010 2 MHz (minimum acceptable for Standard mode)
000011 3 MHz
000100 4 MHz (minimum acceptable for Fast mode)
000101 5 MHz
000110 6 MHz
000111 7 MHz
001000 8 MHz
...
…
010000 16 MHz
...

…
110010 50 MHz
Higher than 0b100100: Not allowed

Table 9-3: I2C Frequency Selection in I2C_CR2 Register

Example 9-6
Assume the SYSCLK of 16MHz is fed into I2C, find the value of I2C_CR2
register if we do not use interrupt or DMA?
Solution:
From Table 9-3, we see FREQ = 1000 for 16MHz. That means I2C_CR2 is
0000 0000 0001 0000 = 0x10 since we are not enabling any of the interrupt
or DMA features of the I2C.

Example 9-7A
Find the value of I2C_CR2 and I2C_CRR for I2C standard mode of 100
KHz with clock frequency of 8MHz. Leave the interrupt and DMA bits 0.
Solution:
From Table 9-3, we see FREQ = 01000(in binary) for 8 MHz. That means
I2C_CR2 is 0000 0000 0000 1000 = 0x08 since we are not enabling any of
the interrupt or DMA features of the I2C.
The period of the APB bus is
TPCLK1= 1 / 8 MHz = 125 ns.
The period of 100 KHz is
1 / 100 KHz = 10,000 ns for period.
Half of the period is in Thigh and half of the period is in Tlow.
Half of 10,000 ns = 5000ns
5000 ns / 125 ns = 40 = 0x28 therefore we need to place 0x28 in the CCR
bits. That means I2C_CCR=0000 0000 0010 1000 = 0x28

Example 9-7B
Repeat the last example using 16MHz for APB clock.
Solution:
From Table 9-3, we see FREQ = 10000 (in binary) for 16 MHz. That means
I2C_CR2 is 0000 0000 0001 0000=0x10.
TPCLK1= 1 / 16 MHz = 62.5 ns.

1 / 100KHz = 10,000ns for period.
Half of 10,000 ns = 5000 ns.
5000 ns / 62.5 ns = 80 = 0x50 therefore we need to place 0x50 in CCR bits.
That means I2C_CCR = 0000 0000 0101 0000 = 0x50
The I2C_TRISE register is used for the maximum duration of the rise time
of the I2C clock to keep a stable SCL frequency. In Sm mode, the maximum
allowed SCL rise time by the specification is 1000 ns.

In the earlier example for the I2C_CR2 register, the value of FREQ[5:0] =
16 for 16 MHz which gives TPCLK1 = 62.5 ns. That means, TRISE[5:0] of
this register bits must be programmed with 17 since 1000 ns / 62.5 ns = 16 +
1.
Bits 15:6 Reserved, must be kept at reset value
Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode)

These bits should provide the maximum duration of the SCL feedback loop
in master mode. The purpose is to keep a stable SCL frequency whatever the
SCL rising edge duration. These bits must be programmed with the
maximum SCL rise time given in the I2C bus specification, incremented by
1.

Figure 9-15: I2C TRISE register (I2C_TRISE)
Transmit and Receive Data (I2C_DR) Register

In transmit mode, we place a byte of address or data in I2C_DR register for
transmission. During continuous transmission, when the Data register empty
flag (TxE) of the I2C_SR1 register is set, the data should be written into the
data register. This is a 16-bit register but only the lowest 8 bits are used.

In receive mode, the received data is placed in I2C_DR register. Reading this
register gets the last byte of received data. During continuous transmission,
when the Data register not empty the flag RxNE of the I2C_SR1 register is
set, the data should be read as soon as possible.

Bits 7:0 DR[7:0] 8-bit data register
Byte received or to be transmitted to the bus.

– Transmitter mode: Byte transmission starts automatically when a byte is
written in the DR register. A continuous transmit stream can be maintained if
the next data to be transmitted is put in DR once the transmission is started
(TxE=1)
– Receiver mode: Received byte is copied into DR (RxNE=1). A continuous
transmit Stream can be maintained if DR is read before the next data byte is
received (RxNE=1).

Figure 9-16: I2C_DR (Data Register) for Transmit/Receive Buffer Register

I2C Status Register 1 (I2C_SR1)
The Status Register (I2C_SR1) contains many flags indicating the events
that need attention. These
flags are important to the operations of the I2C module.

The TxE (Data register empty for transmitter) indicates that I2C_DR data
register is empty and ready to accept another byte of data.

The RxNE (Data register not empty for receiver) is set when a byte is
successfully received in master read mode. This indicates that Data register
is full and the I2C module has a byte of data to be picked up by the CPU. In
other words, this flag is set when an I2C master has received a byte
successfully. This flag is cleared when we read a byte from Data Register to
be saved before it is lost by next incoming I2C receive.

Figure 9-17: : I2C Status Register 1 (I2C_SR1)

Bits Field Description
7 TxE Data register empty (transmitter)
This is set when the transmit data register is empty and a byte of data can be
written into the data register
0: Data register not empty
1: Data register empty
6 RxNE Data register not empty (receiver)
This is set when a byte is received in receive mode

0: Data register empty
1: Data register not empty
2 BTF Byte transfer finished
In transmit mode, it is set when all the data are transmitted. The program
should wait until this bit is set before issuing a stop condition. In receive
mode, it is set when a byte of data is received. The program should wait until
this bit is set before reading from the data register. 0: data byte transfer not
done
1: data byte transfer succeeded

Table 9-4: I2C Status Register 1(I2C_SR1) Bit Description
Configuring GPIO for I2C

In using I2C, we must configure the GPIO pins to allow the connections of
the SCL and SDA signals to two GPIO pins of the device. In this regard, it is
similar to other peripherals. To assign GPIO pins to I2C module, the
GPIOx_AFRL register is used to set the alternative pin option of AF4 as
shown in Table 9-6.

Pin Function PB6 I2C1_SCL PB7 I2C1_SDA PB8 I2C1_SCL PB9
I2C1_SDA PB10 I2C2_SCL PB11 I2C2_SDA PA8 I2C3_SCL PC9
I2C3_SDA

Table 9-5: I2C pins in STM32F4xx (See Appendix B full listing) Table 9-6: Alternative pin
function multiplexing (See Appendix B for full List)

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode. 00:
Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

Figure 9-18: GPIOx_MODER Register Options

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10
0011: AF3 1011: AF11
0100: AF4 1100: AF12
0101: AF5 1101: AF13
0110: AF6 1110: AF14
0111: AF7 1111: AF15

Figure 9-19: AFRL Register

Configuring I2C for master data transmission
Here are the steps to configure the I2C for master data transmission and
receiving. The sample
programs are in the next section using DS1337 as the slave device.

1. Enable the clock to GPIOB that has the I2C I/O pins
2. Enable the clock to I2C using the RCC_APB1ENR register.
3. Configure the port pins for I2C by with GPIOx_MODER and
GPIOx_AFRL registers
4. Configure the port pins for I2C to be open-drain output with pull-up
resistors
5. Reset the I2C using bit 15 of I2C_CR1
6. Configure I2C_CR1 and I2C_CR2 registers to select I2C master mode
7. Set the SCL frequency using I2C_CCR register
8. Configure the maximum rise time of I2C SCL using I2C_TRISE register
9. Enable the I2C by setting PE=1 bit of I2C_CR2 register

Send a byte of data to a slave device

Most of the I2C slave devices have a set of registers. Writing a byte of data
to a specific register requires that the register address is written first before
the data. So a single byte data write to the device incurs three writes from the
I2C master to the slave device: a) the slave address, b) the register address,
and c) the data. There are many I2C EEPROM/Flash devices that require the
same procedure. The memory address is sent to the device after the slave
address before writing the data to the memory. Most of them support
sequential access that is after the first access, the next access without restart
will go to the next location. The sequential access helps improve the
throughput of the I2C bus. We will demonstrate the sequential access in
Program 9-3, 9-4 of next section.

1. Monitor the BUSY bit of I2C_SR2 (Status 2) register until the bus is idle
2. Write to START bit (bit 8) of I2C_CR1 (Control 1) register to generate a
START condition on the bus
3. Wait until the START condition is complete, the SB bit (bit 0) of I2C_SR1
register is set
4. Write the slave address with the R/W bit (bit 0) cleared (for a write) to
I2C_DR (Data Register), this will transmit the slave address
5. Wait until ADDR bit (bit 1) of I2C_SR1 register is set signaling that the
slave address is sent
6. Read I2C_SR1 and I2C_SR2 to clear the ADDR bit
7. Wait until TxE bit of I2C_SR1 register is set signaling that the transmit
data register is empty
8. Write the register/memory address to I2C_DR register
9. Wait until TxE bit of I2C_SR1 register is set signaling that the transmit
data register is empty
10. Write the data to I2C_DR register
11. Wait until BTF (Byte Transfer Finished) bit of I2C_SR1 register is set
signaling that the data is sent
12. Write to STOP bit (bit 9) of I2C_CR1 register to generate a STOP
condition on the bus The procedure listed above is a simplified version. In
real-world application, the error bits of the I2C_SR1 register should be
checked after each byte is sent to make sure there was no bus collision and
the slave responded with an acknowledge.

Read a byte of data from a slave device

Reading a byte of data from the slave requires two parts: write the
register/memory address and read the data. For the first part, the slave
address is transmitted with the R/W bit cleared (for a write) then followed by
the register/memory address. At this point, the I2C bus is in master write to
slave direction. To read the data from the slave, the bus direction needs to be
reversed. The way to change the bus direction is to issue a RESTART
condition then transmit the slave address with the R/W bit set (for a read).
The master will clock the SCL eight times for the slave to reply with the 8-
bit data. Then the master should send a NACK to let the slave know that the
transaction is over before generate a STOP condition to relinquish the bus.

1. Monitor the BUSY bit of I2C_SR2 (Status 2) register until the bus is idle
2. Write to START bit (bit 8) of I2C_CR1 (Control 1) register to generate a
START condition on the bus
3. Wait until the START condition is complete, the SB bit (bit 0) of I2C_SR1
register is set
4. Write the slave address with the R/W bit (bit 0) cleared (for a write) to
I2C_DR (Data Register), this will transmit the slave address
5. Wait until ADDR bit (bit 1) of I2C_SR1 register is set signaling that the
slave address is sent
6. Read I2C_SR1 and I2C_SR2 to clear the ADDR bit
7. Wait until TxE bit of I2C_SR1 register is set signaling that the transmit
data register is empty
8. Write the register/memory address to I2C_DR register
9. Wait until TxE bit of I2C_SR1 register is set signaling that the transmit
data register is empty
10. Write to START bit (bit 8) of I2C_CR1 (Control 1) register to generate a
RESTART condition
11. Wait until the RESTART condition is complete, the SB bit (bit 0) of
I2C_SR1 register is set
12. Write the slave address with the R/W bit (bit 0) set (for a read) to
I2C_DR (Data Register), this will transmit the slave address with read
13. Wait until ADDR bit (bit 1) of I2C_SR1 register is set signaling that the
slave address is sent
14. Clear ACK bit (bit 10) of I2C_CR1 register, preparing to return a NACK
15. Read I2C_SR1 and I2C_SR2 to clear the ADDR bit

16. Write to STOP bit (bit 9) of I2C_CR1 register to generate a STOP
condition on the bus
17. Wait until RxNE bit of I2C_SR1 register is set signaling that the receive
data register is not empty
18. Read I2C_DR register to retrieve the data
Review Questions
1. True or false. The I2C module in STM32F4xx can be used as SPI too, but
not at the same time.
2. True or false. The I2C module in STM32F4xx can be used as USART at
the same time. 3. True or false. There is no CS (chip select) pin in I2C.
4. In STM32F4xx, which register is used to select I2C mode of master and
slave? 5. In STM32F4xx, which register is used to set the I2C baud rate?

Section 9.3: DS1337 RTC Interfacing and Programming

The real-time clock (RTC) is a common device that provides time and date
information for many applications. Systems such as the PC come with such a
chip on the motherboard. It provides the hour, minute, and second, in
addition to year, month, and day to the operating system. Many RTC chips
use an external battery, which keeps the time and date even when the power
of the system is turned off. The DS1337 is an RTC with an I2C bus
interface. In this section, we will develop the programs for the DS1337 RTC.
The DS1337 is used as the replacement for popular DS1307 to be used with
a 3.3V logic interface.

Next, we describe the pins of the DS1337. See Figure 9-20.

Figure 9-20: DS1337 Pins
Pinout of DS1337
X1–X2

These are pins that connect the DS1337 to an external crystal oscillator as
the clock source to the chip. We must use a 32.768 kHz quartz crystal. The

precision of the clock depends on the quality of this crystal oscillator.

VCC

Pin 8 is used as the voltage supply to the chip. The voltage source can be
between 1.3 V to 5.5 V. When Vcc is above 1.3 V, the DS1337 starts
working and keeps the time. But the I2C interface is disabled unless the Vcc
is above 1.8 V.

Vcc can be connected to an external battery, thereby providing the power
source to the chip when the external supply voltage is not available.
GND
Pin 4 is the ground.
SDA (Serial Data)
Pin 5 is the SDA pin and must be connected to the SDA line of the I2C bus.
SCL (Serial Clock)
Pin 6 is the SCL pin and must be connected to the SCL line of the I2C bus.

INTA# (Interrupt A)
The DS1337 has two AlArms: AlArm 1 and AlArm 2. If the alArm 1 is
enabled, the INTA pin is
asserted when the current time and date matches the values of AlArm 1
registers.

SWQ/INTB

Pin 7 is an output pin providing 1 kHz, 4 kHz, 8 kHz, or 32 kHz frequency if
enabled. This pin needs an external pull-up resistor to generate the output
signal because it has an open-drain driver. The pin can be used as the output
for INTB, as well. For more information, see the DS1337 datasheet.

Figure
9-21: STM32F4xx Connections to RTC
DS1337 Registers
Address map of the DS1337

The DS1337 has a total of 15 bytes of address space with addresses 00–0FH.
The first seven locations, 00–06, are set aside for RTC values of time, date,
and year. Locations 07H-0DH are for AlArm 1 and AlArm 2 registers. The
next bytes are used for control and status registers. Table 9-7 shows the
address map of the DS1337. Next, we study the control register, and time
and date access in DS1337.

Address Bit7
00H 0
01H 0

02H 0 03H 0 04H 0 05H Century

06H
07H A1M1
08H A1M2

09H A1M3

0AH A1M4
0BH A2M2
0CH A2M3

0DH A2M4 0EH EOSC 0FH OSF

Bit6 Bit5 Bit4
10 Seconds
10 Minutes

12/2410 hour 10hourPM/AM
0 0 0 0 10 Date 0 0 10Mnt

10 Year
10 Seconds
10 Minutes

12/24
AM/PM 10 10 Hour Hour

DY/DT 10 Date
10 Minutes
12/24

AM/PM 10 10 Hour Hour DY/DT 10 Date
0 0 RS2 0 0 0

Bit3 Bit2 Bit1 Bit0 Seconds
Minutes

Hours
0 Day
Date
Month

Year
Seconds
Minutes

Hour

Day
Date
Minutes

Hour

Day
Date
RS1 INTCN A2IE A1IE

0 0 A2F A1F

Function Range Seconds 00-59
Minutes 00-59

Hours
1-12
0-23
Day 0-7
Date 01-31
Month 1-12+ Century Century Year 00-99
AlArm 1 Seconds 00-59
AlArm 1 Minutes 00-59

AlArm 1 Hours
1-12 00-23

AlArm 1 Day 1-7 AlArm 1 Date 01-31 AlArm 2 Minutes 00-59

AlArm 2 Hours
1-12 00-23

AlArm 2 Day 1-7 AlArm 2 Date 01-31 Control - Status -

Table 9-7: DS1337 Address Map
Time and date address locations and modes

The byte addresses 0–6 are for time and date, as shown in Table 9-7. The
DS1337 provides data in BCD format. Notice the data range for the hour
mode. We can select 12-hour or 24-hour mode with bit 6 of Hours register at
location 02. When bit 6 is 1, the 12-hour mode is selected, and when bit 6 =
0, it provides us with the 24-hour mode. In the 12-hour mode, bit 5 indicates
whether it is AM or PM. If bit 5 = 0, it is AM; and if bit 5 = 1, it is PM. See
Example 9-8.

Example 9-8
What value should be placed at location 02 to set the hour to (a) 21, (b)
11AM, (c) 12 PM. Solution:
(a) For 24-hour mode, we have D6 = 0. Therefore, we place 0010 0001 (or
0x21) at location 02, which is 21 in BCD.
(b) For 12-hour mode, we have D6 = 1. Also, we have D5 = 0 for AM.
Therefore, we place 0101 0001 at location 02, which is 51 in BCD.
(c) For 12-hour mode, we have D6 = 1. Also, we have D5 = 1 for PM.
Therefore, we place 0111 0010 at location 02, which is 72 in BCD.
The DS1337 control register

As shown in Table 9-7, the control register has an address of 0EH. In the
DS1337 control register, the bits control the function of the SQW/INTB and
INTA pins. Figure 9-22 shows the simplified diagram for SQW/INTB pin.

Figure 9-22: Simplified Structure of SQW/INTB Pin
The SQW/INTB pin can be used as a square wave generator or an interrupt
generator. When the INTCN bit of control register is 0, the pin works as a
square wave generator. Using the RS2 and RS1 bits, the frequency of the
generated wave is chosen. RS2-RS1 (rate select) bits select the output
frequency of the generated wave according to Table 9-8.

RS2 RS1 Output Frequency
0 0 1 Hz
0 1 4.096 kHz
1 0 8.192 kHz
1 1 32.768 kHz

Table 9-8: RS bits
When INTCN = 1, the SQW/INTB works as an interrupt generator.
Locations 0BH-0DH of DS1337 memory are related to AlArm 2. The
contents of the AlArm 2 registers are compared with the values current time
and date (locations 00H-06H). When the current date and time matches the
alArm 2 values, the A2F flag of the status register (location 0FH) goes high.
If the A2IE (AlArm2 Interrupt Enable) bit of the control register is set, the

INTB becomes 0. The pin remains 0 until the A2F flag is cleared by
software. To clear the A2F flag, write a 0 to it.

It can make an interrupt every minute, hour, day, or date. The bit 7 of alArm
registers are mask registers. If it is 0, the value of the register is compared
with the timekeeping registers; otherwise, it is masked. Table 9-9 shows how
to make interrupts every minute, hour, day, or date.

DY/DT A2M4 A2M3 A2M2 AlArm Rate
X 1 1 1 AlArm once per minute X 1 1 0 AlArm when minutes match X 1 0 0
AlArm when hours and minutes match 0 0 0 0 AlArm when date, hours, and
minutes match 1 0 0 0 AlArm when day, hours, and minutes match

Table 9-9: AlArm 2 Register Mask Bits
The bit 7 of the control register is EOSC (Enable Oscillator) bit. This bit is
active low. If it is 0, the oscillator works. By default, the oscillator is
powered-up active.
Register pointer

In DS1337, there is a register pointer that specifies the byte that will be
accessed in the next read or write command. The first read or write operation
sets the value of the pointer. After each read or write operation, the content
of the register pointer is automatically incremented to point to the next
location. This is useful in multi-byte read or write. When it points to location
0x0F, in the next read/write it rolls over to 0.

Writing to DS1337
To set the value of the register pointer and write one or more bytes of data to
DS1337, you can
use the following steps:

1. To access the DS1337 for a write operation, after sending a START
condition, you should transmit the address of DS1337 (1101 000) followed
by 0 to indicate a write operation.

2. The first byte of data in the write operation will set the register pointer.
For example, if you want to write to the control register you should send
0x07.

3. Check the acknowledgement bit to be sure that DS1337 responded.
4. If you want to write one or more bytes of data, you should transmit them
one byte at a time and check the acknowledgement bit at the end of each
byte sent. Remember that the register pointer is automatically incremented
and you can simply transmit bytes of data to consecutive locations in a
multi-byte burst write.
5. Transmit a STOP bit condition.
Reading from DS1337
Notice that before reading a byte, you should load the address of the byte to
the register pointer by doing a write operation as mentioned before.

To read one or more bytes of data from the DS1337 you should do the
following steps:

1. To access the DS1337 for a read operation, you need to set the register
pointer first. After sending a START condition, you should transmit the
address of DS1337 (1101 000) followed by 0 to indicate a write operation
(writing the register pointer).

2. Check the acknowledgement bit to be sure that DS1337 responded.
3. The byte of data in the write operation will set the register pointer. For
example, if you want to read from the control register you should send 0x07.
Check the acknowledgement bit to be sure that DS1337 responded.
4. Now you need to change the bus direction from transmit to receive. Send
a RESTART condition (a Repeated START), then transmit the address of
DS1337 (1101 000) followed by 1 to indicate a read operation. Check the
acknowledgement bit to be sure that DS1337 responded.
5. You can read one or more bytes of data. Remember that the register
pointer inside the DS1337 indicates which location will be read. The register
pointer is automatically incremented and you can receive consecutive bytes
of data in a multi-byte burst read. After each byte of data is read, the master
should reply with an ACK (keep the ACK bit in I2C_CR1 register set). After
the last byte of data is read, a NACK should be sent to let the DS1337 know
the transaction is over.
6. Transmit a STOP bit condition.

