
Networking 101
A Beginner's Guide to OSI Model, HTTP, HTTPS, WS, WSS, and SSL/TLS

www.embedthreads.in

OSI Model: Introduction

TRANSPORT Divides data into Segment, Error Correction

APPLICATION

PRESENTATION

Protocols Definition (HTTP/S, SMTP, FTP and etc.)

Encryption, Compression, Conversion

Establish and Terminate CommunicationsSESSION

PHYSICAL

NETWORK

Data Link

Logical addressing, Routing

Formats data into frames, MAC addressing

Electrical Signals, Bits, DAC/ADC

SSL/TLS

TCP/UDP

IP

Media

Head of Model

HTTP: Introduction

• HTTP and Web Socket both are communication protocols used in client-server communication.

• HTTP is stateless, unidirectional, and runs on top of TCP. Clients send requests, servers respond, and the
connection closes after the response.

• The most commonly used HTTP request methods are GET, POST, PUT, PATCH, and DELETE.

• HTTP messages are encoded in ASCII and contain information such as protocol version, methods, headers,
and message body.

• Versions: HTTP1.0, HTTP1.1, HTTP2.0, HTTP3.0

Status Code

Headers

Body

Method Type URL Version

Headers

Body

Request Packet Structure Response Packet Structure

HTTP POST Request & Response

Method Type URL Version

Headers

Body

Status Code

Headers

Body

Version

HTTP GET Request & Response

Method Type URL Version

Headers

Body

Status Code

Headers

Body

Version

HTTP Different Versions

HTTP1.0 HTTP1.1 HTTP2.0

Why we need Web Socket
???

WebSocket: Introduction

• WebSocket is a bidirectional, full-duplex protocol
used for client-server communication. Unlike HTTP, it
starts with "ws://" or "wss://" and maintains a
stateful connection.

• WebSocket is initiated through handshaking between
the client and server, creating a new connection.

• The status code 101 indicates the protocol switch to
WebSocket.

• The connection remains active until terminated by
either the client or server.

• WebSocket uses a lightweight message format for
sending and receiving data of various types, allowing
independent transmission without waiting for a
response.

When can a web socket be used

• Real-time web application: Real-time web application uses a web socket to show the data at the client end,
which is continuously being sent by the backend server. In WebSocket, data is continuously
pushed/transmitted into the same connection which is already open, that is why WebSocket is faster and
improves the application performance.
For e.g. in a trading website or bitcoin trading, for displaying the price fluctuation and movement data is
continuously pushed by the backend server to the client end by using a WebSocket channel.

• Gaming application: In a Gaming application, you might focus on that, data is continuously received by the
server, and without refreshing the UI, it will take effect on the screen, UI gets automatically refreshed
without even establishing the new connection, so it is very helpful in a Gaming application.

• Chat application: Chat applications use WebSockets to establish the connection only once for exchange,
publishing, and broadcasting the message among the subscribers. It reuses the same WebSocket connection,
for sending and receiving the message and for one-to-one message transfer.

Difference between HTTP and WebSocket

WebSocket Connection HTTP Connection

• WebSocket is a bidirectional communication
protocol that can send the data from the client to
the server or from the server to the client by reusing
the established connection channel. The connection
is kept alive until terminated by either the client or
the server.

• The HTTP protocol is a unidirectional protocol that
works on top of TCP protocol which is a connection-
oriented transport layer protocol, we can create the
connection by using HTTP request methods after
getting the response HTTP connection get closed.

• Almost all the real-time applications like (trading,
monitoring, notification) services use WebSocket to
receive the data on a single communication
channel.

• Simple RESTful application uses HTTP protocol which
is stateless.

• All the frequently updated applications used
WebSocket because it is faster than HTTP
Connection.

• When we do not want to retain a connection for a
particular amount of time or reuse the connection
for transmitting data; An HTTP connection is slower
than WebSockets.

Why we need secure communication
???

Secure communication is crucial

• Data Privacy: It ensures the confidentiality of
sensitive information, protecting it from
unauthorized access.

• User Trust: Secure communication builds
confidence among users, fostering trust in web
applications and online services.

• Cyber Threat Mitigation: Secure channels
mitigate risks like data tampering, session
hijacking, and unauthorized access.

• Compliance: Many industries require secure
communication to meet regulatory and
compliance standards.

SSL and TLS: Introduction

• SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are cryptographic protocols that provide secure
communication over the internet.

• Apply the encryption algorithm to the plaintext data and the encryption key. The encryption algorithm
performs a series of mathematical operations on the plaintext, transforming it into ciphertext.

• TLS used two types of encryption techniques:

1) Symmetric (Single Key)

2) Asymmetric (Public and Private Keys)

• Symmetric encryption algorithms are: AES, RC4, Blowfish and etc.

• Asymmetric encryption algorithms are: RSA, Diffie Hellman, Elgamal, and etc.

• TLS Versions: TLS1.2 and TLS1.3 (most popular)

• WebSocket and HTTP uses port 80 for unsecured connections (ws:// and http://) and port 443 for secured
connections (wss:// and https://).

SSL / TLS Steps

1. The client (browser) and the server establish a TCP connection.

2. The client sends a “client hello” to the server. The message contains a set of necessary encryption
algorithms (cipher suites) and the latest TLS version it can support. The server responds with a “server
hello” so the browser knows whether it can support the algorithms and TLS version. The server then sends
the SSL certificate to the client. The certificate contains the public key, hostname, expiry dates, etc. The
client validates the certificate.

3. After validating the SSL certificate, the client generates a session key and encrypts it using the public key.
The server receives the encrypted session key and decrypts it with the private key.

4. Now that both the client and the server hold the same session key (symmetric encryption), the encrypted
data is transmitted in a secure bi-directional channel.

Establishing a Secure HTTPS Connection

Steps to establish a secure HTTPS connection:

1. Client initiates a connection to the server over HTTPS.
2. Server presents its digital certificate.
3. Client validates the certificate for authenticity.
4. Client and server perform a secure key exchange.
5. Data is encrypted and transmitted securely.
6. Connection is gracefully terminated.

Establishing a Secure WSS Connection

TCP
handshake

Certificate
Check

Key
Exchange

Handshake (HTTP Upgrade)

WSS full-duplex persistent

Close

Steps to establish a secure WebSocket (WSS) connection:

1.Establish a secure HTTPS connection.
2.Client sends a WebSocket handshake request.
3.Server validates and responds to the handshake.
4.Handshake confirmation and connection establishment.
5.Bidirectional data transfer and communication.
6.Closure initiation and acknowledgment.

Secured Connection

Thank You!

www.embedthreads.in