Setting the Square Wave Output of DS1337

Program 9-1 initializes the square wave output pin (SQW) with 1Hz using
single-byte write operation. SQW pin is open-drain and needs a pull-up
resistor. You may connect an LED to it. The pin is rated at 5.5V and 3mA.

The program generates a START condition then sends the slave address and
write flag. Following that, the address of the control register (0x0E) and the
byte with control bits are sent. The transaction is terminated with a STOP
condition.

Program 9-1: I2C single byte write
/* P9_1.c - I2C byte write to a DS1337
*
* This program initializes the I2C and sends a
* command to the DS1337 to turn on the 1 Hz output.
* 1 Hz output is an open-drain output. It needs a pull-up * to
observe the signal.
* No errors or acknowledgement are checked.
*
* The connections
* I2C1_SCL - PB08
* I2C1_SDA - PB09
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define SLAVE_ADDR 0x68 /* 1101 000. DS1337 */
void delayMs(int n);
void I2C1_init(void);
int I2C1_byteWrite(char saddr, char maddr, char data);
int main(void) {
I2C1_init();
I2C1_byteWrite(SLAVE_ADDR, 0x0E, 0);

while(1) {
}

}

void I2C1_init(void) {
RCC->AHB1ENR |= 2; /* Enable GPIOB clock */ RCC->APB1ENR |=
0x00200000; /* Enable I2C1 clock */

/* configure PB8, PB9 pins for I2C1 */
GPIOB->AFR[1] &= ~0x000000FF; /* PB8, PB9 I2C1 SCL, SDA */ GPIOB-
>AFR[1] |= 0x00000044;
GPIOB->MODER &= ~0x000F0000; /* PB8, PB9 use alternate function */

GPIOB->MODER |= 0x000A0000;
GPIOB->OTYPER |= 0x00000300; /* output open-drain */ GPIOB->PUPDR &=
~0x000F0000; /* with pull-ups */
GPIOB->PUPDR |= 0x00050000;
/* this funtion writes a byte of data to the memory location maddr
of

I2C1->CR1 = 0x8000; /* software reset I2C1 */ I2C1->CR1 &= ~0x8000;
/* out of reset */ I2C1->CR2 = 0x0010; /* peripheral clock is 16 MHz
/ I2C1->CCR = 80; / standard mode, 100kHz clock */ I2C1->TRISE =
17; /* maximum rise time */ I2C1->CR1 |= 0x0001; /* enable I2C1
module */

}

* a device with I2C slave device address saddr.
* For simplicity, no error checking or error report is done. */

int I2C1_byteWrite(char saddr, char maddr, char data) {
volatile int tmp;
while (I2C1->SR2 & 2); /* wait until bus not busy */
I2C1->CR1 |= 0x100; /* generate start */ while (!(I2C1->SR1 & 1));
/* wait until start flag is set */

I2C1->DR = saddr << 1; /* transmit slave address */ while (!(I2C1-
>SR1 & 2)); /* wait until addr flag is set */ tmp = I2C1->SR2; /*
clear addr flag */

while (!(I2C1->SR1 & 0x80)); /* wait until data register empty */
I2C1->DR = maddr; /* send memory address */
while (!(I2C1->SR1 & 0x80)); /* wait until data register empty */
I2C1->DR = data; /* transmit data */
while (!(I2C1->SR1 & 4)); /* wait until transfer finished */ I2C1-
>CR1 |= 0x200; /* generate stop */
return 0;
}

Reading the Second Counter of DS1337
Program 9-2 reads the second counter of the DS1337 using single byte read
and write the least
significant bit to the onboard LED. The LED should toggle every second.

After sending the slave address, the address of the second counter (0x00)
with the write bit is sent then a RESTART with the same slave address with
a read bit is send to change the bus direction to read from the slave. A
NACK and a STOP condition are sent at the end of the transaction.

Program 9-2: I2C single byte read

/* P9_2.c - I2C byte read from a DS1337
*
* This program initializes the I2C and continuously reads * the
register 0 of the DS1337.
* Register 0 contains the second count. The clock is powered-up *
enabled and the second count is incrementing. The bit 0 is * used to
turn on and off the LED of the Nucleo board. The LED * should blink
every second.
* No errors or acknowledgement are checked.
*
* The connections
* I2C1_SCL - PB08
* I2C1_SDA - PB09
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define SLAVE_ADDR 0x68 /* 1101 000. DS1337 */
void delayMs(int n);

void I2C1_init(void);
int I2C1_byteRead(char saddr, char maddr, char* data); void
delayMs(int n);

int main(void) {
char data;
I2C1_init();

/* configure PA5 for the green LED (LD2) */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

while (1) {
I2C1_byteRead(SLAVE_ADDR, 0, &data);
if (data & 1)

GPIOA->ODR |= 0x00000020; /* turn on LED */ else
GPIOA->ODR &= ~0x00000020; /* turn off LED */

delayMs(10); }
}

void I2C1_init(void) {
RCC->AHB1ENR |= 2; /* Enable GPIOB clock */ RCC->APB1ENR |=
0x00200000; /* Enable I2C1 clock */

/* configure PB8, PB9 pins for I2C1 */
GPIOB->AFR[1] &= ~0x000000FF; /* PB8, PB9 I2C1 SCL, SDA */ GPIOB-
>AFR[1] |= 0x00000044;
GPIOB->MODER &= ~0x000F0000; /* PB8, PB9 use alternate function */

GPIOB->MODER |= 0x000A0000;
GPIOB->OTYPER |= 0x00000300; /* output open-drain */ GPIOB->PUPDR &=
~0x000F0000; /* with pull-ups */
GPIOB->PUPDR |= 0x00050000;

I2C1->CR1 = 0x8000; /* software reset I2C1 */ I2C1->CR1 &= ~0x8000;
/* out of reset */ I2C1->CR2 = 0x0010; /* peripheral clock is 16 MHz
/ I2C1->CCR = 80; / standard mode, 100kHz clock */ I2C1->TRISE =
17; /* maximum rise time */ I2C1->CR1 |= 0x0001; /* enable I2C1
module */

}

/* this funtion reads a byte of data from the memory location *
maddr of a device with I2C slave device address saddr. * For
simplicity, no error checking or error report is done. */

int I2C1_byteRead(char saddr, char maddr, char* data) {

volatile int tmp;
while (I2C1->SR2 & 2); /* wait until bus not busy */
I2C1->CR1 |= 0x100; /* generate start */ while (!(I2C1->SR1 & 1));
/* wait until start flag is set */

I2C1->DR = saddr << 1; /* transmit slave address + Write */ while (!
(I2C1->SR1 & 2)); /* wait until addr flag is set */ tmp = I2C1->SR2;
/* clear addr flag */

while (!(I2C1->SR1 & 0x80)); /* wait until data register empty */
I2C1->DR = maddr; /* send memory address */
while (!(I2C1->SR1 & 0x80)); /* wait until data register empty */

I2C1->CR1 |= 0x100; /* generate restart */ while (!(I2C1->SR1 & 1));
/* wait until start flag is set */ I2C1->DR = saddr << 1 | 1; /*
transmit slave address + Read */

while (!(I2C1->SR1 & 2)); /* wait until addr flag is set */ I2C1-
>CR1 &= ~0x400; /* Disable Acknowledge */ tmp = I2C1->SR2; /* clear
addr flag */

I2C1->CR1 |= 0x200; /* generate stop after data received */
while (!(I2C1->SR1 & 0x40)); /* Wait until RXNE flag is set */
data++ = I2C1->DR; / Read data from DR */
return 0; }

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Setting the date/time of DS1337 using burst write

Program 9-3 shows how to setup the DS1337 RTC chip. It uses multi-byte
burst mode for writing the time, day (of the week), date, month, and year,
which occupy the first seven registers of the device. The program first set the
register address to 0 and writes the first register. The register address pointer
automatically incremented to point to the next register and the subsequent
write goes to the next register. A STOP condition is generated after the last
byte of data is transmitted. For simplicity, this code does not check for error
conditions nor the acknowledgment.

Program 9-3: Setting the date/time/year of DS1337 using burst write
/* P9_3.c - I2C burst write to a DS1337
*
* This program initializes the I2C and write the * initialization
data to a DS1337.

* No errors or acknowledgement are checked.
*
* The connections
* I2C1_SCL - PB08
* I2C1_SDA - PB09
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define SLAVE_ADDR 0x68 /* 1101 000. DS1337 */
void delayMs(int n);
void I2C1_init(void);
void I2C1_burstWrite(char saddr, char maddr, int n, char* data);

int main(void) {
/* 00 01 02 03 04 05 06 */ char timeDateToSet[15] = {0x55, 0x58,
0x10, 0x03, 0x26, 0x09, 0x17, 0}; /* 2017 September 26, Tuesday,
10:58:55 */ I2C1_init();
I2C1_burstWrite(SLAVE_ADDR, 0, 7, timeDateToSet);

while (1) { }
}

void I2C1_init(void) {
RCC->AHB1ENR |= 2; /* Enable GPIOB clock */ RCC->APB1ENR |=
0x00200000; /* Enable I2C1 clock */

/* configure PB8, PB9 pins for I2C1 */
GPIOB->AFR[1] &= ~0x000000FF; /* PB8, PB9 I2C1 SCL, SDA */ GPIOB-
>AFR[1] |= 0x00000044;
GPIOB->MODER &= ~0x000F0000; /* PB8, PB9 use alternate function */

GPIOB->MODER |= 0x000A0000;
GPIOB->OTYPER |= 0x00000300; /* output open-drain */ GPIOB->PUPDR &=
~0x000F0000; /* with pull-ups */
GPIOB->PUPDR |= 0x00050000;

I2C1->CR1 = 0x8000; /* software reset I2C1 */ I2C1->CR1 &= ~0x8000;
/* out of reset */ I2C1->CR2 = 0x0010; /* peripheral clock is 16 MHz
/ I2C1->CCR = 80; / standard mode, 100kHz clock */ I2C1->TRISE =
17; /* maximum rise time */ I2C1->CR1 |= 0x0001; /* enable I2C1
module */

}
while (I2C1->SR2 & 2); /* wait until bus not busy */ I2C1->CR1 &=
~0x800; /* disable POS */
I2C1->CR1 |= 0x100; /* generate start */
while (!(I2C1->SR1 & 1)); /* wait until start flag is set */ I2C1-
>DR = saddr << 1; /* transmit slave address */ while (!(I2C1->SR1 &
2)); /* wait until addr flag is set */ tmp = I2C1->SR2; /* clear
addr flag */ while (!(I2C1->SR1 & 0x80)); /* wait until data
register empty */ I2C1->DR = maddr; /* send memory address */

/* this funtion writes multiple bytes of data to the memory location
maddr of * a device with I2C slave device address saddr.
* For simplicity, no error checking or error report is done.
*/

void I2C1_burstWrite(char saddr, char maddr, int n, char* data) {
int i;
volatile int tmp;

/* write all the data */
for (i = 0; i < n; i++) {
while (!(I2C1->SR1 & 0x80)); /* wait until data register empty */
I2C1->DR = *data++; /* transmit memory address */ }

while (!(I2C1->SR1 & 4)); /* wait until transfer finished */ I2C1-
>CR1 |= 0x200; /* generate stop */ }

Reading the date/time of DS1337 using burst read

Program 9-4 shows how to read the date, time and year from DS1337 using
multi-byte burst mode for reading. As you can see in the program, the
register pointer is set to 0 and then you can use multi-byte burst read to read
the values of the second, minute, hour, day, date, month and year in the
consecutive locations. After the reception of the last byte, a NACK and a
STOP condition is sent at the end. For simplicity, this code does not check
for error conditions nor acknowledgment.

Program 9-4: Reading date/time/year of DS1337 using burst read
/* P9_4.c - I2C burst read from a DS1337
*
* This program initializes the I2C and continuously
* reads all the time registers of the DS1337 using burst reads. *
Register 0 contains the second count. The clock is powered-up *
enabled and the second count is incrementing. The bit 0 is * used to
turn on and off the LED of the Nucleo board. The LED * should blink
every second.
* No errors or acknowledgement are checked.
*
* The connections
* I2C1_SCL - PB08
* I2C1_SDA - PB09
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
#define SLAVE_ADDR 0x68 /* 1101 000. DS1337 */

void delayMs(int n); int main(void) {

void I2C1_init(void);
void I2C1_burstRead(char saddr, char maddr, int n, char* data); void
delayMs(int n);

char timeDateReadback[15];
I2C1_init();

/* configure PA5 for the green LED (LD2) */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=
~0x00000C00; /* clear pin mode */ GPIOA->MODER |= 0x00000400; /* set
pin to output mode */

while (1) {
I2C1_burstRead(SLAVE_ADDR, 0, 7, timeDateReadback); if
(timeDateReadback[0] & 1)

GPIOA->ODR |= 0x00000020; /* turn on LED */ else
GPIOA->ODR &= ~0x00000020; /* turn off LED */

delayMs(10); }
}

void I2C1_init(void) {
RCC->AHB1ENR |= 2; /* Enable GPIOB clock */ RCC->APB1ENR |=
0x00200000; /* Enable I2C1 clock */

/* configure PB8, PB9 pins for I2C1 */
GPIOB->AFR[1] &= ~0x000000FF; /* PB8, PB9 I2C1 SCL, SDA */ GPIOB-

>AFR[1] |= 0x00000044;
GPIOB->MODER &= ~0x000F0000; /* PB8, PB9 use alternate function */
GPIOB->MODER |= 0x000A0000;
GPIOB->OTYPER |= 0x00000300; /* output open-drain */ GPIOB->PUPDR &=
~0x000F0000; /* with pull-ups */
GPIOB->PUPDR |= 0x00050000;

I2C1->CR1 = 0x8000; /* software reset I2C1 */ I2C1->CR1 &= ~0x8000;
/* out of reset */ I2C1->CR2 = 0x0010; /* peripheral clock is 16 MHz
/ I2C1->CCR = 80; / standard mode, 100kHz clock */ I2C1->TRISE =
17; /* maximum rise time */ I2C1->CR1 |= 0x0001; /* enable I2C1
module */

}

/* this funtion reads multiple bytes of data from the memory
location * maddr of a device with I2C slave device address saddr. *
For simplicity, no error checking or error report is done. */

void I2C1_burstRead(char saddr, char maddr, int n, char* data) {
volatile int tmp;
tmp = I2C1->SR2; /* clear addr flag */ while (!(I2C1->SR1 & 0x80));
/* wait until transmitter empty */ I2C1->DR = maddr; /* send memory
address */ while (!(I2C1->SR1 & 0x80)); /* wait until transmitter
empty */

while (I2C1->SR2 & 2); /* wait until bus not busy */ I2C1->CR1 &=
~0x800; /* disable POS */
I2C1->CR1 |= 0x100; /* generate start */
while (!(I2C1->SR1 & 1)); /* wait until start flag is set */ I2C1-
>DR = saddr << 1; /* transmit slave address + Write */ while (!
(I2C1->SR1 & 2)); /* wait until addr flag is set */

I2C1->CR1 |= 0x100; /* generate restart */ while (!(I2C1->SR1 & 1));
/* wait until start flag is set */ I2C1->DR = saddr << 1 | 1; /*
transmit slave address + Read */ while (!(I2C1->SR1 & 2)); /* wait
until addr flag is set */ tmp = I2C1->SR2; /* clear addr flag */
I2C1->CR1 |= 0x0400; /* Enable Acknowledge */

while(n > 0U) {
/* One byte left */ if(n == 1U)
{
I2C1->CR1 &= ~(0x400); /* Disable Acknowledge */ I2C1->CR1 |= 0x200;
/* Generate Stop */ while (!(I2C1->SR1 & 0x40)); /* Wait for RXNE
flag set */ *data++ = I2C1->DR; /* Read data from DR */ break;
}
else
{
while (!(I2C1->SR1 & 0x40)); /* Wait until RXNE flag is set */
(*data++) = I2C1->DR; /* Read data from DR */ n--;
}
}

}
/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ;
}

Review Questions
1. How many bytes in the DS1337 are set aside for the time, date, and year?
(a) 7 bytes
(b) 8 bytes
(c) 56 bytes
(d) 64 bytes

2. True or false. The DS1337 has a single pin for data.
3. Which pin of the DS1337 is used for clock in I2C connection?
4. True or false. The value of the EOSC (enable oscillator) bit is zero at
power-up time.
5. What is the address location for the control register?
(a) 0x07
(b) 0x08
(c) 0x56
(d) 0x64

Answers to Review Questions

Section 9-1
1. True
2. 9, the 9th bit is for acknowledge
3. False, START and STOP conditions are generated when the SCL is high.
4. Clock stretching.
5. False, the master who won the arbitration will continue. Section 9-2 1.
2.
3.
4.

5.

Section 9-3 1. (a) 2. True 3. SCL 4. False 5. (a) False
False
True
START and STOP bits of CR1 register. When the I2C module successfully
generates a start condition, it becomes the bus master. When the I2C module
generates a stop condition, it falls back to be a bus slave.
I2C_CR2 and I2C_CCR

Chapter 10: Relay, Optoisolator, and Stepper Motor Interfacing

Microcontrollers are widely used in motor control. We also use relays and
optoisolators in motor control. This chapter discusses motor control and
shows Arm interfacing with relays, optoisolators, and stepper motors.

Section 10.1: Relays and Optoisolators

This section begins with an overview of the basic operations of
electromechanical relays, solidstate relays, reed switches, and optoisolators.
Then we describe how to interface them to the Arm. We use the C language
programs to demonstrate their control.

Electromechanical relays

A relay is an electrically controllable switch widely used in industrial
controls, automobiles, and appliances. It allows the isolation of two separate
sections of a system with two different voltage sources. For example, a +5 V
system can be isolated from a 120 V system by placing a relay between
them. One such relay is called an electromechanical (or electromagnetic)
relay (EMR) as shown in Figure 10-1. The EMRs have three components:
the coil, spring, and contacts.

Figure 10-1: Relay Diagrams

In Figure 10-1, a digital +5 V on the left side can control a 12 V motor on
the right side without any physical contact between them. When current
flows through the coil, a magnetic field is created around the coil (the coil is
energized), which causes the Armature to be attracted to the coil. The
Armature's contact acts like a switch and closes or opens the circuit. When
the coil is not energized, a spring pulls the Armature to its normal state of
open or closed. In the block diagram for electromechanical relays (EMR) we
do not show the spring, but it does exist internally. There are all types of
relays for all kinds of applications. In choosing a relay the following
characteristics need to be considered:

1. The contacts can be normally open (NO) or normally closed (NC). In the
NC type, the contacts are closed when the coil is not energized. In the NO
type, the contacts are open when the coil is unenergized.

2. There can be one or more contacts. For example, we can have SPST
(single pole, single throw), SPDT (single pole, double throw), and DPDT
(double pole, double throw) relays.
3. The voltage and current needed to energize the coil. The voltage can vary
from a few volts to 50 volts, while the current can be from a few mA to 20
mA. The relay has a minimum voltage, below which the coil will not be
energized. This minimum voltage is called the “pull-in” voltage. In the
datasheets for relays we might not see current, but rather coil resistance. The
V/R will give you the pull-in current. For example, if the coil voltage is 5 V,
and the coil resistance is 500 ohms, we need a minimum of 10 mA (5 V/500
ohms = 10 mA) pull-in current.
4. The maximum DC/AC voltage and current that can be handled by the
contacts. This is in the range of a few volts to hundreds of volts, while the
current can be from a few amps to 40 A or more, depending on the relay.
Notice the difference between this voltage/current specification and the
voltage/current needed for energizing the coil. The fact that one can use such
a small amount of voltage/current on one side to handle a large amount of
voltage/current on the other side is what makes relays so widely
characteristics.
Part No. Contact Form

used in industrial controls. Examine Table 10-1 for some relay
Coil Volts Coil Ohms Contact Volts Current
106462CP SPST-NO 5 VDC 500 100 VDC 0.5 A
138430CP SPST-NO 5 VDC 500 100 VDC 0.5 A
106471CP SPST-NO 12 VDC 1000 100 VDC 0.5 A
138448CP SPST-NO 12 VDC 1000 100 VDC 0.5 A
129875CP DPDT 5 VDC 62.5 30 VDC 1 A
Table 10-1: Selected DIP Relay Characteristics (www.Jameco.com) Driving a relay

Digital systems and microcontroller pins lack sufficient current to drive the
relay. While the relay’s coil needs around 10 mA to be energized, the
microcontroller's pin can provide a maximum of 8 mA current. For this
reason, we place a driver, such as the ULN2803, or a transistor between the
microcontroller and the relay as shown in Figure 10-2. In the circuit, we can
turn the lamp on and off by setting and clearing the PA10.

Figure 10-2: Arm
Connection to Relay
Program 10-1 turns the lamp shown in Figure 10-2 on and off by energizing
and de-energizing the relay every second.

Program 10-1 Turning relay on and off
/* p10_1.c Relay control

*

* This program turns the relay connected to PA5 on and off every

second. *

* This program was tested with Keil uVision v5.23 with DFP v2.11.0.

*/

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0x00000C00; /* clear pin mode */
GPIOA->MODER |= 0x00000400; /* set pin to output mode */

while(1) {
GPIOA->BSRR = 0x00000020; /* turn on output */
delayMs(500);
GPIOA->BSRR = 0x00200000; /* turn off output */
delayMs(500);

}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)

for (i = 0; i < 3195; i++) ;
}

Solid-state relay
Another widely used relay is the solid-state relay. See Table 10-2.
Part No. Contact Style Control Volts Contact Volts Contact Current
143058CP SPST 4-32 VDC 240 VAC 3 A
139053CP SPST 3-32 VDC 240 VAC 25 A
162341CP SPST 3-32 VDC 240 VAC 10 A
172591CP SPST 3-32 VDC 60 VAC 2 A
175222CP SPST 3-32 VDC 60 VAC 4 A
176647CP SPST 3-32 VDC 120 VAC 5 A

Table 10-2: Selected Solid-State Relay Characteristics (www.Jameco.com)
In this relay, there is no coil, spring, or mechanical contact switch. The entire
relay is made out of semiconductor materials. Because no mechanical parts
are involved in solid-state relays, their switching response time is much
faster than that of electromechanical relays. Another advantage of the solid-
state relay is its greater life expectancy. The life cycle for the
electromechanical relay can vary from a few hundred thousand to a few
million operations. Wear and tear on the contact points can cause the relay to
malfunction after a while. Solid-state relays, however, have no such
limitations. Extremely low input current and small packaging make solid-
state relays ideal for microcontroller and logic control switching. They are
widely used in controlling pumps, solenoids, alArms, and other power
applications. Some solidstate relays have a phase control option, which is
ideal for motor-speed control and light-dimming applications. Figure 10-3
shows control of a fan using a solid-state relay (SSR).

Figure 10-3: Arm Connection to a Solid-State Relay
Reed switch

Another popular switch is the reed switch. When the reed switch is placed in
a magnetic field, the contact is closed. When the magnetic field is removed,
the contact is forced open by its spring. See Figure 10-4. The reed switch is
ideal for moist and marine environments where it can be submerged in fuel
or water. Reed switches are also widely used in dirty and dusty atmospheres
because they are tightly sealed.

Figure 10-4: Reed Switch and Magnet Combination
Optoisolator

In some applications, we use an optoisolator (also called optocoupler) to
isolate two parts of a system. An example is driving a motor. Motors can
produce what is called back EMF, a high-voltage spike produced by a
sudden change of current as indicated in the formula V = Ldi/dt. In
situations such as printed circuit board design, we can reduce the effect of
this unwanted voltage spike (called ground bounce) by using decoupling
capacitors (see Appendix A). In systems that have inductors (coil winding),
such as motors, a decoupling capacitor or a diode will not do the job. In such
cases we use optoisolators. An optoisolator has an LED (light-emitting
diode) transmitter and a photosensor receiver, separated from each other by a
gap. When current flows through the diode, it transmits a signal light across
the gap and the receiver produces the same signal with the same phase but a
different current and amplitude. See Figure 10-5. Optoisolators are also

widely used in communication equipment such as modems. This device
allows a computer to be connected to a telephone line without risk of
damage from high voltage of telephone line. The gap between the transmitter
and receiver of optoisolators prevents the electrical voltage surge from
reaching the system.

Figure 10-5: Optoisolator Package Examples
Interfacing an optoisolator

The optoisolator comes in a small IC package with four or more pins. There
are also packages that contain more than one optoisolator. When placing an
optoisolator between two circuits, we must use two separate voltage sources,
one for each side, as shown in Figure 10-6. Unlike relays, no drivers need to
be placed between the microcontroller/digital output and the optoisolators.

Figure 10-6:
Controlling a Lamp via an Optoisolator
Review Questions

1. Give one application where would you use a relay.
2. Why do we place a driver between the microcontroller and the relay?
3. What is an NC relay?
4. Why are relays that use coils called electromechanical relays?
5. What is the advantage of a solid-state relay over EMR?
6. What is the advantage of an optoisolator over an EMR?

Section 10.2: Stepper Motor Interfacing

This section begins with an overview of the basic operation of stepper
motors. Then we describe how to interface a stepper motor to the Arm.
Finally, we use C language programs to demonstrate control of the rotation
of stepper motor.

Stepper motors

A stepper motor is a widely used device that translates electrical pulses into
mechanical movement. In applications such as dot matrix printers and
robotics, the stepper motor is used for position control. Stepper motors
commonly have a permanent magnet rotor (also called the shaft) surrounded
by a stator (see Figure 10-7).

Figure 10-7: Rotor Alignment

There are also steppers called variable reluctance stepper motors that do not
have a permanent magnet rotor. The most common stepper motors have four
stator windings that are paired with a centertapped common as shown in
Figure 10-8.

Figure 10-8: Stator Winding Configuration
This type of stepper motor is commonly referred to as a four-phase or
unipolar stepper motor. The center tap allows a change of current direction
in each of two coils when a winding is grounded, thereby resulting in a
polarity change of the stator. Notice that while a conventional motor shaft
runs freely, the stepper motor shaft moves in a fixed repeatable increment,
which allows it to move to a precise position. This repeatable fixed
movement is possible as a result of basic magnetic theory where poles of the
same polarity repel and opposite poles attract. The direction of the rotation is
dictated by the stator poles. The stator poles are determined by the current
sent through the wire coils. As the direction of the current is changed, the
polarity is also changed causing the reverse motion of the rotor. The stepper
motor discussed here has a total of six leads: four leads representing the four
stator windings and two commons for the center-tapped leads. As the
sequence of power is applied to each stator winding, the rotor will rotate.
There are several widely used sequences, each of which has a different
degree of precision. Table 10-3 shows a two-phase, four-step stepping
sequence.

Step # Winding A Winding B Winding C Winding D
Clockwise 1 1 0 0 1
Counter Clockwise

2 1 1
3 0 1
4 0 0 0 0
1 0

1 1

Table 10-3: Normal Four-Step Sequence Note that although we can start with any of
the sequences in Table 10-3, once we start we must continue in the proper
order. For example, if we start with step 3 (0110), we must continue in the
sequence of steps 4, 1, 2, and so on.

Step angle

How much movement is associated with a single step? This depends on the
internal construction of the motor, in particular, the number of teeth on the
stator and the rotor. The step angle is the minimum degree of rotation
associated with a single step. Various motors have different step angles.
Table 10-4 shows some step angles for various motors. In Table 10-4, notice
the term steps per revolution. This is the total number of steps needed to
rotate one complete rotation or 360 degrees (e.g., 180 steps × 2 degrees =
360).

Step Angle Step per Revolution
0.72 500
1.8 200
2.0 180
2.5 144
5.0 72
7.5 48
15 24

Table 10-4: Stepper Motor Step Angles
It must be noted that perhaps contrary to one's initial impression, a stepper
motor does not need more terminal leads for the stator to achieve smaller
steps. All the stepper motors discussed in this section have four leads for the
stator winding and two COM wires for the center tap. Although some
manufacturers set aside only one lead for the common signal instead of two,
they always have four leads for the stators. See Example 10-1. Next, we
discuss some associated terminology in order to understand the stepper
motor further.

Example 10-1
Describe the Arm connection to the stepper motor of Figure 10-9 and code a
program to rotate it continuously.

Solution:
The following steps show the Arm connection to the stepper motor and its
programming:

1. Use an ohmmeter to measure the resistance of the leads. This should
identify which COM leads are connected to which winding leads.
2. The common wire(s) are connected to the positive side of the motor's
power supply. In many motors, +5 V is sufficient.
3. The four leads of the stator winding are controlled by four bits of the Arm
port (PB0–PB3). Because the microcontroller lacks sufficient current to
drive the stepper motor windings, we must use a driver such as the
ULN2003 (or ULN2803) to energize the stator. Instead of the ULN2003, we
could have used transistors as drivers, as shown in Figure 10-11. However,
notice that if transistors are used as drivers, we must also use diodes to take
care of inductive current generated when the coil is turned off. One reason
that using the ULN2003 is preferable to the use of transistors as drivers is
that the ULN2003 has an internal diode to take care of back EMF.

Figure 10-9: Arm Connection to Stepper Motor

Steps per second and RPM relation
The relation between RPM (revolutions per minute), steps per revolution,

and steps per second
is as follows.

�������� ������ ������������ =
������ × ���������� ������
��������������������
60
The 4-step sequence and number of teeth on rotor

The switching sequence shown earlier in Table 10-3 is called the 4-step
switching sequence because after four steps the same two windings will be
"ON". How much movement is associated with these four steps? Therefore,
in a stepper motor with 200 steps per revolution, the rotor has 50 teeth
because 4 × 50 = 200 steps are needed to complete one revolution. This
leads to the conclusion that the minimum step angle is always a function of
the number of teeth on the rotor. In other words, the smaller the step angle,
the more teeth the rotor has. See Example 10-2.

Example 10-2
Give the number of times the four-step sequence in Table 10-3 must be
applied to a stepper motor to make an 80-degree move if the motor has a 2-
degree step angle.

Solution:
A motor with a 2-degree step angle has the following characteristics:
Step angle: 2 degrees
Steps per revolution: 180
Number of rotor teeth: 45
Movement per 4-step sequence: 8 degrees
To move the rotor 80 degrees, we need to send 10 consecutive 4-step
sequences, because 10 × 4 steps × 2 degrees = 80 degrees.

Looking at Example 10-2, one might wonder what happens if we want to
move 45 degrees because the steps are 2 degrees each. To provide finer
resolutions, all stepper motors allow what is called an 8-step switching
sequence. The 8-step sequence is also called half-stepping because in the 8-
step sequence each step is half of the normal step angle. For example, a

motor with a 2-degree step angle can be used as a 1-degree step angle if the
sequence of Table 10-5 is applied.

Step # Winding A Winding B Winding C Winding D
Clockwise 1 1 0 0 1
Counter Clockwise
2 1 0 0 0
3 1 1 0 0

4
5
6
7
8 0 1 0 0
0 1 1 0
0 0 1 0

0 0 1 1
0 0 0 1
Table 10-5: Half-Step 8-Step Sequence

Motor speed The motor speed, measured in steps per second (steps/s), is a
function of the switching rate.
Notice in Example 10-1 that by changing the length of the time delay loop,
we can achieve various rotation
speeds.

Holding torque

The following is a definition of holding torque: “With the motor shaft at
standstill or zero rpm condition, the amount of torque, from an external
source, required to break away the shaft from its holding position. This is
measured with rated voltage and current applied to the motor.” The unit of
torque is ounce-inch (or kg-cm).

Wave drive 4-step sequence
In addition to the 8-step and the 4-step sequences discussed earlier, there is

another sequence
called the wave drive 4-step sequence. It is shown in Table 10-6.

Step # Winding A Winding B Winding C Winding D
Clockwise 1 1 0 0 0
Counter Clockwise

2 0 1
3 0 0
4 0 0 0 0
1 0
0 1

Table 10-6: Wave Drive 4-Step Sequence Notice that the 8-step sequence of Table 10-
5 is simply the combination of the wave drive 4-step and normal 4-step
normal sequences shown in Tables 10-6 and 10-3, respectively.
Experimenting with the wave drive 4-step sequence is left to the reader.

Unipolar versus bipolar stepper motor interface

There are three common types of stepper motor interfacing: universal,
unipolar, and bipolar. They can be identified by the number of connections
to the motor. A universal stepper motor has eight, while the unipolar has six
and the bipolar has four. The universal stepper motor can be configured for
all three modes, while the unipolar can be either unipolar or bipolar.
Obviously the bipolar cannot be configured for a universal nor unipolar
mode. Table 10-7 shows selected stepper motor characteristics.

Part No. Step Angle Drive System Volts Phase Current Resistance

151861CP 7.5 unipolar 5 V
171601CP 3.6 unipolar 7 V
164056CP 7.5 bipolar 5 V 9 ohms 550 mA 20 ohms 350 mA 6 ohms 800
mA

Table 10-7: Selected Stepper Motor Characteristics (www.Jameco.com)
Figure 10-10 shows the basic internal connections of all three types of
configurations.

Figure 10-10: Common Stepper Motor Types
Unipolar stepper motors can be controlled using the basic interfacing shown
in Figure 10-11, whereas the bipolar stepper requires H-Bridge circuitry.
Bipolar stepper motors require a higher operational current than the unipolar;
the advantage of this is a higher holding torque.

Figure
10-11: Using Transistors for Stepper Motor Driver
Using transistors as drivers

Figure 10-11 shows an interface to a unipolar stepper motor using
transistors. Diodes are used to reduce the back EMF spike created when the
coils are energized and de-energized, similar to the electromechanical relays
discussed earlier. TIP transistors can be used to supply higher current to the
motor. Table 10-8 lists the common industrial Darlington transistors. These
transistors can accommodate higher voltages and currents.

NPN PNP VCEO (volts) IC (amps) hfe (common) TIP110 TIP115 60 2
1000
TIP111 TIP116 80 2 1000
TIP112 TIP117 100 2 1000
TIP120 TIP125 60 5 1000
TIP121 TIP126 80 5 1000
TIP122 TIP127 100 5 1000
TIP140 TIP145 60 10 1000

TIP141 TIP146 80 10 1000
TIP142 TIP147 100 10 1000

Table 10-8: Darlington Transistor Listing
Controlling stepper motor via optoisolator

In the first section of this chapter, we examined the optoisolator and its use.
Optoisolators are widely used to isolate the stepper motor’s EMF voltage
and keep it from damaging the digital/microcontroller system. This is shown
in Figure 10-12.

Figure 10-12: Controlling Stepper Motor via Optoisolator
See Program 10-2.
Program 10-2: Controlling a stepper motor
/* p10_2.c Stepper motor control
*
* This program controls a unipolar stepper motor using PTA7, 6, 5,
4. *
* This program was tested with Keil uVision v5.23 with DFP v2.11.0.
*/

#include "stm32f4xx.h"

void delayMs(int n);
int main(void) {
const char steps[] = {0x90, 0x30, 0x60, 0xC0};
int i;

/* PTA7, 6, 5, 4 for motor control */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->MODER &=

~0x0000FF00; /* clear pin mode */ GPIOA->MODER |= 0x00005500; /* set
pins to output mode */

for (;;) {
GPIOA->ODR = steps[i++ & 3]; /* set the output pattern */
delayMs(100);

}
}
/* 16 MHz SYSCLK */
void delayMs(int n) {

int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ;
}

Review Questions
1. Give the 4-step sequence of a stepper motor if we start with 0110.
2. A stepper motor with a step angle of 5 degrees has ____ steps per
revolution.
3. Why do we put a driver between the microcontroller and the stepper
motor?

Answers to Review Questions

Section 10.1

1. With a relay we can use a 5 V digital system to control 12 V–120 V
devices such as horns and appliances.
2. Because microcontroller/digital outputs lack sufficient current to energize
the relay, we need a driver.
3. When the coil is not energized, the contact is closed.
4. When current flows through the coil, a magnetic field is created around
the coil, which causes the Armature to be attracted to the coil.
5. It is faster and needs less current to get energized.
6. It is smaller and can be connected to the microcontroller directly without a
driver. Section 10.2

1. 1100, 0110, 0011, 1001 for clockwise; and 1001, 0011, 0110, 1100 for
counterclockwise
2. 72

3. The microcontroller pins do not provide sufficient current to drive the
stepper motor.

Chapter 11: PWM and DC Motor Control

This chapter discusses the topic of PWM (pulse width modulation) and
shows Arm interfacing with DC motors. The characteristics of DC motors
are discussed along with their interfacing to the Arm. We use C
programming examples to create PWM pulses.

Section 11.1: DC Motor Interfacing and PWM

This section begins with an overview of the basic operation of the DC
motors. Then we describe how to interface a DC motor to the Arm. Finally,
we use C language programs to demonstrate the concept of pulse width
modulation (PWM) and show how to control the speed and direction of a
DC motor.

DC motors

A direct current (DC) motor is a widely used device that translates electrical
current into mechanical movement. In the DC motor, we have only + and –
leads. Connecting them to a DC voltage source moves the motor in one
direction. By reversing the polarity, the DC motor will rotate in the opposite
direction. One can easily experiment with the DC motor. While a stepper
motor moves in discrete steps of 1 to 15 degrees, the DC motor moves
continuously. In a stepper motor, if we know the starting position we can
easily count the number of steps the motor has moved and calculated the
final position of the motor. This is not possible in a DC motor. The
maximum speed of a DC motor is indicated in RPM and is given in the data
sheet. The DC motor has two types of RPM: no-load and loaded. The
manufacturer’s data sheet gives the no-load RPM. The no-load RPM can be
from a few thousand to tens of thousands. The RPM is reduced when
moving a load and it decreases as the load is increased. For example, a drill
turning a screw has a much lower RPM speed than when it is in the no-load
situation. DC motors also have voltage and current ratings. The nominal
voltage is the voltage for that motor under normal conditions and can be

from 1 to 150 V, depending on the motor. As we increase the voltage, the
RPM goes up. The current rating is the current consumption when the
nominal voltage is applied with no load and can be from 25 mA to a few
amps. As the load increases, the RPM is decreased, unless the current or
voltage provided to the motor is increased, which in turn increases the
torque. With a fixed voltage, as the load increases, the current (power)
consumption of a DC motor is increased. If we overload the motor it will
stall, and that can damage the motor due to the heat generated by high
current consumption.

Unidirectional control
Figure 11-1 shows the DC motor clockwise (CW) and counterclockwise
(CCW) rotations.

Figure 11-1: DC Motor
Rotation (Permanent Magnet Field)
See Table 11-1 for selected DC motors.

Part No. Nominal Volts Volt Range Current RPM Torque
154915CP 3 V 1.5–3 V 0.070 A 5,200 4.0 g-cm
154923CP 3 V 1.5–3 V 0.240 A 16,000 8.3 g-cm
177498CP 4.5 V 3–14 V 0.150 A 10,300 33.3 g-cm
181411CP 5 V 3–14 V 0.470 A 10,000 18.8 g-cm

Table 11-1: Selected DC Motor Characteristics (http://www.Jameco.com)
Bidirectional control

With the help of relays, transistor circuit or some specially designed chips
we can change the direction of the DC motor rotation. Figures 11-2 through
11-4 show the basic concepts of the H-Bridge control of DC motors.

Figure 11-2: H-Bridge Motor Configuration
Figure 11-2 shows the connection of an H-Bridge using simple switches. All
the switches are open, which does not allow the motor to turn.
Figure 11-3 shows the switch configuration for turning the motor in one
direction. When switches 1 and 4 are closed, current is allowed to pass
through the motor.

Figure 11-3: H-Bridge Motor Clockwise Configuration

Figure 11-4: H-Bridge Motor Counterclockwise Configuration
Figure 11-4 shows the switch configuration for turning the motor in the
opposite direction from the configuration of Figure 11-3. When switches 2
and 3 are closed, current is allowed to pass through the motor.

Figure 11-5 shows an invalid configuration. Current flows directly to
ground, creating a short circuit. The same effect occurs when switches 1 and
3 are closed or switches 2 and 4 are closed.

Figure 11-5: H-Bridge in an Invalid Configuration
Table 11-2 shows some of the logic configurations for the H-Bridge design.

Motor Operation SW1 SW2 SW3 SW4 Off Open Open Open Open
Clockwise Closed Open Open Closed Counterclockwise Open Closed
Closed Open Invalid Closed Closed Closed Closed

Table 11-2: Some H-Bridge Logic Configurations for Figure 11-2
H-Bridge control can be created using relays, transistors, or a single IC
solution such as the L298. When using relays and transistors, you must
ensure that invalid configurations do not occur.
Example 11-1 shows a simple program to operate a basic H-Bridge.

Example 11-1
A switch is connected to input pin PA15. Using relay H-Bridge in Table 11-2
and write the proper program to control the motor direction by the switch:

(a) If PA15 = 1, the DC motor moves clockwise.
(b) If PA15 = 0, the DC motor moves counterclockwise.

Solution 1 (Using SPST Relays):

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
/* PA15 for input */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0xC0000000; /* clear pin mode */
GPIOA->MODER &= ~0xC0000000; /* set pins to input mode */
GPIOA->PUPDR &= ~0x80000000; /* enable pull-up resistor of input pin
*/ GPIOA->PUPDR |= 0x40000000;

/* PB3, 2, 1, 0 for motor control output */
RCC->AHB1ENR |= 2; /* enable GPIOB clock */
GPIOB->MODER &= ~0x000000FF; /* clear pin mode */
GPIOB->MODER |= 0x00000055; /* set pins to output mode */

for (;;) {
if (GPIOA->IDR & 0x8000) { /* if PA15 is high */
GPIOB->BSRR = 0x000F0000; /* open all switches */
delayMs(100); /* wait 0.1 second */
GPIOB->BSRR = 0x00000009; /* close SW1 & SW4 */
while((GPIOA->IDR & 0x8000) != 0); /* wait till switch closes */

} else { /* if switch is closed */
GPIOB->BSRR = 0x000F0000; /* open all switches */
delayMs(100); /* wait 0.1 second */

GPIOB->BSRR = 0x00000006; /* close SW2 & SW3 */
while((GPIOA->IDR & 0x8000) == 0); /* wait till switch opens */

}
}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)

for (i = 0; i < 3195; i++) ; }
/* 16 MHz SYSCLK */
void delayMs(int n) {

Solution 2 (Using SPDT Relays):
The H-bridge can also be made using two SPDT relays as shown in the
following figure.

#include "stm32f4xx.h"
void delayMs(int n);

int main(void) {
/* PA15 for input */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER &= ~0xC0000000; /* clear pin mode */
GPIOA->MODER &= ~0xC0000000; /* set pins to input mode */
GPIOA->PUPDR &= ~0x80000000; /* enable pull-up resistor of input pin
*/ GPIOA->PUPDR |= 0x40000000;

/* PB3, 2, 1, 0 for motor control output */
RCC->AHB1ENR |= 2; /* enable GPIOB clock */
GPIOB->MODER &= ~0x0000000F; /* clear pin mode */
GPIOB->MODER |= 0x00000005; /* set pins to output mode */

for (;;) {
if (GPIOA->IDR & 0x8000) { /* if PA15 is high */
GPIOB->BSRR = 0x00030000; /* open all switches */
delayMs(100); /* wait 0.1 second */
GPIOB->BSRR = 0x00000001; /* close SW1 */
while((GPIOA->IDR & 0x8000) != 0); /* wait till switch closes */

} else { /* if switch is closed */
GPIOB->BSRR = 0x00030000; /* open all switches */
delayMs(100); /* wait 0.1 second */
GPIOB->BSRR = 0x00000002; /* close SW2 */
while((GPIOA->IDR & 0x8000) == 0); /* wait till switch opens */

}
}
}

int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Figure 11-6 shows the connection of the L298N to the microcontroller. Be
aware that the L298N will generate heat during operation. For a sustained
operation of the motor, use a heat sink.

Figure 11-
6: Bidirectional Motor Control Using an L298 Chip
Pulse width modulation (PWM)

The speed of the motor depends on three factors: (a) load, (b) voltage, and
(c) current. For a given fixed load we can maintain a steady speed by using a
method called pulse width modulation (PWM). By changing (modulating)
the width of the pulse applied to the DC motor we can increase or decrease

the amount of power provided to the motor, thereby increasing or decreasing
the motor speed. Notice that, although the voltage has a fixed amplitude, it
has a variable duty cycle. That means the wider the pulse, the higher the
speed. PWM is so widely used in DC motor control that many
microcontrollers come with an on-chip PWM circuitry. In such
microcontrollers, all we have to do is load the proper registers with the
values of the high and low portions of the desired pulse and the rest is taken
care of by the microcontroller. This allows the microcontroller to do other
things. For microcontrollers without on-chip PWM circuitry, we must create
the various duty cycle pulses using software, which prevents the
microcontroller from doing other things. The ability to control the speed of
the DC motor using PWM is one reason that DC motors are preferable over
AC motors. AC motor speed is dictated by the AC frequency of the voltage
applied to the motor and the frequency is generally fixed. As a result, we
cannot control the speed of the AC motor when the load is increased. As will
be shown later, we can also change the DC motor’s direction and torque. See
Figure 11-7 for PWM comparisons.

Figure 11-7:
Pulse Width Modulation Comparison
DC motor control with optoisolator

The optoisolator is indispensable in many motor control applications.
Figures 11-8 and 11-9 show the connections to a simple DC motor using a
bipolar and a MOSFET transistor. Notice that the microcontroller is
protected from EMI created by motor brushes by using an optoisolator and a
separate power supply.

Figure 11-8: DC Motor Connection Using a Darlington Transistor
Figures 11-8 and 11-9 show optoisolators for single directional motor control
and the same principle should be used for most motor applications.
Separating the power supplies of the motor and logic will reduce the
possibility of damage to the control circuit. Figure 11-8 shows the
connection of a bipolar transistor to a motor. Protection of the control circuit
is provided by the optoisolator. The motor and the microcontroller use
separate power supplies. The separation of power supplies also allows the
use of high-voltage motors. Notice that we use a decoupling capacitor across
the motor; this helps reduce the EMI created by the motor. The motor is
switched on by clearing bit PTD0.

Figure 11-9: DC Motor Connection Using a MOSFET Transistor
Figure 11-9 shows the connection of a MOSFET transistor. The optoisolator
protects the microcontroller from EMI. The Zener diode is required for the
transistor to reduce gate voltage below the rated maximum value.

Review Questions

1. True or false. The permanent magnet field DC motor has only two leads
for + and – voltages.
2. True or false. As with a stepper motor, one can control the exact angle of a
DC motor’s move.
3. Why do we put a driver between the microcontroller and the DC motor?
4. How do we change a DC motor’s rotation direction?
5. What is stall in a DC motor?
6. The RPM rating given for the DC motor is for __________ (no-load,
loaded).

Section 11.2: Programming PWM in STM Arm

Generate PWM with Timer

In STM Arm, the PWM (Pulse Width Modulation) is incorporated into the
Timers. We demonstrated the use of timers to generate waveform outputs
with fixed 50% duty cycle in Chapter 5. The Timer/Counters can operate as
PWM with various duty cycles. The PWM option is chosen by OCxM bits
of the TIMx_CCMRx register.

Figure 11-10: PWM Mode

The OCxM bits can be set as mode 1 (110) or mode 2 (111) for PWM. The
difference between these two options is the way the output starts as active or
inactive state. For the PWM, the frequency is these two options is the way
the output starts as active or inactive state. For the PWM, the frequency is bit
mode or 32-bit timers) register. See Figure 11-10.

In program 11-1, the channel 1 is configured as PWM mode. The output of
Ch1 is turned on when the counter starts counting from 0. When the counter
matches the content of CCR1, Ch1 output is turned off. When the counter
matches ARR, the counter is cleared to 0 and the output is turned on and the
counter starts counting up again.

Program 11-1 uses TIM2 to generate 60 Hz and 33.3% duty cycle output.
Program 11-1 is similar to Program 5-8 (in Chapter 5) except the PWM
operation is used. TIM2 is configured as 32-bit up-counter in PWM mode.
The top count is the value of TIM2_ARR, which determines the period of
the waveform. The pulse width is determined by the value of TIM2_CCR1.
The PWM output is on channel 1 PA5 pin connected to LED. You can also
use an oscilloscope on PA5 pin of the STM32F446 Nucleo board to observe
the waveform. Notice the SYSCLK 16MHz is divided by 10 using the

TIM2_PSC which gives us timer/counter value of 1.6MHz. This is divided
by 26,667 (1.6MHz/26,667=60Hz) using TIM2_ARR to get the PWM
frequency of 60Hz. Now, the pulse width is CCRx/APR=
8,889/26,667=33%.

Program 11-1: Using 32-bit TIM2 for PWM Output
/* p11_1.c Using TIM2 for PWM Output
*
* This program configures TIM2 with prescaler divides by 10
* so that the timer counter is counting at 1.6 MHz.
* ARR register is loaded with 26666 and CCR1 is loaded with 8888.
* The channel 1 is configured as PWM mode. The output of Ch1 is
* turned on when the counter starts counting from 0. When the
* counter matches the content of CCR1, Ch1 output is turned off.
* When the counter matches ARR, the counter is cleared to 0 and
* the output is turned on and the counter starts counting up again.
* The LED will be on for 8889/26667 = 30% of the time.
* The output pin of TIM2 Ch1 is PA5 and the alternate function
* of PA5 should be set to AF1.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */

GPIOA->AFR[0] |= 0x00100000; /* PA5 pin for tim2 */ GPIOA->MODER &=
~0x00000C00;
GPIOA->MODER |= 0x00000800;

/* setup TIM2 */
RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 10 - 1; /*
divided by 10 */
TIM2->ARR = 26667 - 1; /* divided by 26667 */ TIM2->CNT = 0;
TIM2->CCMR1 = 0x0060; /* PWM mode */
TIM2->CCER = 1; /* enable PWM Ch1 */
TIM2->CCR1 = 8889 - 1; /* pulse width 1/3 of the period */ TIM2->CR1
= 1; /* enable timer */

while(1) { }
}

PWM with 16-bit TIM8

The TIM2 is 32-bit timer and we saw how it is used for PWM. Now, we can
use the 16-bit timer such as TIM8 for PWM. The 16-bit timer registers have

the same name as TIM2 except they are 16-bit instead of 32-bit. In some
case the registers might the same name but the contents of these register are
different. For example, TIM8_CCER bits are different from TIM2_CCER
register as shown in Figure 11-11 For 16-bit TIM8 channels have
complementary output. The CHx and CHxn are complement of each other.
The Program 11-2 is similar to Program 11-1 except it uses 16-bit TIM8.
Notice the use of CH1 and its complement CH1N output. Also notice on
order to enable the output we use TIM8_BDTR register.

Bits 15:14 Reserved, must be kept at reset value.
Bit 13 CC4P: Capture/Compare 4 output polarity
refer to CC1P description
Bit 12 CC4E: Capture/Compare 4 output enable
refer to CC1E description
Bit 11 CC3NP: Capture/Compare 3 complementary output polarity
refer to CC1NP description
Bit 10 CC3NE: Capture/Compare 3 complementary output enable
refer to CC1NE description
Bit 9 CC3P: Capture/Compare 3 output polarity
refer to CC1P description
Bit 8 CC3E: Capture/Compare 3 output enable
refer to CC1E description
Bit 7 CC2NP: Capture/Compare 2 complementary output polarity
refer to CC1NP description
Bit 6 CC2NE: Capture/Compare 2 complementary output enable
refer to CC1NE description
Bit 5 CC2P: Capture/Compare 2 output polarity
refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable
refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 complementary output polarity
CC1 channel configured as output:
0: OC1N active high.
1: OC1N active low.

CC1 channel configured as input:
This bit is used in conjunction with CC1P to define the polarity of TI1FP1
and TI2FP1. Refer to CC1P description.
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in
output). Bit 2 CC1NE: Capture/Compare 1 complementary output enable
0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on
MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits.
Bit 1 CC1P: Capture/Compare 1 output polarity
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for
trigger or capture operations.
00: non-inverted/rising edge
01: inverted/falling edge
10: reserved, do not use this configuration.
11: non-inverted/both edges
Bit 0 CC1E: Capture/Compare 1 output enable
CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR,
OIS1, OIS1N and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on
MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits.
CC1 channel configured as input:

This bit determines if a capture of the counter value can actually be done
into the input capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Figure 11-11: TIM8_CCER

Bit 15 MOE: Main output enable
This bit is cleared asynchronously by hardware as soon as the break input is
active. It is set by software or automatically depending on the AOE bit. It is
acting only on the channels which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state.
1: OC and OCN outputs are enabled if their respective enable bits are set
(CCxE, CCxNE in TIMx_CCER register).

Figure 11-12: TIM8_BDTR
Program 11-2: Using 16-bit TIM8 for Simple PWM Output
/* p11_2.c Using TIM8 for PWM Output
*
* This program configures TIM8 with prescaler divides by 10 * so
that the timer counter is counting at 1.6 MHz.
* ARR register is loaded with 26666 and CCR1 is loaded with 8888. *
The channel 1 is configured as PWM mode. The output of Ch1N is *
turned on when the counter starts counting from 0. When the *
counter matches the content of CCR1, Ch1N output is turned off. *
When the counter matches ARR, the counter is cleared to 0 and * the
output is turned on and the counter starts counting up again. * The
LED will be on for 8889/26667 = 30% of the time.
* The output pin of TIM8 Ch1N is PA5 and the alternate function * of
PA5 should be set to AF1.
*
* This program is similar to p11_1.c except:
* 1. Each PWM output channel (Chx) has a complementary output (ChxN)
* and we are using the Ch1N output.
* 2. The output needs to be enabled at TIM8_BDTR register. *
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ GPIOA->AFR[0] |=
0x00300000; /* PA5 pin for TIM8 */ GPIOA->MODER &= ~0x00000C00;
GPIOA->MODER |= 0x00000800;

/* setup TIM8 */
RCC->APB2ENR |= 2; /* enable TIM8 clock */ TIM8->PSC = 10 - 1; /*
divided by 10 */
TIM8->ARR = 26667 - 1; /* divided by 26667 */ TIM8->CNT = 0;
TIM8->CCMR1 = 0x0060; /* PWM mode */
TIM8->CCER = 4; /* enable PWM Ch1N */
TIM8->CCR1 = 8889 - 1; /* pulse width 1/3 of the period */ TIM8-
>BDTR |= 0x8000; /* enable output */
TIM8->CR1 = 1; /* enable timer */

while(1) { }
}

Program 11-3 is based on Program 11-2 but in the infinite loop, the value of
CCRx is incremented by 10% every 50ms. The increasing CCRx value
lengthens the duty cycle and increases the LED light intensity when the
output is connected to the LED on the STM32F4xx Nucleo board.

Program 11-3: Use PWM to control LED intensity
/* p11_3.c Variable duty cycle PWM to control LED intensity *
* This program is the same as p11_2.c except the pulse width is *
started with a small value and incremented by 10% every 50 ms * in
the infinite loop. The change of duty cycle will modulate * the
intensity of the LED.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */

GPIOA->AFR[0] |= 0x00300000; /* PA5 pin for TIM8 */ GPIOA->MODER &=
~0x00000C00;
GPIOA->MODER |= 0x00000800;
TIM8->CCR1 = TIM8->CCR1 * 110 / 100; if (TIM8->CCR1 > 26666)

/* setup TIM8 */
RCC->APB2ENR |= 2; /* enable TIM8 clock */ TIM8->PSC = 10 - 1; /*
divided by 10 */ TIM8->ARR = 26667 - 1; /* divided by 26667 */ TIM8-
>CNT = 0;
TIM8->CCMR1 = 0x0068; /* PWM mode */ TIM8->CCER = 4; /* enable PWM
Ch1N */ TIM8->CCR1 = 90; /* pulse width */ TIM8->BDTR |= 0x8000; /*
enable output */ TIM8->CR1 = 1; /* enable timer */

TIM8->CCR1 = 90;
delayMs(50);
}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Program 11-4 uses the prescaler to divide the clock by 16,000 for counter
clock. This slows enough that the duty cycle changes can be observed with
naked eyes.
Program 11-4: Based on Program 11-3 but slow down the PWM
frequency so that the duty cycle change can be observed with naked eyes
/* p11_4.c Variable duty cycle PWM to control LED on duration *
* This program is the same as p11_3.c except the frequency is much *
slower so that the change of the duration when the LED is on * can
be observed by naked eyes.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void delayMs(int n);
int main(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */

GPIOA->AFR[0] |= 0x00300000; /* PA5 pin for TIM8 */ GPIOA->MODER &=
~0x00000C00;
GPIOA->MODER |= 0x00000800;

/* setup TIM8 */
RCC->APB2ENR |= 2; /* enable TIM8 clock */ TIM8->PSC = 16000 - 1; /*
divided by 16000 */ TIM8->ARR = 1000 - 1; /* divided by 1000 */
TIM8->CNT = 0;
TIM8->CCMR1 = 0x0068; /* PWM mode */ TIM8->CCER = 4; /* enable PWM
Ch1N */ TIM8->CCR1 = 10; /* pulse width */ TIM8->BDTR |= 0x8000; /*
enable output */ TIM8->CR1 = 1; /* enable timer */

while(1) {
TIM8->CCR1 = TIM8->CCR1 * 110 / 100; if (TIM8->CCR1 > 1000)

TIM8->CCR1 = 10; delayMs(400);
}
}

/* 16 MHz SYSCLK */
void delayMs(int n) {
int i;
for (; n > 0; n--)
for (i = 0; i < 3195; i++) ; }

Edge-aligned and Centered-aligned PWM

For the PWM we can use center-aligned or edge-aligned. In the edge-
aligned, the output starts high for duration of duty cycle and then goes Low

for the rest of the period. In the centered-aligned the high is moved to center.
The Program 11-5 shows how to create edge-aligned and centered-aligned
PWM.

Program 11-5: Comparison between edge-aligned and center-aligned
PWM
/* p11_5.c Comparison between edge-aligned and center-aligned PWM *
* In this program, TIM8 Ch1 is configured as center-aligned PWM with
* output on PC6 pin and TIM2 Ch1 is configured as edge-aligned PWM *
with output on PA5 pin for comparison.
*
* You will find two differences between these two PWM generation: *
1. For edge-aligned PWM, the counter counts from 0 to the value * of
ARR then it takes one clock cycle to reset to 0. So to * count 1000
clock cycles, the ARR should be loaded with 999. * For center-
aligned PWM, the counter counts up from 0 to the * value of ARR then
immediately counts down back to 0. So to * count 1000 clock cycles,
the ARR should be loaded with 1000. * 2. For edge-aligned PWM, each
output cycle the counter counts * from 0 to the value of ARR. For
center-aligned PWM, each * output cycle, the counter counts from 0
up to the value of * ARR then back down to 0. For the same value of
ARR, the * center-aligned PWM takes twice as long as edge-aligned
PWM * to complete an output cycle.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
void TIM8_center_aligned(void); void TIM2_edge_aligned(void);

int main(void) {
TIM8_center_aligned(); TIM2_edge_aligned();

} }
void TIM8_center_aligned(void) {
RCC->AHB1ENR |= 4; /* enable GPIOC clock */

GPIOC->AFR[0] |= 0x03000000; /* PC6 pin for tim8 Ch1 */ GPIOC->MODER
&= ~0x00003000;
GPIOC->MODER |= 0x00002000;

/* setup TIM8 */
RCC->APB2ENR |= 2; /* enable TIM8 clock */ TIM8->PSC = 16 - 1; /*
divided by 16 */
TIM8->ARR = 1000; /* divided by 1000 */ TIM8->CNT = 0;
TIM8->CCMR1 = 0x0060; /* PWM mode */
TIM8->CCER = 1; /* enable PWM Ch1 */ TIM8->CCR1 = 300 - 1; /* pulse
width 300 */ TIM8->BDTR |= 0x8000; /* enable output */
TIM8->CR1 = 0x21; /* center-aligned, enable timer */

}
void TIM2_edge_aligned(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */

GPIOA->AFR[0] |= 0x00100000; /* PA5 pin for tim2 */ GPIOA->MODER &=
~0x00000C00;
GPIOA->MODER |= 0x00000800;

/* setup TIM2 */
RCC->APB1ENR |= 1; /* enable TIM2 clock */ TIM2->PSC = 16 - 1; /*
divided by 16 */ TIM2->ARR = 1000 - 1; /* divided by 1000 */ TIM2-
>CNT = 0;
TIM2->CCMR1 = 0x0060; /* PWM mode */
TIM2->CCER = 1; /* enable PWM Ch1 */ TIM2->CCR1 = 300 - 1; /* pulse
width 300 */ TIM2->CR1 = 1; /* edge-aligned enable timer */

}

Dead-time Generation (Case Study)

One application of center-aligned PWM is to generate outputs with dead-
time. Recall in the first section of this chapter, when we switched the
direction of the H-bridge circuit, we opened all switches and delayed for a
period of time. That is dead-time, a period of time when all switches are
open to avoid the possibility of overlapping time when both switches on the
same leg of the H-bridge are on which will cause a short circuit. The same
problem exists with transistor circuits because transistors are faster to turn
on and slower to turn off. If we turn one on and the other off, there will be a
short period of time that both transistors are on.

To generate dead-time, we use two center-aligned channels on the PWM
module. One of the channels has a positive pulse and the other negative
pulse. Assuming the circuit is active high, now we have one channel
centered at the time when the timer counter reaches the value in BDTR
register and the other channel centered at the time when the timer counter
reaches 0 so they are 180 degrees out of phase. For each channel we
program them to have less than 50% duty cycle, therefore, dead times are
created between the two channels. See Figure 11-13.

Figure 11-13: Dead band
Program 11-6: Dead-time Generation with TIM8 PWM
/* p11_6.c Dead time creation with TIM8 PWM
*
* In this program, TIM8 Ch1 and Ch1N are configured as complementary
* outputs of the center-aligned PWM. The output of Ch1 is PC6 and
* the output of Ch1N is PA5.
* To exaggerate the dead time, the dead time clock is set to four
* times the timer counter clock in TIM8_CR1 and the dead time value
* is set to maximum in TIM8_BDTR.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"
int main(void) {
RCC->AHB1ENR |= 5; /* enable GPIOA clock */

GPIOC->AFR[0] |= 0x03000000; /* set pin for tim8 Ch1 */
GPIOC->MODER &= ~0x00003000;
GPIOC->MODER |= 0x00002000;

GPIOA->AFR[0] |= 0x00300000; /* set pin for tim8 Ch1N */
GPIOA->MODER &= ~0x00000C00;
GPIOA->MODER |= 0x00000800;

/* setup TIM8 */
RCC->APB2ENR |= 2; /* enable TIM8 clock */
TIM8->PSC = 16 - 1; /* divided by 16 */
TIM8->ARR = 1000; /* divided by 1000 */
TIM8->CNT = 0;
TIM8->CCMR1 = 0x0060;
TIM8->CCER = 5; /* enable PWM Ch1, Ch1N */
TIM8->CCR1 = 500 - 1; /* pulse width 500 */
TIM8->BDTR |= 0x80FF; /* enable output, set max dead time */ TIM8-
>CR1 = 0x221; /* slow DT clock, center-aligned, enable timer */

while(1) { }
}

Review Questions

1. We use ________register to set the PWM output Frequency.
2. We use ________register to set the PWM output pulse width.
3. True or false. OCxM bits are used to generate PWM waves.
4. True or false. Center-Aligned PWM is generated by the counter counting
both up and down.

Answers to Review Questions

Section 11.1

1. True
2. False
3. Because microcontroller/digital outputs lack sufficient current to drive the
DC motor.
4. By reversing the polarity of voltages connected to the motor leads
5. The DC motor is stalled if the load is beyond what it can handle.
6. No-load
Section 11.2

1. TIMxARR
2. TIMxCCRx
3. True
4. True

Chapter 12: Programming Graphic LCD

Chapter 3 used the character LCD. In this chapter, we examine the graphic
LCDs and show some programming examples, although an entire book can
be dedicated to graphic LCD and its programming. Section 12.1 covers some
basic concepts of graphic LCDs. In Section 12.2, we give some
programming examples of graphic LCD.

Section 12.1: Graphic LCDs

The screen of graphic LCDs is made of pixels. The pictures and the texts are
created using pixels and the programmers have control over each and every
individual pixel. See Figures 12-1 and 12-2.

Figure 12-1: A picture on a Mono-color LCD

Figure 12-2: A Zoomed Picture on a Mono-color LCD
The graphic LCDs can be mono-colored (monochorme) or colored. In mono-
colored LCDs each pixel can be on or off or different shades of gray; in
contrast in colored LCDs each pixel can have different colors. In fact, the
colored pixels can display red, green, and blue; using the 3 primary color
lights they make different colors.

Some LCD Characteristics

Resolution
The total number of pixels (dots) per screen is a major factor in assessing an
LCD and is shown
below:

Resolution = Pixels per line × number of lines

For example, when the resolution of an LCD is 720 × 350, there are 720
pixels per line and 350 lines per screen, giving a total of 252,000 pixels. The
total number of pixels per screen is determined by the size of the pixel and
how far apart the pixels are spaced. For this reason, one must look at what is
called the dot pitch in LCD specifications.

Dot pitch

Dot pitch is the distance between adjacent pixels (dots) and is given in
millimeters. For example, a dot pitch of 0.31 means that the distance
between pixels is 0.31 mm. Consequently, the smaller the size of the pixel
itself and the smaller the space between them, the higher the total number of
pixels and the better the resolution. Dot pitch varies from 0.6 inch in some
low-resolution LCDs to 0.2 inch in higherresolution LCDs. Figure 12-3
shows Dot Pitch and Dot Size parameters.

Figure 12-3: Dot Pitch and Dot Size
The specifications of a sample mono-colored LCD are shown in Figure 12-4.

Figure 12-4: Mechanical specifications of a GDM12864 128x64 LCD
In some LCD specifications, it is given in terms of the number of dots per
square inch, which is the same way it is given for laser printers, for example,
300 DPI (dots per inch).
Dot pitch and LCD size

LCDs, like televisions, are advertised according to their diagonal size. For
example, a 14-inch monitor means that its diagonal measurement is 14
inches. There is a relation between the number of horizontal and vertical
pixels, the dot pitch, and the diagonal size of the image on the screen. The
diagonal size of the image must always be less than the LCD's diagonal size.
The following simple equation can be used to relate these three factors to the
diagonal measurement. It is derived from the Pythagorean Theorem:

(image diagonal size)2 = (number of horizontal pixels × dot pitch)2
+ (number of vertical pixels × dot pitch)2 Since the dot pitch is in
millimeters, the size given by the equation above would be in mm, so it must

be multiplied by 0.039 to get the size of the monitor in inches. See Example
12-1.

Example 12-1
A manufacturer has advertised a 14-inch monitor of 1024 × 768 resolution
with a dot pitch of 0.28. Calculate the diagonal size of the image on the
screen. It must be less than 14 inches.

Solution:
The calculation is as follows:
(image diagonal size)2 = (number of horizontal pixels × dot pitch)2 +
(number of vertical pixels × dot pitch)2

(diagonal size)2 = (1024 × 0.28 mm)2 + (768 × 0.28 mm)2 = 358.4 mm
diagonal size (inches) = 358.4 mm × 0.039 inch per mm = 13.98 inches
In the LCD the diagonal size of the image area is 13.98 inches while the
diagonal size of the viewing area is 14 inches.

Displaying on the graphic
LCDs

To display a picture on the screen, a distinct color must be shown on each
pixel of the LCD. To do so, there is a display memory (frame buffer) that
retrieves the attributes (colors) of the entire pixels of the screen and there is
an LCD controller which displays the contents of the frame buffer memory
on the LCD. See Figure 12-5.

Figure 12-5: The Relationship between CPU and LCD
Graphic LCDs might come with or without frame buffer and the LCD
controller. In cases that the LCD does not have frame buffer memory or
controller they must be provided externally. Some new microcontrollers
have the LCD controllers internally which can directly drive the LCDs. To
display a picture on the screen the microcontroller writes it to the frame
buffer memory.

Since the attributes (colors) of the entire pixels are stored in the frame buffer
memory, the higher the number of pixels and colors options, the larger the
amount of memory is needed to store them. In other words, the memory
requirement goes up as the resolution and the number of supported colors go
up. The number of colors displayed at one time is always 2n where n is the
number of bits set aside for the color. For example, when 4 bits are assigned
to the color of the pixel, this allows 16 combinations of colors to be
displayed at one time because 24 = 16. The number of bits used for a pixel
color is called color depth or bits per pixel (BPP). See Table 12-1.

BPP Colors
1 on or off (monochrome)
2 4
4 16
8 256
16 65,536
24 16,777,216
Table 12-1: BPP (bit per pixel) vs. color
In Table 12-1, notice that in a monochrome LCD a single bit is assigned for
the color of the pixel and it is for "on" or "off".
Mixing RGB (Red, Green, Blue) colors

We can get other colors by mixing the three primary colors of Red, Green,
and Blue. The intensity (proportion) of the colors mixed can also affect the

color we get. In many high-end graphics systems, an 8-bit value is used to
represent the intensity. Its value can be between 0 and 255 (0 to 0xFF)
representing high intensity (255) and zero intensity. See Table 12-2. Using
three primary colors and intensity, we can make many colors we want. See
Figure 12-6.

Figure 12-6: Making New Light Colors by Mixing the 3 Primary
Light Colors

I R G B Color
0 0 0 0 Black
0 0 0 1 Blue
0 0 1 0 Green
0 0 1 1 Cyan
0 1 0 0 Red
0 1 0 1 Magenta
0 1 1 0 Brown
0 1 1 1 Light Gray
1 0 0 0 Dark Gray
1 0 0 1 Light blue
1 0 1 0 Light green
1 0 1 1 Light cyan
1 1 0 0 Light red
1 1 0 1 Light Magenta
1 1 1 0 Yellow
1 1 1 1 White

Table 12-2: The 16 Possible Colors

Example 12-2
In a certain graphic LCD, a maximum of 256 colors can be displayed at one
time. How many bits are set aside for the color of the pixels?

Solution:
To display 256 colors at once, we must have 8 bits set for color since 28 =
256.
LCD Buffer memory size and color

In discussing the graphics, we need to clarify the relationship between pixel
resolution, the number of colors supported, and the amount of frame buffer
RAM needed to store them. There are two facts associated with every pixel
on the screen:

1. The location of the pixel
2. The attributes: color and intensity
These two facts must be stored in the frame buffer RAM. The higher the
number of pixels and colors options, the larger the amount of memory that is
needed to store them. In other words, the memory requirement goes up as
the resolution and the number of colors supported goes up. As we just
mentioned, the number of colors displayed at one time is always 2n where n
is the number of bits set aside for the color. For example, when 4 bits are
assigned to the color of the pixel, this allows 16 combinations of colors to be
displayed at one time because 24 = 16. The commonly used graphics
resolutions are 176 x 144 (QCIF), 352x288 (CIF), 320x240 (QVGA),
480x272 (WQVGA), 640x480 (VGA) and 800x480 (WVGA). You may find
the definitions of these abbreviations on the Internet.

We use the following formula to calculate the minimum frame buffer
memory requirement for a graphic LCD:
������������ ������������
��������(����
��������)=��������������������
������������ × ����������������
������������ × ���������� ������
8
Example 12-3 shows how to calculate the memory need for various
resolutions and color depth.

Example 12-3
Find the frame buffer RAM needed for (a) 176x144 with 4 BPP and (b)
640x480 resolution with 256 colors.

Solution:

(a) For this resolution, there are a total of 25,344 pixels (176 columns × 144
rows = 25,344). With 4 bits for the color of each pixel, we need a total of
(25,344 × 4)/8= 16,672 bytes of frame buffer RAM. These 4 bits give rise to
16 colors.

(b) For this resolution, there is a total of 640 × 480=307200 pixels. With 256
colors, we need 8 bits for the color of each pixel. Now, total of (640 × 480 ×
8) / 8 = 307200 bytes of frame buffer RAM needed.

In VGA, 640 x 480 resolution with support for 256 colors displayed at one
time requires a minimum of 640 × 480 × 8 = 2,457,600 bits =307,200 bytes
of memory, but due to the memory organization used, the amount of memory
used is higher.

Storing pixels in the memory of mono-color LCDs

In mono-colored LCDs, each pixel can be on or off. Therefore, 1 bit can
preserve the state of 1 pixel and a byte preserves 8 adjacent pixels. In some
LCDs, e.g. GDM12864A and PCD8544, pixels are stored vertically in the
bytes, as shown in Figure 12-7, while in some other LCDs, e.g. T6963, the
pixels are stored horizontally.

Figure 12-7: Storing Data in the LCD Memory of Mono-colored LCDs
Review Questions

1. As the number of pixels goes up, the size of display memory _______
(increases, decreases).
2. If a total of 24 bits is set aside for color, how many colors are available?
3. Calculate the total video memory needed for 1024 × 768 resolution with
16 colors displayed at the same time.
4. With BPP of 16, we get ________colors.

Section 12.2: Displaying Texts on Graphic LCDs

As shown in Figure 12-8 each character can be made by putting pixels next
to each other.

Figure 12-8: Pixel Patterns of Characters Happy Face and Letter A

To display characters on the screen, we must have the pixel patterns of the
entire characters. Whenever we want to display a character on the screen we
copy its pixel pattern into the display memory. See Figure 12-9.

Figure 12-9: A Sample Text

The pixel patterns are stored in an array in the same way that they should be
stored in the LCD memory. This means that for horizontal LCDs the bits are
stored horizontally and for vertical LCDs the pixels are stored vertically.
Figure 12-8 shows the way patterns are stored for horizontal LCDs. In
Figure 12-10 the same patterns are stored for vertical LCDs.

Figure 12-10: Pixel Patterns of Happy Face and Character A and its font for Vertical LCD To
get better-looking characters, the font resolution must be increased, which
translates to more pixels horizontally and vertically. See Figure 12-11.

Figure 12-11: A Bigger Font vs. a Smaller Font
See Program 12-1. A lookup table of the pixel patterns of the characters is
made using an array. The GLCD_putchar function accesses the lookup array
to display characters on the LCD. The connection between the PCD8544

LCD and the microcontroller is shown in Figure 12-12. For more
information about the PCD8544 see its datasheet on the Web.

Figure 12-12: The
PCD8544 LCD connection to the STM32F446 Nucleo
Program 12-1: Displaying a text on the PCD8544 GLCD
/* P12_1.c: PCD8544 (Nokia5110) GLCD via SPI with STM32F446 *
* Letters A,B,C are written on the display.
*
* The connections
* GLCD Arduino STM32F446
* 1 RST D6 reset PB10
* 2 CE D7 chip select PA8
* 3 DC D10 reg select PB6
* 4 DIN D11 SPI MOSI PA7
* 5 CLK D13 SPI SCK PA5
* 6 VCC
* 7 LIGHT
* 8 GND
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

/* define the pixel size of display */ #define GLCD_WIDTH 84
#define GLCD_HEIGHT 48

void GLCD_setCursor(unsigned char x, unsigned char y); void
GLCD_clear(void);
void GLCD_init(void);
void GLCD_data_write(unsigned char data);
void GLCD_command_write(unsigned char data); void GLCD_putchar(int
c);
void SPI_init(void);
void SPI_write(unsigned char data);

/* sample font table */
const char font_table[][6] = {

{0x7e, 0x11, 0x11, 0x11, 0x7e, 0}, /* A */
{0x7f, 0x49, 0x49, 0x49, 0x36, 0}, /* B */
{0x3e, 0x41, 0x41, 0x41, 0x22, 0} /* C */ };

int main(void) {
GLCD_init(); /* initialize the GLCD controller */ GLCD_clear(); /*
clear display and home the cursor */

GLCD_putchar(0); /* display letter A */ GLCD_putchar(1); /* display
letter B */ GLCD_putchar(2); /* display letter C */

while(1) { }
}
void GLCD_putchar(int c) { int i; for (i = 0; i < 6; i++)
GLCD_data_write(font_table[c][i]); }

void GLCD_setCursor(unsigned char x, unsigned char y) {
GLCD_command_write(0x80 | x); /* column */
GLCD_command_write(0x40 | y); /* bank (8 pixel rows per bank) */

}

/* clears the GLCD by writing zeros to the entire screen */ void
GLCD_clear(void) {
int32_t index;

for (index = 0 ; index < (GLCD_WIDTH * GLCD_HEIGHT / 8) ; index++)
GLCD_data_write(0x00);
GLCD_setCursor(0, 0); /* return to the home position */ }
/* send the initialization commands to PCD8544 GLCD controller */
void GLCD_init(void) {
SPI_init();

/* PORTB 6, 10 as GPIO output for GLCD DC and RESET */ RCC->AHB1ENR
|= 2; /* enable GPIOB clock */ GPIOB->MODER &= ~0x00303000; /* clear
pin mode */ GPIOB->MODER |= 0x00101000; /* set pin output mode */

/* hardware reset of GLCD controller */
GPIOB->BSRR = 0x04000000; /* assert RESET */ GPIOB->BSRR =
0x00000400; /* deassert RESET */

GLCD_command_write(0x21); /* set extended command mode */
GLCD_command_write(0xB8); /* set LCD Vop for contrast */
GLCD_command_write(0x04); /* set temp coefficient */
GLCD_command_write(0x14); /* set LCD bias mode 1:48 */
GLCD_command_write(0x20); /* set normal command mode */
GLCD_command_write(0x0C); /* set display normal mode */

}

/* write to GLCD controller data register */
void GLCD_data_write(unsigned char data) {

GPIOB->BSRR = 0x00000040; /* select data register */
SPI_write(data); /* send data via SPI */ }

/* write to GLCD controller command register */
void GLCD_command_write(unsigned char data) {
GPIOB->BSRR = 0x00400000; /* select command register */
SPI_write(data); /* send data via SPI */ }

void SPI_init(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ RCC->APB2ENR |= 0x1000;
/* enable SPI1 clock */ GPIOA->AFR[0] &= ~0xF0F00000; /* clear alt
mode */ GPIOA->AFR[0] |= 0x50500000; /* set alt mode SPI1 */

/* PORTA 5, 7 for SPI1 MOSI and SCLK */
GPIOA->MODER &= ~0x0000CC00; /* clear pin mode */ GPIOA->MODER |=
0x00008800; /* set pin alternate mode */

/* PORTA 8 as GPIO output for SPI slave select */ GPIOA->MODER &=
~0x00030000; /* clear pin mode */ GPIOA->MODER |= 0x00010000; /* set
pin output mode */

SPI1->CR1 = 0x31C;
SPI1->CR2 = 0;
SPI1->CR1 |= 0x40; /* enable SPI1 module */

}

void SPI_write(unsigned char data) {
GPIOA->BSRR = 0x01000000; /* assert slave select */
while (!(SPI1->SR & 2)) {} /* wait until transfer buffer Empty */
SPI1->DR = data; /* write command and upper 4 bits of data */ while
(SPI1->SR & 0x80) {} /* wait for transmission done */ GPIOA->BSRR =
0x00000100; /* deassert slave select */

}

Review Questions

1. True or false. The same font table can be used for vertical and horizontal
LCDs.
2. True or false. To display a character on the LCD, its pixel pattern should
be copied onto the LCD display memory.

Answers to Review Questions

Section 12-1:

1. increases
2. 224 = 16.7 million
3. 1024 × 768 × 4 = 3,145,728 bits = 384K bytes, but it uses 512 KB due to
bit planes.
4. 216 = 65,536
Section 12-2:

1. False
2. True

Chapter 13: DMA Programming

This chapter examines the concept of DMA (Direct Memory Address) and
shows how to program it. The DMA in Arm microcontrollers are
implemented differently by various vendors and can be very complex. This
chapter is simply an introduction.

Section 13.1: Concept of DMA

In computers, there is often a need to transfer a large number of bytes of data
between memory and peripherals such as disk drives. In such cases, using
the microprocessor to transfer the data is too slow since the data first must be
fetched into the CPU and then sent to its destination. In addition, the process
of fetching and decoding the instructions that move the data themselves adds
to the overhead. For this reason, in most computers and microcontrollers
there is a DMAC (direct memory access controller), whose function is to
bypass the CPU and provide a direct connection between peripherals and
memory, thus transferring the data as fast as possible.

One problem with using DMA is that there is only one set of buses (one set
of each bus: data bus, address bus, control bus) in a given computer and no
bus can serve two masters at the same time. The buses can be used either by
the main CPU or the DMAC (DMA Controller). Since the CPU has primary
control over the buses, it must give permission to DMAC to use them. How
is this done? The answer is that any time the DMAC needs to use the buses
to transfer data, it sends a signal called HOLD to the CPU and the CPU will
respond by sending back the signal HLDA (hold acknowledge) to indicate to
the DMAC that it can go ahead and use the buses. While the DMAC is using

the buses to transfer data, the CPU is staying away from the buses, and
conversely, when the CPU is using the bus, the DMA is sitting idle. After
DMAC finishes transferring the data, it will make HOLD go low and then
the CPU will regain control over the buses. See Figure 13-1.

Figure 13- 1: DMA Usage of System Bus

For example, if the DMAC is to transfer a block of data from memory to an
I/O device such as a disk controller, it must know the address of the
beginning of the data block (address of the first byte of data) and the number
of bytes (count) it needs to transfer. Then it will go through the following
steps:

1. The peripheral device (such as the disk controller) will request the service
of DMA by pulling DREQ (DMA request) high.
2. The DMAC will put a high on its HRQ (hold request), signaling the CPU
through its HOLD pin that it needs to use the buses.
3. The CPU will finish the present bus cycle and respond to the DMAC
request by putting high on its HLDA (hold acknowledge), thus telling the
DMAC that it can go ahead and use the buses to perform its task. HOLD
must remain active high as long as DMAC is performing its task.
4. DMAC will activate DACK (DMA acknowledge), which tells the
peripheral device that it will start to transfer the data.

5. DMAC starts to transfer the data from memory to the peripheral by
putting the address of the first byte of the block on the address bus and
activating MEMR, thereby reading the byte from memory onto the data bus;
it then changes the address to be the peripheral data register and activates
MEMW to write the data to the peripheral. Then DMAC decrements the
counter and increments the address pointer and repeats this process until the
count reaches zero and the task is finished.
6. After the DMA has finished its job it will deactivate HRQ, signaling the
CPU that it can regain control over its buses.
This above discussion indicates that DMAC can only transfer data; unlike
the CPU, it cannot decode and execute instructions. One could look at the
DMAC as a kind of CPU without the instruction decoder/executer logic
circuitry. For the DMAC to be able to transfer data it is equipped with the
address bus, data bus, and control bus signals.

The handshaking signals between the peripheral and the DMAC or the
signals between the DMAC and the CPU are described here for clarification
of the operations. Their activities are transparent to the programmer. As you
will see in the programming examples later, once the DMAC is properly
configured and enabled, the DMA request, acknowledgment and the bus
request, acknowledgment are all handled by the hardware without the
intervention of the software.

In this example of a disk controller, it has a large data buffer for DMA to fill
in one operation. For other peripherals such as UART or ADC, as we will
see later, the data is usually transferred in one or two bytes at a time. Instead
of granting the DMAC the exclusive use of the bus for the transfer of the
data block, the CPU will allow the DMAC to take over the bus only when
the CPU is not using it. This way, the DMA impact on the CPU performance
can be reduced even further.

DMA in Microcontrollers

As we mentioned, DMA (Direct Memory Access) is a method of allowing
peripherals to gain access to the memory without involving the CPU. This is
usually accomplished by adding a DMA controller and a memory bus arbiter
to the system that transfers data between memory and peripherals over the
same data bus CPU reads/writes the memory. In the microcontroller such as

Arm, the software configures the DMA controller by setting up the source
address, the destination address, the data width, and the amount of data to
transfer. The software also configures the DMA controller and the peripheral
for the event that triggers the data transfer. Since the idea of DMA is to
reduce the involvement of CPU in the data transfer, interrupt is usually used
to notify the completion of the data transfer.

The main reason of performing DMA is to free up the CPU to do other tasks
while the peripherals are moving data in and out of the memory. In this
chapter, we will be using UART and ADC data transmission to illustrate
how DMA works.

Consider if we need to transmit a 2 Kbyte of data through a UART at 9600
Baud. Using a polling method, the CPU will be waiting for the UART
transmit data register to be available before reading a byte of the data from
the memory and writing it to the UART transmit data register. For the
duration of transmitting the 2 Kbyte data, the CPU is completely occupied
without doing any other tasks. At 9600 Baud, this will take a little longer
than two seconds to transmit 2 Kbyte of data. For these two seconds, the
system cannot perform other tasks.

In Chapter 6, we introduced the interrupt. Using interrupt, the CPU will be
able to perform other tasks while transmitting data. When the UART
transmit data register becomes empty, it generates an interrupt to the CPU.
The CPU halts the current task, saves the current CPU registers on the stack
then executes the interrupt handler. The interrupt handler reads a byte of data
from memory and writes it to the UART transmit data register. The CPU
restores the registers from the stack and resumes the task that was
interrupted. All these CPU operations incurred just to move one byte of data.
With 16 MHz of the system clock, it takes a couple of microsecond of CPU
time to send a byte of data to the UART. For two Kbyte of data, it takes
several milliseconds of the CPU time. From the performance perspective, it
is several magnitudes better than using polling but we can do even better
with DMA.

With DMA in Arm, the software needs to configure the DMA controller by
setting the beginning address of the data in memory in the source address
register, the UART transmit register address in the destination register, and

the number of bytes to transmit in data count register. The software then sets
the UART to trigger the DMA transfer when the UART transmit data
register is empty. From here on, the DMA controller will run on its own
without involving the CPU until all the bytes are sent. When the UART
transmit data register becomes empty, it notifies the DMA controller. The
DMA controller requests the memory data bus from the bus arbiter. When it
is granted the data bus, it reads the data from the memory using the source
address register and writes the data to the UART transmit data register. The
DMA controller will increment the source address register to point to the
next byte of data and decrement the data count register to see whether all the
data were sent. When the data count register reaches zero, the DMA
controller generates transfer complete interrupt to let the CPU know that all
the data were sent. All the DMA operations until the transfer complete
interrupt do not involve the CPU and the CPU may perform other tasks
without being interrupted.

Review Questions
1. True or false. When the DMA is working, the CPU is not using the bus.
2. True or false. When the CPU is using the bus, the DMA is sitting idle.
3. True or false. No bus can serve two masters at the same time.
Section 13.2: DMA Programming in STM32
The STM32F446RE microcontroller has two DMA controllers. See Figure
13-2. Each DMA controller has eight DMA Streams. Together, they have 16
streams that may perform DMA operations independently. Each DMA
stream has eight channels. The associations of peripherals to DMA
channels/streams are hardwired and can be seen in Tables 13-1 and 13-2.

Figure 13- 2: DMA Block Diagram in STM32F4xx
Table 13- 1: DMA1 Mapping in STM32F4xx

Figure 13-3: Peripheral-to-memory mode
Figure 13-4: Memory-to-peripheral mode

Table 13- 2: DMA2 Mapping in STM32F4xx
Each stream has six registers and also shares with other streams for interrupt
status bits and interrupt flag clear bits in four registers.

DMA Clock Enable
As we have seen before, we use RCC_AHB1ENR register to enable the
clock. See DMA1EN (bit21)
in figure below.

Bit 22 DMA2EN: DMA2 clock enable
This bit is set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled

Bit 21 DMA1EN: DMA1 clock enable
This bit is set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Figure 13- 5: RCC_AHB1ENR Register to Enable DMA Clock

DMA Stream Configuration Register (DMA_SxCR)
This is one of the most important registers in the DMA operation. See Figure
13-6. We examine
the bits and show the program in choosing them.

Bits 31:28 Reserved, must be kept at reset value.
Bits 27:25 CHSEL[2:0]: channel selection
These bits are set and cleared by software.
000: channel 0 selected
001: channel 1 selected
010: channel 2 selected
011: channel 3 selected
100: channel 4 selected

101: channel 5 selected
110: channel 6 selected
111: channel 7 selected
These bits are protected and can be written only if EN is ‘0’.
Bits 24:23 MBURST[1:0]: memory burst transfer configuration
These bits are set and cleared by software.
00: single transfer
01: INCR4 (incremental burst of 4 beats)
10: INCR8 (incremental burst of 8 beats)
11: INCR16 (incremental burst of 16 beats)
These bits are protected and can be written only if EN is ‘0’.
In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN=
'1'.
Bits 22:21 PBURST[1:0]: peripheral burst transfer configuration
These bits are set and cleared by software.
00: single transfer
01: INCR4 (incremental burst of 4 beats)
10: INCR8 (incremental burst of 8 beats)
11: INCR16 (incremental burst of 16 beats)
These bits are protected and can be written only if EN is ‘0’.
In direct mode, these bits are forced to 0x0 by hardware.
Bit 20 Reserved, must be kept at reset value.
Bit 19 CT: current target (only in double-buffer mode)
This bit is set and cleared by hardware. It can also be written by software. 0:
current target memory is Memory 0 (addressed by the DMA_SxM0AR
pointer) 1: current target memory is Memory 1 (addressed by the
DMA_SxM1AR pointer) This bit can be written only if EN is ‘0’ to indicate
the target memory area of the first transfer. Once the stream is enabled, this
bit operates as a status flag indicating which memory area is the current
target.
Bit 18 DBM: double-buffer mode
This bit is set and cleared by software.
0: no buffer switching at the end of transfer
1: memory target switched at the end of the DMA transfer
This bit is protected and can be written only if EN is ‘0’.
Bits 17:16 PL[1:0]: priority level
These bits are set and cleared by software.

00: low
01: medium
10: high
11: very high
These bits are protected and can be written only if EN is ‘0’.
Bit 15 PINCOS: peripheral increment offset size
This bit is set and cleared by software
0: The offset size for the peripheral address calculation is linked to the
PSIZE 1: The offset size for the peripheral address calculation is fixed to 4
(32-bit alignment). This bit has no meaning if bit PINC = '0'.
This bit is protected and can be written only if EN = '0'.
This bit is forced low by hardware when the stream is enabled (bit EN = '1')
if the direct mode is selected or if PBURST are different from “00”.
Bits 14:13 MSIZE[1:0]: memory data size
These bits are set and cleared by software.
00: byte (8-bit)
01: half-word (16-bit)
10: word (32-bit)
11: reserved
These bits are protected and can be written only if EN is ‘0’.
In direct mode, MSIZE is forced by hardware to the same value as PSIZE as
soon as bit EN = '1'.
Bits 12:11 PSIZE[1:0]: peripheral data size
These bits are set and cleared by software.
00: byte (8-bit)
01: half-word (16-bit)
10: word (32-bit)
11: reserved
These bits are protected and can be written only if EN is ‘0’.
Bit 10 MINC: memory increment mode
This bit is set and cleared by software.
0: memory address pointer is fixed
1: memory address pointer is incremented after each data transfer (increment
is done according to MSIZE)
This bit is protected and can be written only if EN is ‘0’.
Bit 9 PINC: peripheral increment mode
This bit is set and cleared by software.

0: peripheral address pointer is fixed
1: peripheral address pointer is incremented after each data transfer
(increment is done according to PSIZE)
This bit is protected and can be written only if EN is ‘0’.
Bit 8 CIRC: circular mode
This bit is set and cleared by software and can be cleared by hardware. 0:
circular mode disabled
1: circular mode enabled
When the peripheral is the flow controller (bit PFCTRL = 1) and the stream
is enabled (bit EN = 1), then this bit is automatically forced by hardware to
0.
It is automatically forced by hardware to 1 if the DBM bit is set, as soon as
the stream is enabled (bit EN ='1').
Bits 7:6 DIR[1:0]: data transfer direction
These bits are set and cleared by software.
00: peripheral-to-memory
01: memory-to-peripheral
10: memory-to-memory
11: reserved
These bits are protected and can be written only if EN is ‘0’.
Bit 5 PFCTRL: peripheral flow controller
This bit is set and cleared by software.
0: DMA is the flow controller
1: The peripheral is the flow controller
This bit is protected and can be written only if EN is ‘0’.
When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this
bit is automatically forced to 0 by hardware.
Bit 4 TCIE: transfer complete interrupt enable
This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled
Bit 3 HTIE: half transfer interrupt enable
This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled
Bit 2 TEIE: transfer error interrupt enable
This bit is set and cleared by software.

0: TE interrupt disabled
1: TE interrupt enabled
Bit 1 DMEIE: direct mode error interrupt enable
This bit is set and cleared by software.
0: DME interrupt disabled
1: DME interrupt enabled
Bit 0 EN: stream enable / flag stream ready when read low
This bit is set and cleared by software.
0: stream disabled
1: stream enabled
This bit may be cleared by hardware:
– on a DMA end of transfer (stream ready to be configured)
– if a transfer error occurs on the AHB master buses
– when the FIFO threshold on memory AHB port is not compatible with the
size of the burst When this bit is read as 0, the software is allowed to
program the configuration and FIFO bits registers. It is forbidden to write
these registers when the EN bit is read as 1.

Figure 13- 6: DMA Stream x Configuration Register (DMA_SxCR, x = 0..7)

Channel selection
For each stream, only one channel is active at a time. The channels of a
stream are selected by
bits CHSEL[2:0] in DMA_SxCR register.

Direction
The DMA controller may transfer data from memory to peripheral,
peripheral to memory, or from
memory to memory. See the DIR bits in DMA_SxCR register.

Double buffered

The DMA controller allows two buffers associated with a stream. This way,
the CPU may be operating on the data in one buffer while the DMA
controller is transferring data to the other. The DBM bit enables the double
buffer mode. The CT bit tells which buffer is used by the DMA controller at
that time. See DMA_SxCR register.

Address increment

Both memory address registers and peripheral address register may be
automatically incremented after each data transfer. This allows the DMA
controller to send or receive a block of memory without the intervention of
CPU. The address increment is enabled by MINC bit and PINC bit. See
DMA_SxCR register.

Data transfer size
Each data transfer may be 8-bit, 16-bit, or 32-bit in size. They are
determined by MSIZE field and
PSIZE field. See DMA_SxCR register.

Interrupt enables

There are four possible interrupts from a DMA stream: Transfer complete,
Half transfer complete, Transfer error and Direct mode error. They are
enabled by TCIE, HTIE, TEIE, and DMEIE bits respectively. See
DMA_SxCR register.

DMA stream enable

The DMA stream is enabled by setting the EN bit. Before configuring the
DMA stream, the stream should be disabled by writing a 0 to the EN bit and
wait until the EN bit is read back as 0. See DMA_SxCR register.

DMA Stream Number of Data Register (DMA_SxNDTR)

The Number of Data Register should be written with the number of transfers
desired. After each data transfer, the number is decremented. When the
number reaches zero, the transfer is complete. The number of data items to
transfer can be from 0 and goes up to 65535. See figure below.

Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 NDT[15:0]: number of data items to transfer (0 up to 65535)
This register can be written only when the stream is disabled. When the
stream is enabled, this register is read-only, indicating the remaining data
items to be transmitted. This register decrements after each DMA transfer.
Once the transfer is completed, this register can either stay at zero (when the
stream is in normal mode) or be reloaded automatically with the previously
programmed value in the following cases:
– when the stream is configured in circular mode.
– when the stream is enabled again by setting EN bit to '1'.
If the value of this register is zero, no transaction can be served even if the
stream is enabled. Figure 13- 7: DMA Stream x Number of Data Register (DMA_SxNDTR,
x = 0..7)

DMA Stream Peripheral Address Register (DMA_SxPAR)
This register holds the address of the peripheral. The data is written to the
location specified by
this register during memory-to-peripheral transfer and read from during
peripheral-to-memory transfer.
See (DMA_SxPAR) register below.

Bits 31:0 PAR[31:0]: peripheral address
Base address of the peripheral data register from/to which the data is
read/written. These bits are write-protected and can be written only when bit
EN = '0' in the DMA_SxCR register.

Figure 13- 8: DMA Stream x Peripheral Address Register (DMA_SxPAR, x = 0..7) DMA
Stream Memory 0 Address Register (DMA_SxM0AR)

This register holds the address of the data buffer in memory. The data is
written to the location specified by this register during peripheral-to-memory

transfer and read from during memory-toperipheral transfer. See
DMA_SxM0AR register below.

Bits 31:0 M0A[31:0]: memory 0 address
Base address of memory area 0 from/to which the data is read/written.
These bits are write-protected. They can be written only if:
– the stream is disabled (bit EN= '0' in the DMA_SxCR register) or
– the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '1' in
the DMA_SxCR register (in double-buffer mode).

Figure 13- 9: DMA Stream x Memory 0 Address Register (DMA_SxM0AR, x = 0..7)

DMA Stream Memory 1 Address Register (DMA_SxM1AR)
This register is used only when double buffer mode is enabled. It is used the
same way as the
previous register when buffer 1 is currently used. See DMA_SxM1AR
register below.

Bits 31:0 M1A[31:0]: memory 1 address (used in case of double-buffer
mode)
Base address of memory area 1 from/to which the data is read/written.
This register is used only for the double-buffer mode.
These bits are write-protected. They can be written only if:
– the stream is disabled (bit EN= '0' in the DMA_SxCR register) or

– the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '0' in
the DMA_SxCR register.

Figure 13- 10: DMA Stream x Memory 1 Address Register (DMA_SxM1AR, x = 0..7)

DMA Stream FIFO Register (DMA_SxFCR)
Each DMA stream has a FIFO (First-in-first-out buffer) associated with it to
improve the
performance. This register is used to configure the FIFO. See DMA_SxFCR
register below.

Bits 31:8 Reserved, must be kept at reset value.
Bit 7 FEIE: FIFO error interrupt enable

This bit is set and cleared by software.
0: FE interrupt disabled
1: FE interrupt enabled
Bit 6 Reserved, must be kept at reset value.
Bits 5:3 FS[2:0]: FIFO status
These bits are read-only.
000: 0 < fifo_level < 1/4
001: 1/4 ≤ fifo_level < 1/2
010: 1/2 ≤ fifo_level < 3/4
011: 3/4 ≤ fifo_level < full
100: FIFO is empty
101: FIFO is full
others: no meaning
These bits are not relevant in the direct mode (DMDIS bit is zero).
Bit 2 DMDIS: direct mode disable
This bit is set and cleared by software. It can be set by hardware.
0: direct mode enabled
1: direct mode disabled
This bit is protected and can be written only if EN is ‘0’.

This bit is set by hardware if the memory-to-memory mode is selected (DIR
bit in DMA_SxCR are “10”) and the EN bit in the DMA_SxCR register is
‘1’ because the direct mode is not allowed in the memory-to-memory
configuration.
Bits 1:0 FTH[1:0]: FIFO threshold selection
These bits are set and cleared by software.
00: 1/4 full FIFO
01: 1/2 full FIFO
10: 3/4 full FIFO
11: full FIFO
These bits are not used in the direct mode when the DMIS value is zero.
These bits are protected and can be written only if EN is ‘0’.

Figure 13- 11: DMA Stream x FIFO Control Register (DMA_SxFCR, x = 0..7)

DMA Use of Interrupt
The two registers of DMA_HISR and DMA_HIFCR allow us to use DMA
with interrupts. See
figures below.

Bits 31:28, 15:12 Reserved, must be kept at reset value.
Bits 27, 21, 11, 5 TCIFx: stream x transfer complete interrupt flag (x = 7..4)
This bit is set by hardware. It is cleared by software writing 1 to the
corresponding bit in the DMA_HIFCR register.
0: no transfer complete event on stream x
1: atransfer complete event occurred on stream x
Bits 26, 20, 10, 4 HTIFx: stream x half transfer interrupt flag (x = 7..4)
This bit is set by hardware. It is cleared by software writing 1 to the
corresponding bit in the DMA_HIFCR register.
0: no half transfer event on stream x
1: a half transfer event occurred on stream x

Bits 25, 19, 9, 3 TEIFx: stream x transfer error interrupt flag (x = 7..4)
This bit is set by hardware. It is cleared by software writing 1 to the
corresponding bit in the DMA_HIFCR register.
0: no transfer error on stream x
1: a transfer error occurred on stream x
Bits 24, 18, 8, 2 DMEIFx: stream x direct mode error interrupt flag (x =
7..4)
This bit is set by hardware. It is cleared by software writing 1 to the
corresponding bit in the DMA_HIFCR register.
0: no direct mode error on stream x
1: a direct mode error occurred on stream x
Bits 23, 17, 7, 1 Reserved, must be kept at reset value.
Bits 22, 16, 6, 0 FEIFx: stream x FIFO error interrupt flag (x = 7..4)
This bit is set by hardware. It is cleared by software writing 1 to the
corresponding bit in the DMA_HIFCR register.
0: no FIFO error event on stream x
1: a FIFO error event occurred on stream x

Figure 13-12: DMA High Interrupt Status Register (DMA_HISR)

Bits 31:28, 15:12 Reserved, must be kept at reset value.
Bits 27, 21, 11, 5 CTCIFx: stream x clear transfer complete interrupt flag (x
= 7..4)

Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_HISR
register. Bits 26, 20, 10, 4 CHTIFx: stream x clear half transfer interrupt
flag (x = 7..4)
Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_HISR
register. Bits 25, 19, 9, 3 CTEIFx: stream x clear transfer error interrupt flag
(x = 7..4)
Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_HISR
register.

Bits 24, 18, 8, 2 CDMEIFx: stream x clear direct mode error interrupt flag
(x = 7..4)
Writing 1 to this bit clears the corresponding DMEIFx flag in the
DMA_HISR register.
Bits 23, 17, 7, 1 Reserved, must be kept at reset value.
Bits 22, 16, 6, 0 CFEIFx: stream x clear FIFO error interrupt flag (x = 7..4)
Writing 1 to this bit clears the corresponding CFEIFx flag in the
DMA_HISR register.

Figure 13-13: DMA High Interrupt Flag Clear Register (DMA_HIFCR)
DMA Use of UART

We have not used any DMA option in all the UART2 examples we have
done so far. The DMA option of the UART is selected by the DMAT (DMA
transmitter) and DMAR (DMA receiver) bits in USART_CR3 register. See
figure below.

Bit 7 DMAT: DMA enable transmitter Bit 6 DMAR: DMA enable receiver
This bit is set/reset by software This bit is set/reset by software 1: DMA
mode is enabled for transmission. 1: DMA mode is enabled for reception 0:
DMA mode is disabled for transmission. 0: DMA mode is disabled for
reception

Figure 13-14: USART Control Register 3 (USART_CR3)
An Example of DMA Memory to USART2 Transmitter

In this example, we are going to configure the DMA controller to transfer
data from memory to USART2 Transmitter. USART2 is chosen because it is
connected to the virtual COM port of the ST-Link USB connection of the
NucleoF446 board. The transmit output will be available without additional
hardware.

From Table 13-1 in this chapter, we can see USART2_TX is connected to
Channel 4 of Stream 6 of DMA1.

The USART2 is initialized the same as in chapter 4. In addition, the transfer
complete interrupt is enabled. The DMA1 controller is initialized by
enabling the clock in RCC_AHB1ENR and the interrupt is enabled in NVIC.
Table 6-7 of interrupt chapter (Chapter 6) shows the IRQ 17 is assigned to
DMA1 Stream6 global interrupt.

Steps to configure a DMA stream
1. The DMA stream must be disabled before modifying the configuration. It
is disabled by writing a

0 to the EN bit of the Stream Control register then wait for the EN bit to read
back as 0. 2. The interrupt flags should be cleared.
3. The Peripheral Address Register is loaded with the address of USART2
Transmit Data Register. 4. The Memory 0 Address Register is loaded with
the starting address of the data buffer. 5. The Number of Data Register is
loaded with the byte count of the data buffer. 6. The channel select field is
set to the desired channel (in this case, channel 4). 7. Set the data size (in this
example, 8-bit), memory address increment, peripheral address no

increment, and direction (memory-to-peripheral).
8. Enable transfer complete interrupt and error interrupts.
9. Disable FIFO.
10. Enable DMA Stream.
11. Clear UART transmit complete interrupt flag by writing a 0 to it.
12. Enable USART2 DMA transmit by setting DMAT bit of Control Register
3.

Once the USART2 DMAT bit is set, the data transfer starts immediately.
When the data transfer is complete, both DMA interrupt and USART2
interrupt will occur. In practice, you may only need to handle one interrupt.
In that case, the DMA interrupt may be the more desirable one because it
also covers the DMA data transfer error interrupts. In the example program
below, we left a placeholder for error handling in the DMA interrupt handler.
The USART2 interrupt handler sets a flag for the main function to know that
the data transfer has completed.

Program 13-1: Send a string to USART2 by DMA /* p13_1.c Send a
string to USART2 by DMA

*

* USART2 transmit is on DMA1 Stream6 Channel 4.

* See Reference manual Table 28 RM0390 July 2017.

*

* USART2 Tx signal is connected to pin PA0. To see the output of

USART2 * on a PC, you need to use a USB-serial module. Connect the

Rx pin of * the module to the PA0 pin of the STM32F446 Nucleo board.

Make sure * the USB-serial module you use has a 3.3V interface.

*

* By default, the system clock is running at 16 MHz.

* The UART is configured for 9600 Baud.

* PA0 - USART2 TX (AF8)

*

* This program was tested with Keil uVision v5.24a with DFP v2.11.0

*/

#include "stm32F4xx.h"

void USART2_init(void);
void DMA1_init(void);
void DMA1_Stream6_setup(unsigned int src, unsigned int dst, int
len);

int done = 1;

int main (void) {
char alphabets[] = "abcdefghijklmnopqrstuvwxyz"; char message[80];
int i;
int size = sizeof(alphabets);

USART2_init(); DMA1_init();

while (1) {
/* prepare the message for transfer */ for (i = 0; i < size; i++)

message[i] = alphabets[i]; /* Configure PA2 for USART2_TX */
GPIOA->AFR[0] &= ~0x0F00;
GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x0030;
GPIOA->MODER |= 0x0020; /* enable alternate function for PA2 */

/* send the message out by USART2 using DMA */
while (done == 0) {} /* wait until DMA data transfer is done */ done
= 0; /* clear done flag */

DMA1_Stream6_setup((unsigned int)message, (unsigned int)&USART2->DR,
size);

}
}
/* Initialize UART pins, Baudrate

The USART2 is configured to send output to pin PA2 at 9600 Baud.

*/
void USART2_init (void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* enable USART2 clock */

USART2->BRR = 0x0683; /* 9600 baud @ 16 MHz */ USART2->CR1 = 0x0008;
/* enable Tx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop bit */
USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |= 0x2000;
/* enable USART2 */

USART2->SR = ~0x40; /* clear TC flag */
USART2->CR1 |= 0x0040; /* enable transmit complete interrupt */
NVIC_EnableIRQ(USART2_IRQn); /* USART2 interrupt enable at NVIC */ }

/* Initialize DMA1 controller
* DMA1 controller's clock is enabled and also the DMA interrupt is *
enabled in NVIC.
*/

void DMA1_init(void) {
RCC->AHB1ENR |= 0x00200000; /* DMA controller clock enable */ DMA1-
>HIFCR = 0x003F0000; /* clear all interrupt flags of Stream 6 */
NVIC_EnableIRQ(DMA1_Stream6_IRQn); /* DMA interrupt enable at NVIC
*/

}

/* Set up a DMA transfer for USART2
* The USART2 is connected to DMA1 Stream 6. This function sets up
the * peripheral register address, memory address, number of
transfers, * data size, transfer direction, and DMA interrupts are
enabled.
* At the end, the DMA controller is enabled and the USART2 transmit
* DMA is enabled.
*/

void DMA1_Stream6_setup(unsigned int src, unsigned int dst, int len)
{ DMA1_Stream6->CR &= ~1; /* disable DMA1 Stream 6 */
while (DMA1_Stream6->CR & 1) {} /* wait until DMA1 Stream 6 is
disabled */ DMA1->HIFCR = 0x003F0000; /* clear all interrupt flags
of Stream 6 */ DMA1_Stream6->PAR = dst;
DMA1_Stream6->M0AR = src;
DMA1_Stream6->NDTR = len;

DMA1_Stream6->CR = 0x08000000; /* USART2_TX on DMA1 Stream6 Channel
4 */ DMA1_Stream6->CR |= 0x00000440; /* data size byte, mem incr,
mem-to-peripheral */ DMA1_Stream6->CR |= 0x16; /* enable interrupts
DMA_IT_TC | DMA_IT_TE |

DMA_IT_DME */
DMA1_Stream6->FCR = 0; /* direct mode, no FIFO */
DMA1_Stream6->CR |= 1; /* enable DMA1 Stream 6 */

USART2->SR &= ~0x0040; /* clear UART transmit complete interrupt
flag */ USART2->CR3 |= 0x80; /* enable USART2 transmitter DMA */

}
have a placeholder for error handling code. If the interrupt is from
DMA data transfer complete, the DMA controller is disabled, the
interrupt flags are cleared.

/* DMA1 Stream6 interrupt handler
This function handles the interrupts from DMA1 controller Stream6.
The error interrupts

*/
void DMA1_Stream6_IRQHandler(void)
{

if (DMA1->HISR & 0x000C0000) /* if an error occurred */
while(1) {} /* substitute this by error handling */
DMA1->HIFCR = 0x003F0000; /* clear all interrupt flags of Stream 6
*/
DMA1_Stream6->CR &= ~0x10; /* disable DMA1 Stream 6 TCIE */ }

/* USART2 interrupt handler
* USART2 transmit complete interrupt is used to set the done flag to
signal * the other part of the program that the data transfer is
done. */

void USART2_IRQHandler(void)
{
USART2->SR &= ~0x0040; /* clear transmit complete interrupt flag */
done = 1; /* set the done flag */

An Example of DMA from ADC Peripheral to Memory

In this example, the ADC is triggered periodically by a timer (TIM2 Ch2).
The conversion results are stored in a buffer in the memory by DMA. When
the buffer is full, a transfer complete interrupt is generated by the DMA
controller to notify the program. Once it is set up, until the interrupt
acknowledgment, all these activities are done without the involvement of the
CPU.

This is very useful for data acquisition. Typically, the double buffered mode
will be used so that while the ADC data is transferred into one buffer, the
CPU can be processing the previous data in the other buffer. But for
simplicity, we used only a single buffer. When the buffer is full, the TIM2,
ADC, and DMA are stopped while the CPU is processing the data and send
them out through USART2.

Program 13-2: Acquire data from ADC by DMA
/* p13_2.c Acquire data from ADC by DMA
*
* The program sets up the timer TIM2 channel 2 to trigger ADC1 to *
convert the analog input channel 0. The output of the ADC1 is
transferred * to the buffer in memory by DMA. Once the buffer if
full, the DMA is * stopped. That data are converted to decimal ASCII
numbers and sent * to USART2 to be displayed on the console.
*
* A global variable, done, is used by the DMA transfer complete
interrupt * handler to signal the other part of the program that a
buffer full of * data conversion is done.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h" #include "stdio.h"

#define ADCBUFSIZE 64 void USART2_init (void); /* Initialize UART
pins, Baudrate */
void DMA2_init(void); /* Initialize DMA2 controller */
void DMA2_Stream0_setup(unsigned int src, unsigned int dst, int
len); /* set up a DMA transfer for ADC1 */
void TIM2_init(void); /* initialize TIM2 */
void ADC1_init(void); /* setup ADC */

int done = 1;
char adcbuf[ADCBUFSIZE]; /* buffer to receive DMA data transfers
from ADC conversion results */
char uartbuf[ADCBUFSIZE * 5]; /* buffer to hold ASCII numbers for
display */

int main(void) { int i;
char* p;

USART2_init(); DMA2_init(); TIM2_init(); ADC1_init();

while(1) {
done = 0; /* clear done flag */
/* start a DMA of ADC data transfer */
DMA2_Stream0_setup((uint32_t)adcbuf, (uint32_t)&(ADC1->DR),

ADCBUFSIZE); while (done == 0) {} /* wait for ADC DMA transfer
complete */

/* convert the ADC data into decimal ASCII numbers for display */ p
= uartbuf;
for (i = 0; i < ADCBUFSIZE; i++) {

sprintf(p, "%3d ", adcbuf[i]);
p += 4;
}

/* send the ADC numbers through USART2 to the console terminal */
for (i = 0; i < p - uartbuf; i++)
{

while (!(USART2->SR & 0x40)) {} USART2->DR = uartbuf[i]; }
}

}
/* Initialize TIM2
Timer TIM2 channel 2 is configured to generate PWM at 1 kHz. The
output of the timer signal is used to trigger ADC conversion.

/* Initialize ADC
ADC1 is configured to do 8-bit data conversion and triggered by
the rising edge of timer TIM2 channel 2 output.

*/
void ADC1_init(void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
GPIOA->MODER |= 3; /* PA0 analog */
RCC->APB2ENR |= 0x0100; /* enable ADC1 clock */
ADC1->CR1 = 0x2000000; /* 8-bit conversion */
ADC1->CR2 = 0x13000000; /* exten rising edge, extsel 3 = tim2.2 */
ADC1->CR2 |= 0x400; /* enable setting EOC bit after each conversion
/ ADC1->CR2 |= 1; / enable ADC1 */

}

*/
void TIM2_init(void) {
RCC->AHB1ENR |= 2; /* enable GPIOB clock */
GPIOB->MODER |= 0x80; /* PB3 timer2.2 out */
GPIOB->AFR[0] |= 0x1000; /* set pin for timer output mode */ RCC-
>APB1ENR |= 1; /* enable TIM2 clock */
TIM2->PSC = 160 - 1; /* divided by 160 */
TIM2->ARR = 100 - 1; /* divided by 100, sample at 1 kHz */ TIM2->CNT
= 0;
TIM2->CCMR1 = 0x6800; /* pwm1 mode, preload enable */ TIM2->CCER =
0x10; /* ch2 enable */
TIM2->CCR2 = 50 - 1;

}

/* Initialize DMA2 controller
* DMA2 controller's clock is enabled and also the DMA interrupt is *
enabled in NVIC.
*/

void DMA2_init(void) {
RCC->AHB1ENR |= 0x00400000; /* DMA2 controller clock enable */ DMA2-
>HIFCR = 0x003F; /* clear all interrupt flags of Stream 0 */
NVIC_EnableIRQ(DMA2_Stream0_IRQn); /* DMA interrupt enable at NVIC
*/

}

/* Set up a DMA transfer for ADC
* The ADC1 is connected to DMA2 Stream 0. This function sets up the
* peripheral register address, memory address, number of transfers,
* data size, transfer direction, and DMA interrupts are enabled.
* At the end, the DMA controller is enabled, the ADC conversion
* complete is used to trigger DMA data transfer, and the timer
* used to trigger ADC is enabled.
*/

void DMA2_Stream0_setup(unsigned int src, unsigned int dst, int len)
{ DMA2_Stream0->CR &= ~1; /* disable DMA2 Stream 0 */
while (DMA2_Stream0->CR & 1) {} /* wait until DMA2 Stream 0 is
disabled */ DMA2->HIFCR = 0x003F; /* clear all interrupt flags of
Stream 0 */ DMA2_Stream0->PAR = dst;
DMA2_Stream0->M0AR = src;
DMA2_Stream0->NDTR = len;
DMA2_Stream0->CR = 0x00000000; /* ADC1_0 on DMA2 Stream0 Channel 0
/ DMA2_Stream0->CR |= 0x00000400; / data size byte, mem incr,
peripheral-to-mem */ DMA2_Stream0->CR |= 0x16; /* enable interrupts
DMA_IT_TC | DMA_IT_TE |

DMA_IT_DME */
DMA2_Stream0->FCR = 0; /* direct mode, no FIFO */
DMA2_Stream0->CR |= 1; /* enable DMA2 Stream 0 */

ADC1->CR2 |= 0x0100; /* enable ADC conversion complete DMA data
transfer */
TIM2->CR1 = 1; /* enable timer2 */
}

/* DMA2 Stream0 interrupt handler

This function handles the interrupts from DMA2 controller Stream0.
The error interrupts
have a placeholder for error handling code. If the interrupt is from
DMA data
transfer complete, the DMA controller is disabled, the interrupt

flags are
cleared, the ADC conversion complete DMA trigger is turned off and
the timer
that triggers ADC conversion is turned off too.
*/
void DMA2_Stream0_IRQHandler(void)
{
if (DMA2->HISR & 0x000C) /* if an error occurred */ while(1) {} /*
substitute this by error handling */

DMA2_Stream0->CR = 0; /* disable DMA2 Stream 0 */ DMA2->LIFCR =
0x003F; /* clear DMA2 interrupt flags */ ADC1->CR2 &= ~0x0100; /*
disable ADC conversion complete DMA */ TIM2->CR1 &= ~1; /* disable
timer2 */

done = 1; }

/* Initialize UART pins, Baudrate
The USART2 is configured to send output to pin PA2 at 9600 Baud.
This is used to display the ADC conversion results on the console
terminal.

*/
void USART2_init (void) {
RCC->AHB1ENR |= 1; /* enable GPIOA clock */
RCC->APB1ENR |= 0x20000; /* enable USART2 clock */

/* Configure PA2 for USART2_TX */
GPIOA->AFR[0] &= ~0x0F00;
GPIOA->AFR[0] |= 0x0700; /* alt7 for USART2 */
GPIOA->MODER &= ~0x0030;
GPIOA->MODER |= 0x0020; /* enable alternate function for PA2 */

USART2->BRR = 0x0683; /* 9600 baud @ 16 MHz */ USART2->CR1 = 0x0008;
/* enable Tx, 8-bit data */ USART2->CR2 = 0x0000; /* 1 stop bit */
USART2->CR3 = 0x0000; /* no flow control */ USART2->CR1 |= 0x2000;
/* enable USART2 */

Review Questions
1. True or false. STM32F4xx Arm has 2 DMA Controllers.
2. In STM32F4xx Arm, how many streams can we have?
3. True or false. STM32F4xx can do only memory-to memory data transfer
using DMA.
4. In STM32F4xx Arm, what is the maximum number of data that can be
transferred using DMA?
5. In STM32F4xx Arm, why do we use byte size data when we use DMA to
UART2 data transfer?

Answer to Review Questions

Section 13.1: Concept of DMA
1. True
2. True
3. True

Section 13.2: DMA Programming in STM32
1. True
2. 6
3. False
4. 65535
5. Because UART2 can only accept byte size data. Although DMA can
transfer/receive 4 bytes at a time

Appendix A: IC Interfacing, System Design, and Failure
Analysis
See our website:

http://www.MicroDigitalEd.com/ARM/STM_ARM
_books.html

Appendix B: Pin Alternate Function for STM Arm
STM32F446RE LQFP64 Package

The following pages show Alternate Pin Functions Table for STM32F446RE
chip. Please check the alternate pin function for your device in the
STM32F4xx datasheet. Notice that your device might be different from
STM32F446RE.

Figure B – 1:
STM32F4xx LQFP 64 pinout used in Nucleo-F446RE board

Table B - 1: STM32F446RE Alternative Functions (AF0-AF15) Pin Selection

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

Figure B - 2: GPIOx_MODER (GPIO Mode) for Direction Register (x=A, B, C,..)

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFRLy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12
0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

Figure B - 3: GPIOx_AFRL (GPIOx Alternate Function Low) register to select alternate pin
functions

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)
These bits are written by software to configure alternate function I/Os
AFRHy selection:
0000: AF0 1000: AF8
0001: AF1 1001: AF9
0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12
0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

Figure B - 4: GPIOx_AFRH (GPIOx Alternate Function High) register to select alternate pin
functions 269 -8.4.10

Appendix C: STM32F4xx Clock and SYSCLK

Although clock circuits of the devices in the STM32F4xx family are very
similar, they all have a different maximal frequency for each clock. In this
appendix, all the clock frequencies are based on the STM32F466 devices.
Please consult the datasheet and the reference manual for other devices.

There are two possible clock sources for the system clock of a STM32F4xx
device. One is an on-chip RC circuit oscillator. The other is from an external
crystal oscillator or ceramic resonator. The RC oscillator comes with the
device without the need of additional components but it is not very accurate
nor stable. In using a crystal oscillator, we can get very accurate clock source
but it requires additional component like the crystal or the resonator.

In STM32F4xx Arm, the SYSCLK (system clock) is the clock that runs the
CPU and most of the peripherals such as ADC, Timer, USART, and so on.
The SYSCLK comes from the internal clock source or the external clock
source directly or through the Phase Lock Loop (PLL). They are:

1. HSI (High Speed Internal) RC oscillator clock.
2. HSE (High Speed External) oscillator clock using a crystal value of 4

MHz to 26 MHz.
3. One of the outputs of the PLL circuit.

There are also two low-speed clock sources of LSI (low speed internal) and
LSE (low speed external). By external, it means the clock source comes
from an external device such as a crystal oscillator or a signal generator. But
these two clock sources are used for Real Time Clock and Watch Dog Timer
only.

First, we will examine the high-speed clock sources. The low-speed clock
sources are reviewed later.

Figure C-1:
STM32F466RE Clock Sources
When not in use, these clock sources can be switched off independently to
reduce the power consumption.

HSI Clock and SYSCLK

The HSI clock signal is generated from an internal 16 MHz RC oscillator. It
can be used directly as a system clock or used as PLL input. The HSI RC
oscillator has the advantage of providing a clock source at low cost (no
external components required). It has a faster startup time than the HSE
oscillator. The HSI frequency is not as accurate or stable as a crystal
oscillator or a ceramic resonator. But it has an advantage that when the

device is powered up or reset, the HIS is always present and has a known
default frequency of 16MHz.

The HIS oscillator can be turned on or off by the HSION bit (bit 0) of the
RCC_CR (Reset and Clock Control
- Control Register). After turning on the HSI oscillator, it is necessary to
wait until HSIRDY bit (bit 1) is set before switching to use HSI.

The HSION and HSIRDY bits are shown in Figure C-2 ().

Bits 31:28 Reserved, must be kept at reset value. Bit 29 PLLSAIRDY: PLLSAI clock ready flag
Set by hardware to indicate that the PLLSAI is locked. 0: PLLSAI unlocked
1: PLLSAI locked
Bit 28 PLLSAION: PLLSAI enable
Set and cleared by software to enable PLLSAI. Cleared by hardware when entering Stop or Standby
mode.
0: PLLSAI OFF
1: PLLSAI ON
Bit 27 PLLI2SRDY: PLLI2S clock ready flag
Set by hardware to indicate that the PLLI2S is locked. 0: PLLI2S unlocked
1: PLLI2S locked
Bit 26 PLLI2SON: PLLI2S enable
Set and cleared by software to enable PLLI2S. Cleared by hardware when entering Stop or Standby
mode.
0: PLLI2S OFF
1: PLLI2S ON
Bit 25 PLLRDY: Main PLL (PLL) clock ready flag Set by hardware to indicate that PLL is locked. 0:
PLL unlocked
1: PLL locked
Bit 24 PLLON: Main PLL (PLL) enable
Set and cleared by software to enable PLL.

Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL clock is
used as the system clock.
0: PLL OFF
1: Bits 23:20 Reserved, must be kept at reset value. Bit 19 CSSON: Clock security system enable
Set and cleared by software to enable the clock security system. When CSSON is set, the clock
detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if an
oscillator failure is detected.
0: Clock security system OFF (Clock detector OFF) 1: Clock security system ON (Clock detector ON

if HSE oscillator is stable, OFF if not)
Bit 18 HSEBYP: HSE clock bypass
Set and cleared by software to bypass the oscillator with an external clock. The external clock must be
enabled with the HSEON bit, to be used by the device.
The HSEBYP bit can be written only if the HSE oscillator is disabled.
0: HSE oscillator not bypassed
1: HSE oscillator bypassed with an external clock Bit 17 HSERDY: HSE clock ready flag
Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared,
HSERDY goes low after 6 HSE oscillator clock cycles. 0: HSE oscillator not ready
1: HSE oscillator ready

Bit 16 HSEON: HSE clock enable
Set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot
be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON
Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration These bits are initialized automatically
at startup. Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming These bits provide an
additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be
programmed to adjust to variations in voltage and temperature that influence the frequency of the
internal HSI RC.
Bit 2 Reserved, must be kept at reset value.
Bit 1 HSIRDY: Internal high-speed clock ready flag Set by hardware to indicate that the HSI
oscillator is stable. After the HSION bit is cleared,
HSIRDY goes low after 6 HSI clock cycles.
0: HSI oscillator not ready
1: HSI oscillator ready
Bit 0 HSION: Internal high-speed clock enable
Set and cleared by software.
Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in case of a
failure of the HSE oscillator used directly or indirectly as the system clock. This bit cannot be cleared
if the HSI is used directly or indirectly as the system clock.
0: HSI oscillator OFF
1: HSI oscillator ON PLL ON

Figure C-2: RCC_CR (RCC Control Register) for Enabling Clock Sources

From Figure C-2, you see the reset value is 0x83. The lower 2 bits are 11
(HSION=1, HSIRDY=1) meaning the RC 16MHz HSI is the source of the
clock for the system upon Power-on Reset. The HSIRDY bit indicates that
the HSI oscillator is stable and ready to be used. We can switch the default
clock source of HSI to External clock source of HSE or PLL, as we will see
later.

SYSCLK and Peripheral Clocks

The CPU and peripheral bus clocks are derived from the System Clock
(SYSCLK). Figure C-3 shows several prescalers to configure the AHB
clock, the high-speed APB (APB2) and the low-speed APB (APB1)
domains. Each peripheral clock can be enabled independently. Notice from
Figures C-3, the SYSCLK goes first through the AHB prescaler. The lowest
value for the AHB prescaler can divide by is 1 and the highest is 512. The
HPRE bits (bit 7 – bit 4) of RCC_CFGR register dictate the AHB prescaler
value. The output of the AHB prescaler is the HCLK that goes to the CPU
core, memory, and the DMA. In an STM32F466, the highest frequency
HCLK will run is 180 MHz.

The APB1 peripheral clock is the HCLK divided by the APB1 Prescaler.
The APB1 Prescaler is determined by the PPRE1 bits (bit 12 – bit 10) of
RCC_CFGR. It can divide the HCLK by 1, 2, 4, 8, or 16. The highest
frequency the APB1 peripherals will run is 45 MHz but the timers on APB1
bus runs at twice the frequency of other APB1 peripherals and has the
highest frequency of 90 MHz.

The APB2 peripheral clock is the HCLK divided by the APB2 Prescaler.
The APB2 Prescaler is determined by the PPRE2 bits (bit 15 – bit 13) of
RCC_CFGR. It can divide the HCLK by 1, 2, 4, 8, or 16. The highest
frequency the APB2 peripherals will run is 90 MHz but the timers on APB2
bus runs at twice the frequency of other APB2 peripherals and has the
highest frequency of 180 MHz.

The default values after power-on reset for all these prescaler is no division.

Figure C-3: Clock Generation for peripherals to CPU and peripherals

Bits 31:30 MCO2[1:0]: Microcontroller clock output 2 Set and cleared by software. Clock source
selection may generate glitches on MCO2. It is highly recommended to configure these bits only after
reset before enabling the external oscillators and the PLLs.
00: System clock (SYSCLK) selected
01: PLLI2S clock selected
10: HSE oscillator clock selected
11: PLL clock selected
Bits 27:29 MCO2PRE: MCO2 prescaler
Set and cleared by software to configure the prescaler of the MCO2. Modification of this prescaler
may generate glitches on MCO2. It is highly recommended to change this prescaler only after reset
before enabling the external oscillators and the PLLs.
0xx: no division
100: division by 2
101: division by 3
110: division by 4
111: division by 5
Bits 24:26 MCO1PRE: MCO1 prescaler
Set and cleared by software to configure the prescaler of the MCO1. Modification of this prescaler
may generate glitches on MCO1. It is highly recommended to change this prescaler only after reset
before enabling the external oscillators and the PLL.
0xx: no division
100: division by 2
101: division by 3
110: division by 4
111: division by 5
Bit 23 Reserved, must be kept at reset value.
Bits 22:21 MCO1: Microcontroller clock output 1 Set and cleared by software. Clock source selection
may generate glitches on MCO1. It is highly recommended to configure these bits only after reset
before enabling the external oscillators and PLL.
00: HSI clock selected
01: LSE oscillator selected
10: HSE oscillator clock selected
11: PLL clock selected
Set and cleared by software to control APB high-speed clock division factor.
Caution: The software has to set these bits correctly not to exceed 90 MHz on this domain.
The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
PPRE2 write.
0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16

Bits 12:10 PPRE1: APB Low speed prescaler (APB1) Set and cleared by software to control APB
low-speed clock division factor.
Caution: The software has to set these bits correctly not to exceed 45 MHz on this domain.
The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
PPRE1 write.
0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16
Bits 9:8 Reserved, must be kept at reset value.

Bits 20:16 RTCPRE: HSE division factor for RTC clock Set and cleared by software to divide the
HSE clock input clock to generate a 1 MHz clock for RTC.
Caution: The software has to set these bits correctly to ensure that the clock supplied to the
RTC is 1 MHz. These bits must be configured if needed before selecting the RTC clock source.
00000: no clock
00001: no clock
00010: HSE/2
00011: HSE/3
00100: HSE/4
...
11110: HSE/30
11111: HSE/31
Bits 15:13 PPRE2: APB high-speed prescaler (APB2)

Bits 7:4 HPRE: AHB prescaler
Set and cleared by software to control AHB clock division factor.
Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
HPRE write.
Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used.
0xxx: system clock not divided
1000: system clock divided by 2
1001: system clock divided by 4
1010: system clock divided by 8
1011: system clock divided by 16
1100: system clock divided by 64
1101: system clock divided by 128
1110: system clock divided by 256
1111: system clock divided by 512
Bits 3:2 SWS[1:0]: System clock switch status
Set and cleared by hardware to indicate which clock source is used as the system clock.
00: HSI oscillator used as the system clock
01: HSE oscillator used as the system clock
10: PLL used as the system clock
11: PLL_R used as the system clock
Bits 1:0 SW[1:0]: System clock switch
Set and cleared by software to select the system clock source.
Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of
failure of the HSE oscillator used directly or indirectly as the system clock. 00: HSI oscillator selected
as system clock

01: HSE oscillator selected as system clock
10: PLL_P selected as system clock
11: PLL_R selected as system clock

Figure C-4: RCC_CFGR (Clock Configuration Register) Clock Select Register bit assignment
From Figure C-4, notice the lower 2 bits (SW) bit of the RCC clock
configuration register (RCC_CFGR) can be used to switch the default clock
source of HSI to External clock source of HSE or PLL.

HSE Clock and SYSCLK

In STM32F4xx Arm, the high-speed external clock signal (HSE) can be
generated from two possible clock sources. They are:
1) HSE external active clock and
2) HSE external crystal/ceramic resonator.

When an external active clock is used, it is connected to the OSC_in pin and
the OSC_out pin is left open. The HSEBYP and HSEON bits in RCC_CR
(RCC clock control register) should be set. This way, the external clock
becomes the HSE clock. In this mode, the HSE accepts external clock
ranging from 1 MHz to 50 MHz.

When a passive crystal oscillator or a ceramic resonator is used, the HSE
circuit can become an oscillator based on the external device. The external
device is connected to the OSC_in and OSC_out pins. The HSEON bit in the
RCC_CR should be set and the HSEBYP bit should be cleared. The HSE
oscillator takes some time to start up and become stable. This is indicated by
the HSERDY (HSE clock ready flag) bit in the RCC_CR. The software must
wait until HSERDY is set before using HSE clock source. The HSE
oscillator can support a frequency range of 4MHz to 26MHz.

Figure C-5:
HSE clock sources

A major advantage of HSE over the HSI is the fact that we can produce a
very accurate clock rate for the SYSCLK clock and peripheral clocks. In
some applications such as USB, the serial communication clock needs to be
more accurate than what HSI can supply. The other advantage is it can go
beyond 16MHz of HSI.

On the Nucleo-446RE board, the STLINK processor uses an external 8 MHz
crystal oscillator for the HSE clock source. It produces the MCO
(Microcontroller Clock Out, will be discussed later) that feeds into the target
MCU as an external active clock on HSE. In this design, it only needs one
crystal oscillator for two processors.

PLL Clock and SYSCLK

The Phase Lock Loop (PLL) is a circuit that may generate a wide range of
frequency based on a single input frequency. The STM32F4xx device has a
PLL circuit that may be used for the generation of the SYSCLK. This PLL
circuit takes an input signal from either HSI or HSE. It has four
dividers/multiplier M, N, P, and R that are pertaining to the SYSCLK. The
values of M, N, P, and R are set in the RCC_PLLCFGR register. The
SYSCLK takes one of the two outputs PLLCLK and PLLR from the PLL
circuit.

For PLLCLK, the output frequency is the input frequency divided by M,
multiplied by N then divided by P. M has the range of 2 to 63. N has the
range of 50 to 432. P has the range of 2 to 8. Together they can produce large
choices of SYSCLK frequencies.

For example, as on the Nucleo-446RE board, the external 8 MHz clock can
be used as the HSE with bypass set. One combination of the PLL settings is
M = 4, N = 180, and P = 2. This produces 8 ������ / 4 × 180 / 2 =
180 ������

as the output PLLCLK. There are other combinations that may produce the
same output frequency mathematically but not all the combinations are
operable with the PLL circuit. The MCO is a valuable tool to verify the
PLLCLK frequency and we will discuss that later.

The PLLR output is similar to PLLCLK except it uses M, N, and R to
determine the frequency.
Like HSI and HSE, the PLL output takes time to become stable after it is
enabled. The software must wait for the PLLRDY bit to become set before
switching to use PLLCLK.

Although with PLL the SYSCLK may go as high as 180 MHz, the on-chip
flash memory will not keep up with it without inserting wait states in flash
access at higher clock rate. Wait states are inserted by configuring the
FLASH_ACR register. The number of wait states needed depends on the
SYSCLK rate and the voltage the device is running. The value can be found
in the device’s reference manual. It does not improve the performance of the
device if the high clock rate CPU is waiting for the flash access all the time.
So the caches and prefetch should be enabled when wait states are inserted.
They can be accomplished at the FLASH_ACR register also.

LSI and LSE Clocks

In STM32F4xx Arm, we also have LSI (low speed internal) and LSE (low
speed external) clock sources in addition to HSI, HSE and PLL.
The LSI is an RC-based low-power clock source with a clock frequency of
around 32 kHz. This allows the system to keep running in Stop and Standby
mode to save power without losing any information.

The LSE clock is intended to generate a clock from a 32.768 kHz external
crystal or ceramic resonator. It is used to provide a low-power but highly
accurate clock source to the real-time clock peripheral (RTC) for
clock/calendar or other timing functions.

It must be noted that there are separate pins for connection of crystal
oscillator to generate the LSE frequency. They are called OSC32_in and
OSC32_out. On the Nucleo-446RE board, the OSC32_in and OSC32_out
pins are connected to a crystal oscillator of 32.768 KHz. To explore the LSI
and LSE options further, see STM32F4xx reference manual and user manual
of your board.

Figure C-6: LSI and LSE clock sources

Clocks Output Pins

The STM32F4xx gives us the option of connecting some of the clock signals
of the clock circuit to one of the two pins. This is called Microcontroller
Clock Output (MCO). There are two microcontroller clock output (MCO)
pins, MCO1 and MCO2.

MCO1 (microcontroller clock output 1)

We can select one of the four clock signals for the MCO1 pin (PA8) with
following options:

– HSI clock
– LSE clock
– HSE clock
– PLLCLK clock

Figure C-7: MCO1 Clock Output Pin

The desired clock source is selected using the MCO1 (Microcontroller clock
output 1) bits in the RCC clock configuration register (RCC_CFGR). The
MCO1PRE bits of the same register allow prescaler divisions of 1, 2, 3, 4
and 5.

The output pin also needs to be configured for the selected signal to appear
on the pin. PA8 must be configured to use Alternate Function 0 using
GPIOA_MODER and GPIOA_AFRH registers. Most of the clock selections
have very high frequencies. The output pin frequency needs to be set in
GPIOA_OSPEEDR to match the clock frequency.

MCO2 (microcontroller clock output 2)

We can select one of the four clock signals for the MCO2 pin (PC9) with
following options:

– SYSCLK clock
– PLLI2S clock
– HSE clock
– PLL clock

Figure C-8: MCO2 Clock Output Pin
The desired clock source is selected using the MCO2 bits in the RCC clock
configuration register (RCC_CFGR). The MCO2PRE bits of the
RCC_CFGR register allow prescaler divisions of 1, 2, 3, 4 and 5. Again, the
output pin PC9 needs to be configured to match the signal.

Sample Code for 180 MHz SYSCLK

The following sample program configures the MCU of the Nucleo-446RE to
use the 8 MHz clock of the STLINK as the HSE clock source and the PLL
output at 180 MHz. The SYSCLK is divided by 5 (36 MHz) and comes out
on MCO1 pin (PA8)

/* Program to configure SYSCLK to 180 MHz using PLL
* based on HSE with 8 MHz external clock
*
* Pin PA8 is used to monitor SYSCLK / 5 and should be 36 MHz.
*
* This program was tested with Keil uVision v5.24a with DFP v2.11.0
*/

#include "stm32f4xx.h"

int main(void) {
/* set up to monitor clock on MCO1 pin */
RCC->AHB1ENR |= 1; /* enable GPIOA clock */ RCC->CFGR &=
~0x07E00000;
RCC->CFGR |= 0x07600000; /* MCO1 (PA8) = SYSCLK / 5 */ GPIOA->MODER
|= 0x00020000;
GPIOA->AFR[1] &= ~3;
GPIOA->OSPEEDR |= 3 << 8 * 2; /* output high speed */

RCC->CR &= ~0x000F0000; /* set HSE_ON */ RCC->CR |= 0x00010000;
while(!(RCC->CR & 0x00020000)) {} /* wait until HSE_RDY */

RCC->CFGR &= ~0x00000003; /* use HSI for system clock while
configuring PLL */ RCC->PLLCFGR = 0x00402D04; /* configure PLL, SRC
= HSE, P = 2, N = 180, M = 4 */ RCC->CR |= 0x01000000; /* turn on
PLL */
while(!(RCC->CR & 0x02000000)) {} /* wait until PLL_RDY */

FLASH->ACR = 0x0705; /* insert 5 flash wait states and enable caches
/ RCC->CFGR &= ~0x000000F0; / AHB prescaler (HPRE) = 0 */
RCC->CFGR |= 0x00000002; /* use PLL for system clock */
while((RCC->CFGR & 0x0C) != 0x08) {} /* wait until PLL ready for
system clock */

while(1) { }
}

Peripheral Enable Registers

To save power, the SYSCLK clocks to the peripherals are disabled upon
power-on Reset. The clock to the peripheral must be enabled before

attempting access to the peripheral registers of that module. The next few
figures show these registers.

Bit 31 Reserved, must be kept at reset value.
Bit 30 OTGHSULPIEN: USB OTG HSULPI clock enable This bit is set and cleared by software.
0: USB OTG HS ULPI clock disabled
1: USB OTG HS ULPI clock enabled
Bit 29 OTGHSEN: USB OTG HS clock enable
This bit is set and cleared by software.
0: USB OTG HS clock disabled
1: USB OTG HS clock enabled
Bits 28:23 Reserved, must be kept at reset value. Bit 22 DMA2EN: DMA2 clock enable
This bit is set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled
Bit 21 DMA1EN: DMA1 clock enable
This bit is set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled
Bits 20:19 Reserved, must be kept at reset value. Bit 18 BKPSRAMEN: Backup SRAM interface
clock enable This bit is set and cleared by software.
0: Backup SRAM interface clock disabled
1: Backup SRAM interface clock enabled
Bits 17:13 Reserved, must be kept at reset value. Bit 12 CRCEN: CRC clock enable
This bit is set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled
Bits 11:8 Reserved, must be kept at reset value. 0: IO port H clock disabled
1: IO port H clock enabled
Bit 6 GPIOGEN: IO port G clock enable This bit is set and cleared by software. 0: IO port G clock
disabled
1: IO port G clock enabled
Bit 5 GPIOFEN: IO port F clock enable This bit is set and cleared by software. 0: IO port F clock
disabled
1: IO port F clock enabled
Bit 4 GPIOEEN: IO port E clock enable This bit is set and cleared by software. 0: IO port E clock
disabled
1: IO port E clock enabled
Bit 3 GPIODEN: IO port D clock enable This bit is set and cleared by software. 0: IO port D clock
disabled
1: IO port D clock enabled

Bit 2 GPIOCEN: IO port C clock enable This bit is set and cleared by software. 0: IO port C clock
disabled
1: IO port C clock enabled
Bit 1 GPIOBEN: IO port B clock enable This bit is set and cleared by software. 0: IO port B clock
disabled
1: IO port B clock enabled
Bit 0 GPIOAEN: IO port A clock enable This bit is set and cleared by software. 0: IO port A clock
disabled
1: IO port A clock enabled

Bit 7 GPIOHEN: IO port H clock enable This bit is set and cleared by software.
Fig C-9: RCC AHB1 peripheral clock enable register

Bits 31:30 Reserved, must be kept at reset value. Bit 29 DACEN: DAC interface clock enable This bit
is set and cleared by software.

0: DAC interface clock disabled
1: DAC interface clock enable
Bit 28 PWREN: Power interface clock enable

This bit is set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable
Bit 27 CECEN: CEC interface clock enable This bit is set and cleared by software.
0: CEC interface clock disabled
1: CEC interface clock enabled
Bit 26 CAN2EN: CAN 2 clock enable This bit is set and cleared by software.
0: CAN 2 clock disabled
1: CAN 2 clock enabled
Bit 25 CAN1EN: CAN 1 clock enable This bit is set and cleared by software.
0: CAN 1 clock disabled
1: CAN 1 clock enabled
Bit 24 FMPI2C1EN: FMPI2C1 clock enable This bit is set and cleared by software.
0: FMPI2C1 clock disabled
1: FMPI2C1 clock enabled
Bit 23 I2C3EN: I2C3 clock enable
This bit is set and cleared by software.
0: I2C3 clock disabled
1: I2C3 clock enabled
Bit 22 I2C2EN: I2C2 clock enable
This bit is set and cleared by software.
0: I2C2 clock disabled

1: I2C2 clock enabled
Bit 21 I2C1EN: I2C1 clock enable
This bit is set and cleared by software.
0: I2C1 clock disabled
1: I2C1 clock enabled

Bit 20 UART5EN: UART5 clock enable This bit is set and cleared by software. 0: UART5 clock
disabled
1: UART5 clock enabled
Bit 19 UART4EN: UART4 clock enable This bit is set and cleared by software. 0: UART4 clock
disabled
1: UART4 clock enabled
Bit 18 USART3EN: USART3 clock enable This bit is set and cleared by software. 0: USART3 clock
disabled
1: USART3 clock enabled
Bit 17 USART2EN: USART2 clock enable This bit is set and cleared by software. 0: USART2 clock
disabled
1: USART2 clock enabled
Bit 16 SPDIFRXEN: SPDIF-Rx clock enable This bit is set and cleared by software. 0: SPDIF-Rx
clock disabled
1: SPDIF-Rx clock enabled
Bit 15 SPI3EN: SPI3 clock enable
This bit is set and cleared by software.
0: SPI3 clock disabled
1: SPI3 clock enabled
Bit 14 SPI2EN: SPI2 clock enable
This bit is set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled
Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGEN: Window watchdog clock enable
This bit is set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled
Bits 10:9 Reserved, must be kept at reset value. Bit 8 TIM14EN: TIM14 clock enable
This bit is set and cleared by software.
0: TIM14 clock disabled
1: TIM14 clock enabled
Bit 7 TIM13EN: TIM13 clock enable
This bit is set and cleared by software.
0: TIM13 clock disabled
1: TIM13 clock enabled
Bit 6 TIM12EN: TIM12 clock enable
This bit is set and cleared by software.
0: TIM12 clock disabled
1: TIM12 clock enabled

Bit 5 TIM7EN: TIM7 clock enable This bit is set and cleared by software. 0: TIM7 clock disabled
1: TIM7 clock enabled
Bit 4 TIM6EN: TIM6 clock enable This bit is set and cleared by software. 0: TIM6 clock disabled
1: TIM6 clock enabled
Bit 3 TIM5EN: TIM5 clock enable This bit is set and cleared by software. 0: TIM5 clock disabled

1: TIM5 clock enabled
Bit 2 TIM4EN: TIM4 clock enable This bit is set and cleared by software. 0: TIM4 clock disabled
1: TIM4 clock enabled
Bit 1 TIM3EN: TIM3 clock enable This bit is set and cleared by software. 0: TIM3 clock disabled
1: TIM3 clock enabled
Bit 0 TIM2EN: TIM2 clock enable This bit is set and cleared by software. 0: TIM2 clock disabled
1: TIM2 clock enabled

Bits 31:24 Reserved, must be kept at reset value. Bit 23 SAI2EN: SAI2 clock enable
This bit is set and cleared by software.
0: SAI2 clock disabled
1: SAI2 clock enabled
Bit 22 SAI1EN: SAI1 clock enable
This bit is set and cleared by software.
0: SAI1 clock disabled
1: SAI1 clock enabled
Bits 21:19 Reserved, must be kept at reset value. Bit 18 TIM11EN: TIM11 clock enable
This bit is set and cleared by software.
0: TIM11 clock disabled
1: TIM11 clock enabled
Bit 17 TIM10EN: TIM10 clock enable
This bit is set and cleared by software.
0: TIM10 clock disabled
1: TIM10 clock enabled
Bit 16 TIM9EN: TIM9 clock enable
This bit is set and cleared by software.
0: TIM9 clock disabled
1 Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGEN: System configuration controller
clock enable
This bit is set and cleared by software.
0: System configuration controller clock disabled 1: System configuration controller clock enabled Bit
13 SPI4EN: SPI4 clock enable
This bit is set and cleared by software.

0: SPI4 clock disabled
1: SPI4 clock enabled
Bit 12 SPI1EN: SPI1 clock enable
This bit is set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled
Bit 11 SDIOEN: SDIO clock enable
This bit is set and cleared by software.
0: SDIO module clock disabled
1: SDIO module clock enabled
Bit 10 ADC3EN: ADC3 clock enable
This bit is set and cleared by software.
0: ADC3 clock disabled
1: Bit 9 ADC2EN: ADC2 clock enable
This bit is set and cleared by software.
0: ADC2 clock disabled
1: ADC2 clock disabled
Bit 8 ADC1EN: ADC1 clock enable
This bit is set and cleared by software.
0: ADC1 clock disabled
1: ADC1 clock disabled
Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6EN: USART6 clock enable
This bit is set and cleared by software.
0: USART6 clock disabled
1: USART6 clock enabled
Bit 4 USART1EN: USART1 clock enable
This bit is set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled
Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8EN: TIM8 clock enable
This bit is set and cleared by software.
0: TIM8 clock disabled
1: TIM8 clock enabled
Bit 0 TIM1EN: TIM1 clock enable
This bit is set and cleared by software.
0: TIM1 clock disabled
1: TIM1 clock enabled ADC3 clock disabled: TIM9 clock enabled

	Chapter 1 : C for Embedded Systems
	Chapter 2 : STM Arm I / O Programming
	Chapter 3 : LCD and Keyboard Interfacing
	Chapter 4 : UART Serial Port Programming
	Chapter 5 : STM Arm Timer Programming
	Chapter 6 : Interrupt and Exception Programming
	Chapter 7 : ADC , DAC , and Sensor Interfacing
	Chapter 8 : SPI Protocol and DAC Interfacing
	Chapter 9 : I2C Protocol and RTC Interfacing
	Chapter 10 : Relay , Optoisolator , and Stepper Motor Interfacing
	Chapter 11 : PWM and DC Motor Control
	Chapter 12 : Programming Graphic LCD
	Chapter 13 : DMA Programming

